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We report the temporal developments of the variance and distribution of fluctuations of macro-
scopic order in a structure-formation process using an electrohydrodynamic instability of a nematic
liquid crystal at f > f,, where f and f, are the applied and the critical field frequencies separating
two different instabilities: a convective flow instability and a forced oscillatory instability of the
director. At f > f., the dissipative structure appears essentially as the forced oscillatory instability
of the director in a three-dimensional pattern in space. The temporal development of the variance is
qualitatively in good agreement with the result expected from the noisy Landau equation for the ear-
ly stage, which resembles the result in a transient process of laser radiation, theoretically and experi-
mentally studied by Arecchi and Degiorgio, but not for the late stage. This comes from the spatial
inhomogeneity of the macroscopic order. The distributions of the macroscopic order fluctuation
have profiles similar to the Gaussian type (or lognormal type in the presence of externally applied
noise) for the early stage, and have an asymmetric profile with negative skewness for the late stage.
This would suggest that the growth process of the dissipative structure for the late stage is dominat-
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ed by totally different kinetics from that for the initial stage.

I. INTRODUCTION

Transient phenomena near an instability point have
been studied in various fields, such as hydrodynamic in-
stabilities,""? phase separation,’~> and oscillatory instabili-
ties in an electrical circuit® and in laser radiation.” The
former two (hydrodynamic instabilities and phase separa-
tion) have spatial degrees of freedom, but the latter do
not. One statistical theory for such transient phenomena
without spatial degrees of freedom is the laser-radiation
theory of Arecchi and Degiorgio, which describes their
experimental results’ well. Another such theory is
Suzuki’s scaling theory,® which can describe the kinetics
for all stages of the latter examples. We are, however, in-
terested in the transient kinetics of the systems with spa-
tial degrees of freedom.! One well-investigated example is
the phase-separation process, which is a transient
phenomenon in a process going from nonequilibrium to
equilibrium.’ Recently a large increase of electrical fluc-
tuations was observed during a process of crystallization
from supercooled liquid glycerol,* which is similar to the
transient phenomena in laser radiation and in the present
study. An idea given for the separation process therefore
might extensively be applied to other systems with spatial
degrees of freedom.

Dynamics in systems with spatial degrees of freedom,
on the other hand, is classified into two different cases ac-
cording to the following equation:
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where y and L are an order parameter and a transport
coefficient, respectively, and ®(y) is the potential

D(y)=+a'y —+b'y*—+(Vy)?. )

Here the index a =0 for nonconserving systems such as
order-disorder transitions, and a=2 for conserving sys-
tems such as spinodal decomposition in alloys and phase
separations in solutions. Scaling properties therefore
strongly depend on the conservation law of the system.>’

Phase-separation processes start as nucleation or spino-
dal decomposition, due to a first-order kinetics from a
homogeneous state. At late stages, the inhomogeneity of
the system becomes important since phase separation
proceeds, and the interaction among local ordered phases
in different locations appears, for example, through the
diffusion process in the conserving system.>*!'® In this
situation, the interfacial motions of ordered phases play
an important role and therefore the kinetics and scaling
laws in space and time are different from those for the
early stage.>!'~!3 Such evidence has recently been ob-
served in several systems, but details are still unknown.

Similar order-formation processes are observed in dissi-
pative structure formations far from equilibrium. In
Bénard-Rayleigh (BR) convection, wave-front motion and
defect dynamics in convective rolls dominate growth in
the late stage. The effects of defect dynamics are particu-
larly important in the long-time behavior near steady
state.>!%15 The dynamics of defects, such as the com-
bining, climbing, and gliding, corresponds to a type of ag-
ing process, and the Burgers vector of defects is conserved
in a system with a sufficiently large aspect ratio . An
isolated defect, however, can survive in a system with
small I".2!5 Therefore the Burgers vector is not conserved
in this case. The model used for phase separation there-
fore may be useful to understand qualitatively the kinetics
of the instability far from equilibrium in a system with
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large . From this point of view, we study a macroscopic
pattern-formation process for the forced parametric oscil-
lation of the director in the electrohydrodynamic (EHD)
instability of a nematic liquid crystal and report the tem-
poral growths of the variance and order fluctuation. In
EHD, the characteristic time is much shorter than that in
BR convection, typically by 2 or 3 orders of magnitude,'®
which is one of the advantages to investigating this sub-
ject.

