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Theory of the Saffman-Taylor "finger" pattern. I
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In a series of two papers, we present a comprehensive approach to the pattern formed via viscous
"fingering" in a Hele Shaw cell, the Saffman-Taylor finger pattern. %'e explain how the "finger"
width is selected and why this selection cannot be computed via asymptotic analysis in the (large)
capillary number. Also, we derive the spectrum of small oscillations around the steady-state shape
and show that the selected shape is stable, In this paper, we set up the mathematical and numerical
formalism, and demonstrate stability for the A, = 2 solution. %e also consider the effects of noise on

the stability analysis.

I. INTRODUCTION

The problem of the Saffman-Taylor "finger" in a Hele
Shaw cell has recently been the subject of renewed in-
terest. ' ~ A Hele Shaw cell is a pair of parallel glass
plates separated by a narrow gap. Fluid flow between the
plates can be approximated by the two-dimensional Darcy
equation v= bVp/12I—s, for gap b and viscosity Is.
Much of the interest in this system is due to the similarity
of this flow with flow in porous media such as reservoir
rock, where a similar relationship holds between pressure
and velority.

If we attempt to displace a fluid in a Hele Shaw cell by
a second, less viscous fiuid, there is an instability which
prevents a planar interface from occurring. For a wide
range of system parameters, the interface between the two
fluids eventually settles down to a single finger with a
well-defined shape and velocity. ' This pattern is re-
ferred to as the Saffman-Taylor finger pattern. The selec-
tion of this pattern and its subsequent breakdown at large
flow rate to a more disordered state are characteristic is-
sues that occur in all systems of diffusively controlled pat-
tern formation.

Let us briefly review what is known to date. Using the
above two-dimensional approximation to the flow, the
equations describing this system can be written as

V p=O,
p(x (s))= —ytc(s),

dx(s) Bp

where the interface is given by x(s), with normal vector n
and curvature tc. The pressure p obeys the further
boundary condition Bp/By =0 at y =+1, p ——x as
x~00. With our scaling, the dimensionless parameter y
is given by (o/12pu)(b/a) where p is the fluid viscosity,
cr the interfacial tension, u the imposed flow at infinity, b
the gap thickness, and 2a the channel width. Also, we

have assumed that the driving fiuid has zero viscosity, a
situation most closely encountered by displacing with air.

We should note that these equations only approximately
describe the actual experiments. There are obviously
corrections coming from the three-dimensional nature of
the true fiow as well as corrections to the simple "micro-
scopic" condition for the pressure drop in terms of sur-
face tension. One might guess, for example, that in analo-

gy with the problem of solidification, there could be an
additional pressure drop proportional to the interfacial
velocity. Our purpose in studying the simplest set of
equations is to derive the essential mechanisms and
methodology without aiming at immediate perfect agree-
ment with all aspects of the experiments. As our con-
clusions unfold, we hope that the reader will agree with us
that the inclusion of these other effects will make only
small quantitative changes.

Saffman and Taylor showed that in the limit of zero
surface tension, the above equations could be solved exact-
ly for steady-state flows. They found a continuous family
of possible shapes, labeled by the ratio of "finger" width
to channel width, A.. Experimentally, one value of A, is
seen for fixed y. This situation is completely analogous to
what occurs in dendritic crystal growth. ' " There, in the
absence of surface tension, there exists a family of allowed
shapes found by Ivantsov, ' whereas experimentally' a
unique pattern is found.

The selection of specific values of A, was studied numer-
ically by McLean and Saffman. ' They showed that if
one solved the steady-state problem with nonzero y, solu-
tions did not exist for arbitrary width A, ; also, they found
one A, for which a solution did indeed exist. Subsequent
work' demonstrated that in fact a discrete set (possibly
infinite) of A, 's could occur. The actual selected pattern
does appear to agree' with the original solution which
corresponds to the smallest possible A, at fixed y. We
denote this as A, '(y). At the same time, McLean and
Saffman also attempted to derive the selection principle
via an asymptotic expansion in y, but did not succeed.
That is, there seems to exist a well-behaved asymptotic ex-
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pansion for the shape for all values of A, . Furthermore,

they tried to show that the finger was stable with respect
to small perturbations, but concluded that it in fact was
unstable. This last result is in manifest contradiction to
both the experiments and to computer simulations of Eq.

The purpose of this series of two papers is to provide
resolutions to the above-mentioned difficulties. First, we
present a new stability analysis which demonstrates that
the Saffman-Taylor solution is stable. The numerical
demonstration works for small enough velocity, but we
will argue that stability is destroyed only at y=O exactly.
Some of these results have been presented elsewhere' and
have been derived independently by Bensimon. The basic
idea of our approach is to study the stability operator cal-
culated via an asymptotic expansion in y. ' For a wide
range of y, this operator has a spectrum that can be stud-
ied numerically with good accuracy. At very small y
( (5)& 10 ), our numerical techniques become too diffi-
cult to implement and we cannot predict what occurs. We
will discuss at the end what we feel is the most likely
scenario.

At first (in paper I), we restrict the analysis to A, =-,'.
This is the actual selected pattern (A, '), only in the y~0
limit. The purpose of this is that we wish to demonstrate
the structure of the linear stability operator in the sim-
plest possible case. In particular, we mill show the ex-
istence of a continuum branch which is always stable as
well as the emergence of discrete modes at small y. The
results at A, = —,

'
allow us to explain why an expansion of

the eigenfunctions in a small number of Fourier modes is
not sufficiently accurate to derive the spectrum, explain-
ing the result of McLean and Saffman.

In the second paper (II), we turn to other values of A,

using a similar operator. The most important idea we
present is that the selection mechanism is due to an ex-
ponentially small term, inuisible in any standard asymp-
totic matching analysis. This mechanism causes the
breakdown of the connection between the asymptotic ex-
pansion and a true steady-state solution. It is only at the
discrete set of allowed A, that this connection is restored.
This notion allows us to compute the allowed A, via a sim-

ple stability criterion, with the results in excellent agree-
ment with the standard approach of Refs. 14 and 15.

Finally, we show that whereas the solution correspond-
ing to A, '(y) is stable, the other members of the discrete
set are alioays unstable. This follows immediately froin
the way in which the stability analysis changes as we in-
crease A, at fixed y. The result also explains how the spec-
trum continuously changes from the y&0 results dis-
cussed here to the y=0 spectrum computed by Saffinan
and Taylor.

As mentioned above, the Saffrnan- Taylor finger is
perhaps the simplest example of pattern formation via in-
terface evolution in a diffusion-controlled system. (Note
that we think of the Laplace operator as the quasistatic
limit of a diffusion operator. ) The mechanisms at work
here bear a remarkable resemblance to those which have
been shown to apply to simple models of dendritic
growth. " This leads us to conjecture that this entire class
of patterns is determined by including the exponentially

small effects of the microscopic parameters, which give
rise to global integrability conditions. We have referred to
this idea as "microscopic solvability. "' At the con-
clusion, we will discuss future directions for research
based on this concept.

II. STEADY-STATE SHAPE

in terms of the coordinates (P,P). Imposing the boundary
condition at the interface to 0 (y), we find

yx(g) = —5o(—g)+ g a„' 'cos(no f), (2)

where the curvature of the original interface, Ii(g), is easi-
ly calculated to equal m

~

cos(mf/2) ~. This equation
determines the expansion coefficients a„' ' in terms of the
as yet unknown 50(g).

The remaining condition to be imposed is the velocity
constraint —n (dx/dt) =Bp/Bn for normal vector n.
After some algebraic manipulations, this equation can be
rewritten as

»n(~4) 5o+ m5o
=+ncaa„' 'cos(nag) ..

1+eos(~ )

We proceed by eliminating a„' ' from the set of equations.
We define an operator T[a(x)] which has the effect of
changing a Fourier cosine series into a Fourier sine series:

r ga„'"cos(n~y) =pa„"'sin(n~i)l) .
1l n

(4a)

Sometimes, it is more convenient to use a principal-value

In this section we discuss the steady-state finger shape,
treating surface tension perturbatively. As discussed
above, we limit the details of the analysis to A, = —,'. The
fact that the selection of a discrete set of possible widths
is totally invisible in perturbation theory means that our
calculation will be internally consistent, keeping systemat-
ically all terms linear in y. In the Appendix, we will

present the generalization to arbitrary k, as that will be
needed in paper II.

The original Saffman-Taylor solution at y=O can be
most easily expressed via the mapping

z =p+(1/m )ln(1+e i'),

where z =x+iy and p=P+iP for velocity potential P
and stream function g. The finger interface is given
parametrically by setting /=0. Our goal is to correct this
shape perturbatively in the presence of small but nonzero
surface tension. This has, in fact, already been done by
McLean' in a totally different parametrization from the
one we find most convenient for the subsequent stability
analysis. Inasmuch as we need the explicit form of this
correction, we will redo the calculation using our formal-
1sm.

Let us assume that the new interface is given by the
same mapping as above, except that now $=5o(g). The
pressure field can now be expanded as

p = —P+g a „' 'cos(n m g)e
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integral representation of T,

T[a(g)]= —,
' P f dP'cot[ ,

'
—n(P —f')]a(g') .

One can verify that (4a} follows from (4b). In terms of T,
the shape correction equation can be written as

sin(m1()5o(y)+ 7r5c(q)
T[50(4)—y~(4)]1+cos 8

Integrating this equation, we arrive at the final form

tan(mg/2)5p ——T [50—y~] .

We can solve this equation by assuming that 50 can be
expanded in a cosine series

50=+b„cos(nag) .