A nonlinear macrodynamics for the EHD may approxi-
mately be described by the equation'’

y=alely —by>+ Vi +E&t)y +7(1) (3)

for small € [ =(V?—V?)/V?], the normalized value of the
deviation from the instability point V, (the critical ap-
plied voltage). Here y, £(¢), and 7(¢) are the macroscopic
variable, an external noise voltage, and an internal thermal
fluctuation, respectively. When the noise of the electric
field is externally applied to the system, it shows proper-
ties of a multiplicative stochastic process.!® This process
leads to a nontrivial threshold shift onto the background
shift due to a part £ %(¢) of the external noise contained in
a(€)."*? This equation shows that the system is noncon-
serving. Equation (3) will not be valid for defect dynam-
ics, which often appears in late stages of the development.
In order to describe the late-stage dynamics (defect
dynamics), a new equation is needed, which would be ob-
tained under further consideration of Eq. (3) associated
with the defect motions.2 At this moment, therefore, the
temporal stage valid for Eq. (3) is still unclear.

In EHD there are two different regimes distinguished
by the space-charge relaxation time 7, (an inverse of a cer-
tain critical frequency f.”'): a dielectric and conductive
regime.!®2! Convective flow appears in the conductive re-
gime, at sufficiently low applied frequency f <f,, for
which the space charge can sufficiently vary with the tem-
poral variations of the external field. Then the director
angle is a stationary order parameter and the space charge
becomes an oscillatory order parameter with a spatially
macroscopic structure, as in BR convection.!%?!=2* Many
investigations have been done on this state in EHD. For
example, from the same point of view, very recently
Tsuchiya and Horie** experimentally showed the temporal
evolution of a convective roll pattern in EHD of nematic
liquid crystals. They also found an anomalous increase of
fluctuation around the order parameter during the tran-
sient process. Because of the relatively low quality of the
resolutions, no detailed discussion of the distribution pro-
file was given.

On the other hand, when f > f,, the director oscillates
with spatial structure instead of oscillating with space
charge because it cannot respond; this is the so-called
forced parametric oscillation of the director.?! =23 In this
case, the amplitude of the oscillation increases with the
amount of space charge as long as the deviation from the
instability point is very small.2! Therefore, we can predict
the formation process of the macroscopic order from the
growth of the director oscillations. In this case, the
characteristic length scale of the spatial structure is very
small compared to the layer thickness, so that the
phenomenon occurs basically in three dimensions. The
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advantage in using the dielectric regime is that many re-
petitions of the formation process can be easily obtained
for short periods because the growth rate is very large.
Therefore, a large number of samplings is possible; this is
necessary to obtain the precise variance and a well-defined
distribution. We find that the temporal change of the
variance is in good agreement with theory for a homo-
geneous one-variable system in the early stage, but not in
the late stage. This may be due to the inhomogeneity of
the system at the late stage. The transient profile of the
distribution changes from a Gaussian type for the early
stage to an asymmetrically modified profile with a nega-
tive skewness for the late stage in the absence of external
noise. When an external Gaussian white noise is superim-
posed on the system, the distribution changes from a log-
normal profile (positive skewness) for the early stage to a
profile with a negative skewness for the relatively late
stage, but not for the steady state, which somewhat resem-
bles a Lifshitz-Slyozov-Wagner-type distribution.!®