III. STABILITY OPERATOR —DERIVATION

In Sec. II we have shown how the steady-state solution
is characterized by the function /=50(g). We now as-
sume that the interface is perturbed away from 50(1(), that
is, /=5&(g)+5(g, t). We keep terms linear in 5, up to
0(y)

Let us first consider the equation for the pressure at the
interface. Keeping all necessary terms leads to the equa-
tion

—y~' "[5]= 5—(g, t)+g a„cos(net)

—g n~a„' 'cos(nag)5(g, t)

Making use of (4a), and requiring that 50(g) vanish at
/=+1, we derive the equations

b„=—,
' y(c„+c„&), n & 2

I
bi —b = —,yc

where c„are Fourier coefficients of z(g). One can also
specify the condition bo ——0 by making use of the transla-
tion zero mode. Substituting these expressions into (6)
leads to the form

5p(g) =—y cos ir+ [I+cos(mP)]
2 2

m'y

2
sili( 1Tt/) )T cos

2

Finally, the last term can be evaluated explicitly by using
the integral expression for T, Eq. (4b). The final expres-
sion for the shape correction is

50(f)= cos [1+cos(nit)]

—y sin(n. it }cos ln
m P 1+tan(n Q/4)

1 —tan n 4

The appearance of a logarithm in the first-order shape
correction has already been commented on by McLean
and Saffman. In particular, they argue that higher orders
in y will lead to higher powers of the logarithm, giving
rise to a branch point at the side of the finger. Although
this complicates the perturbative analysis by requiring, in
general, matching between inner and outer solutions, thi. s
does not resolve the problems of either width selection or
stability. In our numerical procedures to be discussed
later, we change variables to the arclength, converting the
above logarithm to a simple integral power. Because of
this, our results will not depend on the existence of this
branch point.

In Sec. III we turn to a calculation of the stability
operator, correct to 0(y). We will keep terms linear in
the time-dependent perturbation 5(g, t} and up to linear in

y; this includes cross terms of the form y5 which are cru-
cial for obtaining the correct spectrum.

nba„cos nm

where a„' ' are the coefficients used in Sec. II in connec-
tion with the shape correction. x'"[5] is the linearized
curvature operator given by

s'"[5]=—2cos ~ 5"—n sin 5'
2 2

vr' ref

At this stage, we have assumed that the perturbation is
symmetric around /=0. We will return later to the an-
tisymmetric case. Note that a„' ' as well as 50 are propor-
tional to y. This means that this equation can be solved
order by order, to yield

a„cos nm

a=5—ya'"[5]+5+ nba„' 'cos(net)+50 T[5]'ay

(10}

with the T operator previously defined.
Again, the system of equations is completed by consid-

ering the velocity condition, n(dx/dt)=ap/—an. First,
the left-hand side can be shown to equal

[—,
' 5(1+n5O)+sin(ng)5'+m5]/[I+cos(ng)] .

The normal derivative is then evaluated explicitly using
the series expression for p. The resulting form is

g nba„cos(net)(1 —nn50)+g nba„' 'cos(net)( —nn5)

—50+nba„sin(nag) 5'g nba. „' '—sin(n~g) .

(12)

Substituting for the a„using Eq. (10), we derive the altei-
nate representation, correct to 0 (y):
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(0}

a1( a1(
T[5 y—a [5]]+ T '5g nba„cos(net) + T 50 T[5]

i
+505"+505'+5' pa„' 'cos(nag) +5 pa„' 'cos(net)

n $/2

The above expression can be simplified in various ways. First, we can recall from Sec. II that

ga„' 'cos(nag)=50 y—~' ',

g a„' 'sin(net) =T[5o—ya' ']=50tan(ng/2) .

(13)

This enables us to rewrite all the terms which contain a„' '. More importantly, consider the double transform

ay 'an't 4 ay -i 2 ay -i 2
T 5O T[5] =— f dg'cot —(f—g')50(g'), f dg"cot (g' —f"}5—(g")

+, . 5 (g'), „.+, „. 5'(p")dg'df" .
4H Bp —~ p f'+i e —f f' i e — — p' f"+i e —f' p" i—e—

Using the expansion for 50 in Sec. II as g„b,cos(net}, one can explicitly integrate over g via the residue theorem. The
result is

T 50 T[5] = — (505')+ f A(g, g')5'(p')

with the kernel

A(P, f') = —,
' cot[(ir/2)(g —f')][I(f)—I (g')],

l(f)=tan(i'/2)50+yT[~' '] .

(14a)

(14b)

Combining all the pieces and using the known expressions for 50 and T [a' '] to simplify /(g), we arrive at the stability
equation

[—,'5(1+m50)+sin(m1t )5'+n5]/[1+cos(m1()]
r I

1

'cot —,~ — ' —
yacc

'+ ', Otan —,

J

with

+[I'(y) —&'(q')]5'(y')+[I(y) —1(y')]5"(y') + [5(5O—yK' ')']
a1(

(15)

l(f) =—y sin [1+cos(mg)]+2y cos [1+cos(mf)]in
m . mf ng 1+tan(m g/4)

(16)
2 1 —tan ir 4

A similar type of equation appears in the work of Muller-Krumbhaar and Langer in the context of the dendrite system.
Equation (15) is the basic stability equation for syminetric perturbations. We will turn to a numerical analysis of this

operator in Sec. V. Before this, however, we wish to present several analytical results. This includes a derivation of the
dispersion relation for the continuum modes as well as an explicit verification of the presence of a translation zero mode.
These calculations will be the subject of Sec. IV.

To conclude this section, we now present the analogous formulation for antisymmetric perturbations. The expansion
for the pressure analogous to the cosine series used above is

P= —P+ga„sin[(n+ —,')mf]e '"+'~ ' ~+pa„' 'cos(nag)e

which also satisfies the sidewall conditions, (Bp/Bf}
~ ~ +&

——0. The first equation leads to the following expression for
the a„:

pa„sin[(n+ ,' )mg] =5 y—a'[5]+5—g a„' 'sin(nag)+50 T(5), (17)
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where the new transform T has the effect

T[sin[(n + —,
'

)nil ]]= —cos[(n + —,
'

)irQ]

and the explicit representation

T[5(g)]= ,'P—J dg', 5(g') .
sin[ —,

'
m(g —g')]

Substituting this into the velocity equation, we now have the form

[—,5(1+m5p) +sin(n g)5'+ @5]/( 1+cosm f)

T[5—y~'[5])+ T 5+nba„' 'cos(net) + T 5p T +(5p5')'+ 5 ga„' 'cos(net)
511 a@ ay

This is exactly the same result as before, just with T re-

placed everywhere by T. To conclude the calculation, we

note that the double transform term

T 5p T(5}

can be reduced to the single integral of exactly the same
form as before, with the only change being the replace-
ment of A(f, P'} with A(P, f'):

A(p, p') = —,
' csc[ —,

'
m(1( —it/)][l(g) —l(p')] .

For a single finger, the only possible perturbations con-
sistent with the sidewall conditions are the symmetric and
antisymmetric ones. For a multifinger array, we can al-

low, in general, perturbations that are labeled by a Bloch
wave vector k corresponding to how the perturbation on
one finger is related to the perturbation of the translated
finger. This leads to a new eigenvalue problem, indexed

by the label k. This analysis, as well as its implications
for the coalescence of finger arrays into a single finger fi-
nal shape, will be presented elsewhere. i'

IV. STABILITY OPERATOR —ANALYSIS

In Sec. V we will tackle the numerical evaluation of the
spectrum of the operators that we have derived. First,
however, we would like to exhibit two analytic computa-
tions; these are the demonstration of the existence of a
translational zero mode and the derivation of a dispersion
relation for the continuum part of the spectrum.

The original finger shape has an obvious invariance
with respect to translations along the fiow direction. This
gives rise to a zero mode in the linear oscillations spec-
trum. Our approach will be to compute the zero mode ex-
plicitly and then verify that it indeed satisfies the eigen-
value equation derived in Sec. III.

Consider making a shift 6 in the x direction of the pat-
tern described by (1). The normal shift is then

n hx=n„b .

We must equate this to the normal shift induced by a
nonzero perturbation 5:

n, h=(n x~+n„y~)5 .

We now evaluate all these objects around the interface
x(5p(g), g),y(5p(g), g) and keeps terms to O(y). The re-
sult is

5=6[1+cos(fry)]—k[8'5pcos(injf) —5psln(aery)] .
The second term is, of course, proportional to the small
parameter y. Recall that the stability operator also could
be broken up into terms independent of y and terms linear
in y: Schematically L[5]=Lp[5]+yLi[5]. Consistency
to this order requires that

Lp[5pcos(irit ) —5psin(+lit)] =yL i [1+cos(mf)] .

This is the equation we will now check.
Let us go back to the form of the stability operator in

(13) and (11). Substituting the above functions, we derive
the condition

—tan [5 sp(ceo'f) 5psin(nf—)]+T [5pcos(mg) —5psin(i')]
2

=(5p —~' ')'[1+cos(mg)] —csin(irf)5p+ T[—ya'"[1+cos(irP)]+5psin(mg)+5p[1+cos(irP)]] .

From its definition,

a' [1+cos(m f)]=n cos —cos
2 2

We rewrite T[—5psin(m. g)] via the equation for 5p, Eq.
(5), as —[1+cos(mg)](5p —a' ')' —m T(5p). After some
algebraic manipulations, we obtain
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tan [50sin(mg) —50cos(n f)]2

y~
2

T [1+cos(nf)]cos
2

—(5o—a' ')'[1+cos(m.P)]

7rns—in( m g)50 m.5—0tan
2

+ T cos
m mf 1+tan(n Q/4)=Kcos ln

2 1 —tan(n g/4)
1

and —,
' f cos(ng/2)df=2/n. Substituting all these re-

sults into the above expression and replacing 50 by the ex-
pression given in Eq. (7), we indeed verify that the above
equation is satisfied. The existence of an approximate [to
0(y }] zero mode will serve as a useful check on our nu-
merical computations.

The next thing we wish to discuss is the existence of a
I

To make further progress, we use the relationship

T[[l+cos(mg)]f (ij()]

=[1+cos(np))T[f(p)]+ —,
'

sin(n1t) f deaf(g)

which can be derived from the definition of T. Now,

continuous spectrum. In the absence of surface tension,
all eigenmodes of linear stability operator decay exponen-
tially with distance away from the finger tip. With sur-
face tension, we must in general allow for the possibility
of modes which oscillate with finite wave vector, a sort of
diffusive capillary wave behavior. Seen in terms of the
original parametrization of the interface, these eigenfunc-
tions will have singularities at P=n/2, similar, in fact, to
the branch point structure which arises in perturbation
theory. To see how all this comes about, we reexpress the
stability operator in terms of the physical arclength, relat-
ed to 1( via the condition

r

cos
2

1

cosh(ns)