II. EXPERIMENTAL SETUP

The sample used in the present study was the nematic
liquid crystal MBBA  (n-p-methoxybenzylidene-p-
butylaniline), which was enclosed between two SnO,-
coated glass plates, as transparent electrodes, separated by
polymer spacers (Mylar films, Mitsubishi Chemical Co.).
The thickness d of the cell and the area S of electrodes
were 108+5 um and 6X 6 mm?, respectively. The aspect
ratio T, therefore, was about 55. Since the enclosed area
was 10X 10 mm?, the lateral wall was liquid crystal, that
is, it had not a rigid but a free lateral boundary. The tem-
perature was controlled at 7 =22.5+0.05°C using a
copper container with a double wall. We have used a rub-
bing procedure to obtain homogeneous alignment. The
critical voltage V, for the convective pattern, the so-called
Williams domains, was 9.05 V for a sinusoidal wave with
frequency f =60 Hz. The critical frequency f, separating
the conduction regime (appearing as convective flow)
from the dielectric regime (the forced oscillation of the
director) was 85 Hz. The present experiment was done in
the dielectric regime at f =100 Hz, where V, the thresh-
old field for the oscillation, was 231 V. The electric field
was applied with burstlike repetition with 1024 bursts for
a fixed € [=(V2—V?2)/V?] as shown in Fig. 1. The phase
of the applied field for each burst was always the same,
i.e., the amplitude of a sinusoidal wave at time ¢y; of the
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FIG. 1. Applied burst signal. AF denotes the applied field
and S the response signal to AF.
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ith pulse is always zero, which is controlled by a one-chip
computer. Furthermore, a burst width ¢, was varied with
€, and the period t, chosen as the time to recover com-
pletely from the modified state to the initially uniform
state. Here ¢, and ¢, are typically ~1 and ~30 sec at
€~0.1, respectively. As there was a small aging effect,
i.e., a slight shift of V,, we determined ¥, and € for each
experiment. A single-mode He-Ne laser (A=6328 A, 3
mW) and photodiode (NEC Co. LSD-39A) were used as
an incident light source and as a detector, respectively.
The diameter of the observation area was about 10 um.

Signals from the photodiode were analyzed on a person-
al computer (NEC PC8001 and PC8011) after analog-to-
digital conversion in eight bits with a sampling rate of 3.2
kHz. The experimental setup used in the present study is
shown in Fig. 2.

The development of the oscillation was obtained from
the envelopes of the oscillatory signal detected. The re-
petitions of the burst numbered 1024 and the temporal
development of each envelope from ¢, to the steady state
was obtained. Then the most probable path (mean forma-
tion route of the local order) was defined as the averaged
route for all envelopes. Describing such averaged
behaviors of the local order in space, there are two ways
to obtain an averaged value: ¥, at a fixed time,

; 1 & . .
Volth=— 3 y! att/, 4)
NG
and y, at an averaged time 7,
. N o ;
Tod) = % S 4/ at fixed y/ , )
i
where N is 1024. Therefore, mean paths for both cases in
Egs. (4) and (5) are J,(2) and y(7,), The variance is given
by
; 1 X ;
oo(t!)= N > (Fo—y;)? fortl. (6)
i
In addition, to study the multiplicative stochastic prop-
erties we also superimposed external Gaussian white noise
with the deterministic voltage using a noise generator

(N.F. Co. WG-722) with a bandwidth of 5 kHz and a
correlation time of 29.5 usec. The intensity of the noise
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FIG. 2. Experimental setup.
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was determined as the magnitude of 7'=0 of the auto-
correlation (£(7')£(0)) of the electrically applied noise
(1), obtained from a signal analyzer (Iwatsu SM-2100A),
which can calculate the autocorrelation and power spec-
trum directly from the signal.

III. RESULTS AND DISCUSSIONS

A. Developments and fluctuation
of the director oscillation

Since the liquid crystal MBBA used has negative dielec-
tric anisotropy, the director becomes oriented normal to
the electric field which is parallel to the conductive glass
plate, as shown in Fig. 3(a). With no space charge in the
x direction, the director becomes aligned normal to the
externally applied field E,(¢).2'~2 When the space
charge is stored in the x direction due to the conductive
anisotropy,?? the lateral electric field E,(7) develops, as
shown in Fig. 3(b). Then the director is inclined to the
direction normal of the composite electric field E
(=E,+E,) with an angle 6 to the glass plate.” Here,
since |E,|>>|E,| in general, |E,|=]|E]|sinf
~ |E, |0 where |E,| is the amplitude of the externally
applied field.?! =2 Accordingly, the amplitude of 6 is ap-
proximately proportional to the amplitude of the field E,
caused by the stored space charge [ ¢ =(1/4#)(divD)] for
small € (i.e.,, small ). In fact, 6 is found to be less than
about 0.1 rad in our experiment. Reversing the external
field (E,), the director again becomes aligned in the direc-
tion normal to E having an angle —6 as shown in Fig.
3(c), because the space charge is insensitive to f > f..
(Naturally, in order to discuss more quantitatively on this
dynamics we have to consider elastic and hydrodynamic
effects.)?! =2