In terms of s, the shape correction becomes

50(s) =my/cosh (ns)

—2yms tanh(ms}/cosh (ms) . (19)

This, as promised previously, is just a power times hyper-
bolic functions and has no singularities. We can now
evaluate the stability operator as follows. The left-hand
side of the stability equation reduces to

—,
' cosh (ms)[ —,'5(l+m50}+m5+tanh(~s)5'], (20a)

where derivatives are now taken with respect to s. Simi-
larly, the right-hand side becomes

, 1+sinh(ms)sinh(ms')
(5 yacc [5]—)'+ —,5cosh(ms'} [50sinh(ms')]

a
sinh ms —sinh ms' S

+ —,
'

[cosh(ms )I '(s}—cosh(ns')I '(s')]5'+ —,
' [l(s)—l(s')][cosh(ms')5']'

+ —,
'

cosh(ms) t5cosh(ns)[50 —yn/cosh(ms)]'I' (20b)

with

a. "'=——, cosh(ms)5" —m sinh(ns)5'

2, n. 5 cosh(ms)+-
cosh ms

l(s) =my tanh(ms)/cosh (ns)+2@ms/cosh (ms) .

A continuum mode is a solution 5-e . We can com-
pute a dispersion relationship by keeping only those terms
that vary asymptotically as e ' + '. Because both I and
50 decay rapidly as s ~+ oo, they make no contribution.
Note too that Rek & 0 for the integral to converge. For k
in this range, we find

Rek, all of the s' range contributes equally. It is easy to
show that Req corresponds to the rate of growth of the
normal displacement away from the Saffman-Taylor in-
terface.

Finally, we would like to reemphasize the drastic
change in the stability operator introduced when y is tak-
en to be any nonzero value. The cause of this is simply
that y enters with a higher derivative term and hence
changes the character of the allowed eigenfunctions. Be-
cause of this, eigenfunctions at small y are not well ap-
proximated by linear combinations of a small number of
y=0 modes, of the type used by McLean and Saffman
(see in this regard the discussion in Ref. 19). As we shall
soon see, keeping only a small number of modes leads to
the erroneous conclusion that fingers are unstable.

CO I g 3 7Tq= —q ——,y~q tan
2~ ' 2

(21)

q =k + 1, and hence Req ( 1. This, of course, is the same
result as one finds without including any shape correc-
tion. ' In this notation, a discrete mode such as the
translation zero mode has Rek = —2. For this value of

V. NUMERICAL PROCEDURE

We have not found any analytical means of fully
analyzing the spectrum of the linear stability operator
given in Sec. IV. We, therefore, turn to a numerical diag-
onalization via discretizing the arclength s. This involves
the introduction of two cutoff parameters, the number of
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points X, and the maximum arclength s,„, It will prove
more convenient to work with s,„and a spatial cutoff,
defined as cr=s,„/N. The issues that will be discussed
in this section include how to discretize the principal-
value integral and how to extrapolate our results to the
limit (cr~O, sm, „—+an}. The operator we wish to study

was given in Eqs. (20a} and (20b) in terms of arclength.
We let sj ——jo', j =O, N, and impose either 5'(0)=0 (for
symmetric inodes) or 5(0}=0(asymmetric modes). In all
cases, 5(s )s,„)=0. The derivative operators are discre-
tized directly. The integral is rewritten as (Q stands for
the entire rest of the integrand)

, 1+sinh(ms}sinh(ms'), i
' 'J+' ''

Q(s') = —, P
sinh(ns) —sinh(ns') ' . N ~~J —i~~~

1 +sl nh( lrs)sl nh( lrs )
[Q( ) Qf( )(

f )]sinh(ms) —sinh(ms')

The integrals are then done either analytically or approxi-
mately with an error of 0(1/N ). The accuracy of this
method (i.e., dropping terms in Q", etc.) can easily be
shown to be 0(1/N ). A similar methodology works for
the antisymmetric modes, where the operator now has the
kernel cosh(mrs }cosh(mrs')/[sinh(ms }—sinh(mrs')].

We first test the program by looking at the approximate
zero mode discussed above. Schematically, the operator
under consideration can be written as

L [5]=La[5]+yL i[5]
and we showed earlier that analytically

Lo[50cos{1r@)—5Qsin(~)] =yL i [1+cos(7r@)]

for 50(g) given in Eq. (19). We can substitute this identity
into our program to determine both the code validity and
the intrinsic error. In addition, we wrote a separate code
for arbitrary )L. (which will be used in paper II) and deter-
mined that it agreed with the numbers derived here when
specialized to —,', as well as the exact results for A, = l.

We expect that for any given value of y, there will be
both discrete modes and a continuum. For the discrete
modes, we expect that the eigenfunctions will decrease ex-
ponentially with arclength and that therefore the eigen-
values will be practically independent of s,„. On the
other hand, we expect convergence at fixed s,„ to be
quadratic. To verify this behavior, we have done tests at
various values of s,„and N. A typical set of data, for
y=0.005, is contained in Table I. The eigenvalue given
there corresponds to the eigenvector plotted in Fig. l.

There are several important points to notice. At fixed
o, there is practically no change in the eigenvalues as a
function of s ~. For fixed s ~, the points fall exactly
(to three significant figures) on a curve of the form

EN E+5E/N, E——= —0.1076 .

We can therefore extract the actual eigenvalue by simple

TABLE I. Discrete eigenvalue, dependence on X and arc-
length cutoff.

1,00

0,?5

o 0.25
CP
C:

C:
ED

—0.25-

0-

l

extrapolation. Note also that as we lower the number of
points, the mode becomes less stable. This is an important
idea. It accounts, as mentioned above, for the inability of
the original stability calculation of McLean and Saff-
man, ' which was limited to 15 Fourier modes, to see the
stabilization of the finger due to surface tension. Later,
we will argue that this effect may also cause the observed
width to fall below —,'.

Continuum modes correspond either to real eigenvalues
with Redo &&0 or to complex-conjugate eigenvalue pairs.
A typical eigenvector of the first type is shown in Fig. 2.
Notice that Imq is quite large whereas Req is relatively
small (recall that the rate of growth is Rek=Req —1).
Inasmuch as these modes are always extremely damped,
we need not worry about accurate extrapolation.

In Table II we present a sampling of our data at
y =0.001 for several of the lowest modes corresponding to
complex eigenvalues. One such mode is plotted in Fig. 3;
now Imq is small and Reco can be near Redo=0. The
question of extrapolating to limits s,„~oo, o fixed and
then cr~O is thus more critical. This is obviously diffi-
cult to do very accurately, given the practical limits on the
size of s . We chose to proceed as follows. Let us con-
sider fixing j/s, „by looking at different modes for dif-
ferent s,„:

mode 1: —=j i
——s,„/4,

mode 2: —=ji ——s,„/2,
mode k: =jk =ks,„/4 .
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FIG. 1. Symmetric "zero-mode" eigenfunction.
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TABLE II. Continuum e'esgenvalues, de ne, ependence on spatial and ara ~a and arclength cutoff0 s.

( —0.972,0.520)
{—1.20,0.922)
{—1.54, 1.48)

(—0.815,0.263)
(—0.817,0.639)
{—0.905,0.995)

( —1.01,1.37)
( —1.12,1.76)

(—0.598,0.170)
(—0.611,0.480)
(—0.644,0.760)
(—0.690,1.03)
(—0.795,1.59}
{—0.853,1.88)

4
3 ( —0.968,0.537)

( —1.19,0.957)
( —1.52, 1.52)

( —0.840,0.275)
{—0.835,0.649}

(—0.921,1.00)
(—1.02, 1.39)
( —1.14,1.78)

( —0.615,0.173)

(—0.625,0.485)
(—0.655,0.766)
( —0.700,1.04)
( —0.749, 1.32)
(—0.801,1.60)

(—0.965,0.543)
( —1.19,0.971)
(—1.52, 1.54)

( —0.856,0.283)
(—0.847,0.652)
(—0.933,1.01)

(—1.04, 1.39)
( —1.14,1.78)
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from the existence of translation invariance. That is,
there should be a zero mode, Reco=0, which is symmetric
around /=0. In addition, there might be other modes
both symmetric and antisymmetric which can be identi-
fied numerically.

Let us first consider the translation mode. As discussed
earlier (Sec. IV), the stability operator is of the form
L =Lp+ yL i where there exists a function 5p(g)
such that, Sp(g)=5p(g)+&5p(g) wi'th Lp[5p]=0,
Li[5p]+Lp[5p]=0. This analytic lesult does ilot requii'e
that there be an exact zero mode in the spectrum of L. In
fact, we know already that the spectrum of L cannot be
derived perturbatively because yLt drastically alters the
nature of the stability operator. However, there still
should be an approximate zero mode because of the fol-
lowing reasoning. At small y, the exact solution of the
steady-state problem approaches the A, = —,

' Saffman-

Taylor solution. ' The exact stability operator has a zero
mode because of translation invariance and the operator
here is in some sense "close" to that operator. We there-
fore expect to fmd a discrete mode close to Recp =0.

%e have runs at y=0.007, 0.005, 0.003, 0.002, and
0.001 and performed the extrapolations discussed above.
The result is that there is one discrete symmetric mode
which in all cases is close to Race=0. The results are
given in the following table.

FIG. 5. Antisymmetric eigenvalue, as a function of y, at dif-
ferent values of ¹

0.007 0.003 0.002 0.001

a)p —0.099 —0.108 —0.117 —0.123 —0.135

All the values are negative, a result that will be important
for the ideas to be presented in paper II. Somewhat
surprisingly, cop becomes larger as y gets smaller. For all
y&0.003, there are no additional symmetric discrete
modes. For y below this, there appear to be additional
modes, the lowest one at Recp- —9 at y=0.001. These
modes "break off" from the bottom of the real
continuum —as we go to smaller y, more and more of
them can occur. This is presumably connected to the de-
crease of Recp at which the continuum stops, derived in
Sec. VII. For our purposes here, these modes remain ex-
tremely damped, and we need not worry about their exact
values.

We now turn to antisymmetric modes at similar values
of y. There is now no general reason for the occurrence
of any specific eigenvalue, and we rely completely on our
numerical procedure. The results for the lowest inode are
presented below and a graph of the eigenfunction is shown
in Fig. 4.