Thus the amount of space charge determines the ampli-
tude of the director oscillation.!"*? This can be qualita-
tively understood from the theory for EHD.2!~2® The in-
tensity change AI(¢) of the light detected is approximately
proportional to 62 (8 is the angle defined by the director
and the glass plate) through the dielectric anisotropy of
liquid crystal, and the amplitude y of the space charge
with spatially periodic structure may also be proportional
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FIG. 3. The forced director oscillation due to the spatially
stored charge by the applied field. (a) No space charge; (b) and
(c), the dynamical behavior of the director when the sinusoidal
electric field E, is applied under the space charge stored with a
periodic structure in the system.
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€=0.02
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FIG. 4. Signal of the light intensity detected without summa-
tion.

to [AI(¢)]'/? since 6 <y when the external parameter € is
very close to zero.”* We regard, therefore, [AI(1)]'/? as
an order parameter y in Eq. (3). At relatively large €, the
interrelations will be much more complicated and accord-
ingly we have restricted our discussions only to situations
with very small €.

A oscillatory signal caused by the director oscillation is
optically observed at f > f. as shown in Fig. 4. This is
generated by an inhomogeneous storage of space charges,
and therefore the amplitude of the oscillation increases
with an increase in the magnitude of the space charge. In
this situation, the envelope of the temporal growth of the
oscillation is due to an increase of the space charge.

In Fig. 5, the temporal development of the macroscopic
order parameter y and the variance o are shown in arbi-
trary units at €é=0.098 when the external field is increased
in a steplike fashion. Symbols 7,, y,, and o are defined
in Egs. (4)—(6). For fixed y,, Eq. (5) is plotted as a func-
tion of t =7, and y,(7;). The solid line in Fig. 5 shows
the solution of the equation y=ay —by® (a=32.5,
b =0.28). In Fig. 5, ¥y, y;, and o are normalized by the
steady-state values y ., ¥;., and the maximum value o,,,
respectively. The experimental data for both y, and y,
are well described by the equation y =ay —by?>. oy is the
variance of the y distribution at a fixed time, as described
in Eq. (6). oy(t) shows the maximum value o, at
t =t,, >t;,, the time at which y assumes half the value
of y.. Then oy(t) decreases, tending to the steady state
of the system. The solid line shows a fluctuation-
enhanced theory for y =ay —by>*+7(1),%
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FIG. 5. Temporal development of the macroscopic order y
and variance o at €=0.098. J,(t), the mean value for a fixed ¢;
»:(%o), the macroscopic value for the mean time 7y; o, the vari-
ance around the 7,. The solid line for o shows Eq. (7).
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FIG. 6. Temporal development of the macroscopic order y
and the variance o at €=0.135 with white noise Q =0.14. The
solid lines for o, and for 3, and y, indicate Egs. (7) and (3) with
a =27 and b =0.22 neglecting other terms in Eq. (3), respec-
tively.
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where 4 and 8 are constants related to the steady state
and the initial values of o and y. For ¢ <t,,, the agree-
ment between the theoretical curve and the experimental
data is quite good, but not for ¢ >1¢, . This deviation in-
creases as the steady-state is approached.

When white noise is externally superimposed on the
system, the formation process is slightly changed. Figure
6 shows the result at €=0.135 and Q =0.14, where Q is
the ratio of the white-noise intensity and the amplitude of
the deterministic electric field. There is no qualitative
difference. White noise seems to delay the formation of
macroscopic order, as predicted by a multiplicative sto-
chastic process.'® However, in EHD, the system may also
behave at small Q and small € as an additive noise pro-
cess, since £y << in Eq. (3). Figure 7 shows the white-
noise effect on o at €=0.135. The maximum value of o,
becomes four times larger with the external noise than
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[exp(2at)+8) ’
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o T T
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FIG. 7. The effect of white noise on the variance o.
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that without; namely, the white noise enhances fluctua-
tions in the system. The time t,,, however, is not influ-
enced greatly by the white noise and is almost the same in

both cases.