0.003 0.001 8X10 ' 5g10 '

QPp —0.313 —0.298 —0.277 —0.262 —0.241 —0.236 —0.223

Unlike coo, coo gets smaller as y~0. %'e see no indications
that it actually crosses zero before y =0, although we can-
not go much belo~ 5 & 10 ~.

Bensimon has suggested that noise plays an important
role in the antisymmetric instability observed to occur in
experiments at small enough y. To check this idea, we

l

can interpret the finite number of points in the numerical
algorithm as a simple way to mimic the effects of imper-
fections in the experiments. In Fig. 5, we have graphed
the convergence of cpp as a function of X to its asymptotic
value. We have found the following behavior.
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(a) At any fixed N, there exists a value of y=y' at
which the antisymmetric mode becomes unstable. As
x~~, y —+o.

(b) The number of points needed to stabilize a fixed y
increases rapidly as y~o.

Thus, we agree that even if there is strictly a transition
without noise only at y =0, finite noise might give rise to
an antisymmetric instability at finite y. We will have
more to say about the effects of noise in paper II when we
generalize our treatment to arbitrary A, .

VII. CONTINUUM MODES

We now present our results regarding the continuous
part of the spectrum. As mentioned earlier, there are both
real and complex branches of eigenvalues. Let us first
focus on the real part. In Sec. IV we derived the disper-
sion relation

co= q ,—year
—q —tan(nql2) .

To ensure convergence, Req & 1, and a real spectrum re-
quires for large Imq

Imq = —,
'

yn Req(Imq)

or Req&0. Therefore, the real spectrum extends from
co = —oo at Req =0, Imq = oo to a finite and negative co,
at which Req =1. co, is given explicitly for small y as

co,~—,', ( —,
' yH) as y —+0

which equals —1.52X10 at @=0.001 and —60.84 at
@=o.oos.

How does this compare with the real spectrum seen in
our numerical computation? At any finite s ~, we do
not get an absolute cutoff of the spectrum at Req =1. In-
stead, some amount of exponential growth is tolerated at
any fixed s,„; this gives rise to an observed co,(s,„).
For example, at y =0.005 symmetric we have
co,(4)= —8.91 and co,(6)= —18.8, corresponding to Roq
of 1.94 and 1.49, respectively. Clearly, we are not all that
close to the s ~ = oo limit; aside from this, however, our
description works well. The actual wave vector as can be
measured from the eigenfunction reproduces the eigen-
value when substituted into the dispersion relation, and
the spectrum does cut off at some Req, which approaches
1 (albeit slowly) as sm~-+ oo. Finally, all these modes are
strongly damped in time and are of no significance for the
stability problem at hand.

The real part of the continuum is fundamentally dif-
ferent from the complex branch. For any Imco =0,
Req)0, there are two modes corresponding to positive
and negative imaginary q which satisfy the dispersion re-
lation. This allowed us, in a manner discussed, for exam-
ple, in the treatment of the local model of Ref. 11, to
satisfy the boundary conditions at both the tip and infini-
ty. This part of the spectrum can therefore be character-
ized completely analytically. For any complex co, there is
only one value of Imq for a given Req. The simultaneous
requirement of satisfying all boundary conditions can only
occur if Reco is picked to be a uniquely determined func-
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FIG. 6. Comp1ex continuum at s,„=6,A =300. (a) Redo vs

Imago. (b) Req vs Imq.

tion of Imco, a function that depends on the details of the
nonasymptotic pieces of the stability operator. We can
determine this dependence only numerically. Further-
more, the function can and does depend on whether the
modes are symmetric or antisymmetrie.

In Fig. 6(a) we plot the complex symmetric continuum
at s,„=6,y =0.OOS, X =300. Imm increases, reaches a
maximum, and then decreases until it hits zero at
Reco =co„ the start of the real continuum. In Fig. 6(b) we
have plotted the same data as Req versus Imq. Notice
that the complex branch is generated by varying Imq from
0 to Imq„ the start of the real spectrum. Of course, the
same statements regarding the ultimate irrelevance of the
modes with Req & 1 apply to the complex modes as well
as the real modes discussed above. As s,„~ao, the two
spectra will meet at Req =1.

From the point of view of the finger, the most impor-
tant part of the spectrum is the region around Imq =0.
In particular, since the complex modes continue to satisfy
the dispersion relation, we must know how Req behaves so
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as to compute co. If Req =0 at Imq =0, the continuum
would only be marginally stable. This is indeed what hap-
pens at exactly y=0 for the symmetric operator, in the
following sense. At y =0, the finger solution exists for all
A, and therefore there is a zero mode corresponding to
changing A, . Since Req is the growth rate of the normal
displacement in the asymptotic far form tip region,
changing the width asymptotically requires Req =O.
Similarly, in perturbation theory at finite y, such a mode
must continue to exist. Nonperturbatively, we know that
there is no such zero mode and that therefore the sym-
metric stability operator continuum must have a gap.
That is, the spectrum should start at Req g0 and hence
Reco ~0. This is what we would like to verify numerical-
ly.

In Fig. 7 we have plotted the bottoms of the symmetric
and antisymmetric continua at @=0.005, extrapolated to
s,„=oo using the ideas in Sec. V. Notice first the finite

gap; Reco is always negative and the finger is stable. Like-
wise, in Fig. 8 we show the y=0.001 symmetric continu-
um. The results are similar. In all cases we have checked,
all Retv &0 and there is no instability. Notice, however,
the strange behavior of the bottom of the symmetric con-
tinuum. Whereas the antisymmetric modes nicely con-
verge to a curve which cuts off at some negative value for
Reco, the last few modes of the symmetric continuum
seem to be offset from the rest of the branch. We do not
fully understand this behavior, although we feel that it
may be connected with the widening mode discussed
above. Some evidence for this can be obtained by plotting
the eigenfunction as we have done in Fig. 9 and verifying
that it is a pure exponential with Imq =0.

It is in general quite hard to say much more about these
modes. We would need to go to much larger s ~ before
we could be confident of any quantitative prediction. For
example, it is possible that the anomalous behavior at

x 3
CJ
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FIG. 8. Extrapolated complex continuum, symmetric only, at
y =0.001.

small Immi is an artifact of our cutoff. Nevertheless, the
sum total of all our runs at differing cutoffs and parame-
ters indicate no sign of any instability. That is, the con-
tinuum consistently hits the Imq =0 axis at finite and
positive Req. In fact, we have never found a mode at any
negative value of Req, either in the real or complex parts
of the spectrum. Coupled with the results for the discrete
modes presented in Sec. VI, we can safely conclude that at
least for y &0.0005, k= —,

'
fingers are linearly stable. We

will present additional data for A,&—,
' in paper II.
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FIG. 7. Extrapolated complex continuum at y=0.005, both
symmetric and antisymmetric modes.

FIG. 9. %'idening eigenfunction, bottom of the continuum at
y =0.001.
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VIII. CONCLUSIONS

The purpose of this paper was to present an analytic
and numerical frainework which allows us to understand
the spectrum of small oscillations around the Saffman-
Taylor finger. The major results that we will need to car-
ry over to the second paper of this series are the following.

(1) At any fixed A., a steady-state shape and a resulting
stability operator can be computed as a power series in y,
the surface tension. Although we have carried out this ex-
pansion to only one order, nothing in principle prevents us
from proceeding further.

(2) The spectrum of the operator at any nonzero value
of y is drastically different from that at y=O. This
makes a careful numerical analysis crucial for demon-
strating the stability of the finger solution.

(3) There is a large response of the spectrum to small
noise in the computer algorithm. Specifically, at small y,
small noise can destabilize the steady-state solution.

(4) The continuum runs from Req =0 to Req =1, gen-
erating a real branch and a complex branch. These modes
are always damped in time.

(5) There are both symmetric and antisymmetric
discrete modes which at A, = —,

'
with no noise seem to be

stable to very low y. We conjecture that they will remain
stable all the way to y=0.

(6) There is an approximate zero mode which is not at
exactly Rec0=0 for any finite y. Somewhat surprisingly,
this mode does not seem to approach zero as y is de-
creased.

In the following paper, we generalize our calculation to
A,&—,

' and relate the stability properties to the selection of
finger width. This will allow us to present a complete pic-

I

ture of the Saffman- Taylor finger, at least from a
phenomenological point of view.
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APPENDIX

In this appendix we present without derivation the for-
mulas derived in Sees. II—IV generalized to arbitrary A..

First, the generalization of the shape correction is

50(11)= I A[1+cos(ng)]«' '= 2y~
D

—(1—A, )sin(erg)T(«' ') I, (A 1)

where

D =4I (1—g)i+ [)(,2 —(1—A, ) ]cos (n'f/2) I

and the curvature of the Saffman-Taylor solution is given
by

—,
'

n A(1 —A, )cos(md( /2)

D/4

Explicitly performing the evaluation of the integral opera-
tor T(«'+), we arrive at the expression

2yA [0& 2(1 —2A, )

D
~ A [1+cos(~) ]« —(1—A )sin(irQ) sin(m f)+D

4A, (1—A, )cos
2

g) 3/2
' ln

2(1—A, ) . mQ

vD 2

2(1—A, ) . nP
~/D 2

(A3)

The stability operator was given in the text as Eq. (15). The left-hand side becomes, for general A, ,

D +4m A(1 —A, )50,
+

4cos (n.P/2)
tan 5

7r

2 (A4)

The terms on the right-hand side become
1

2 J dg'cot[ z ~(P g')] I (5 —y«'[5])'(—P'}I, (A5a)

and

—25"cos(m'g/2) 4m(1 —A, } sin(erg/2—), + 2Ai(1 —A, ) cos(md(/2) 2(1—1,) cos(ng)
vD 3/2

5' — 5 ~ 5/2 D i cos(erg/2)

—,
' I dP'eot —(g—g') 5, [50tan(mP'/2)]' '+ [[1'(f)—1'(g')]5'(g')I+ I [1(g)—1(g')]5"(f')I

3
(A5b)
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with which can be explicitly evaluated as before, and finally

I(,f)= tan 5o+yT(» ],(0)

2
(A5c)
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