B. Distribution of fluctuations
around the most probable path y,

Figure 8 shows temporal developments of the distribu-

tion of fluctuations around y, at €=0.067 and Q =O0.
The qualitative features resemble those observed by

Tsuchiya and Horie.?* As seen in Fig. 8(a), the distribu-
Namely, we note that the

tions change clearly near ¢,,.
distribution profiles for the early stage and for the steady

state are very sharp and similar but they are quite dif-
ferent from those for the transient region where the large
growth rate occurs. This tendency is the same for all ex-
perimental results at small e. In the case without an

external noise, the distribution has a Gaussian profile for
stage at =109 msec [Fig. 8(b);

the early
T=t/t,, =0.484], but the deviation from the Gaussian
profile increases with time [see Fig. 8(c)]. The distribu-
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FIG. 8.
NP ;Nm:F0,06,8,f)=Nmexp{ —[(y —50)* /206 —(y —F0)* /65 4+(y —F0)*/24f1}. (a) Development from ¢ =0 to the steady state. (b)
t =109 msec, 7=t/t,, =0.484: dotted line, 0 =0.0441. (c) t =172 msec, 7=0.764: dotted line, o =0.203; solid line, N, =61.12,

Yo=7.44, 05=0.185, s = —0.128, and f =0.18. (d) t =203 msec, 7=0.902: dotted line, o =0.25; solid line, N,, =42.5, yo=9.7,
0=0.23, s =—0.35, and f =0.165. (¢) t =328 msec, 7=1.46. The dotted line and the solid line in (e) show the classical LSW distri-

butions (Ref. 9) and the best-fitted curve with N,, =91, §,=13.92, 05 =0.023, s = —0.0054, and f =0.0031, respectively.
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tion beyond ¢, becomes asymmetric with negative skew-
ness as shown in Figs. 8(d) and 8(e). This tendency with
negative skewness is seen especially clearly at
0.8 <7< 1.4, where nonlinear effects and mode selection
of macroscopic order probably becomes important.

When Q =0.14, the distribution has positive skewness
and is well fitted for the initial stage [z =109 msec; Fig.
9(a)]26with a lognormal profile. The lognormal distribu-
tion

N (»)=(Noyo/y)exp{ —[In(y /5,)]*/20%} (8)

is often observed in statistical properties of the variable y,
which has the multiplicative relation y, , ;=y,P, where P
is a random coefficient. Here J, is the mean value.

The distribution becomes, however, Gaussian near ¢,
and then changes into a distribution with negative skew-
ness, also shown in Figs. 9(b)—9(d). These tendencies of
the distribution profile are qualitatively the same for
0.04 <€<0.15 and Q <0.15, regardless of € and noise in-
tensity Q. For the steady state the distribution has a
sharp peak again, and therefore it is difficult to say
whether it is Gaussian or another type.

We also examined a fit with a Lifshitz-Slyozov-Wagner
(LSW) type of distribution which appears in a
polydisperse crystal-growth process controlled by dif-

N hl T T T T
€=0135 (a)
40 Q=014 B
201
0 @
N YT T T T
30 £=0135 (c) 1
Q=014
. t=172msec

fusion from the point of view described in Sec. I. For late
stages, the distribution seems to be rather well fitted with
the LSW-type profile [see Fig. 9(d)].

C. Discussion

We summarize the results obtained here as follows.

(1) The variance o, has a maximum value o, at t =t,,,
then decreases.

(2) The temporal change of o, for t<t, can be
described by the noisy Landau equation
y=ay —by*+n(1).

(3) The distribution around J, is Gaussian for ¢ <<t,,,
but becomes one with negative skewness nearing ¢,
(~t>0.8¢,).

(4) When external noise is applied, the distribution for
the early stage is well fitted to the lognormal one, then for
t ~t,, it becomes Gaussian, and for the late stage the dis-
tribution has negative skewness.

The deviation of o from Eq. (7) increases for the later
stage ¢t > t,, as shown in Fig. 5. In Eq. (7), spatial degrees
of freedom and externally applied noise effects are not
taken into account. It may be considered, therefore, that
the theory without the term V2y holds for the early stage
but not for the late stage because the inhomogeneity of the

N T T T T T
20k €=0135 (b) |
Q=014
R, t=14Imsec
P LS =103
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FIG. 9. Temporal developments of the distribution around y, at €=0.135 with Q =0. 14 (in this figure, each data point is plotted
after averaging by each of the five neighboring points, i.e., the smoothing is done). (a) ¢t =109 msec, solid line shows the lognormal
distribution with 0=0.02, y,=6.2, and N =38. Here J, is not exactly the same as y,, at the maximum of the distribution as is well-
known for the lognormal distribution (Ref. 28). (b) ¢t =141 msec (r=1.03): solid line shows the Gaussian distribution with
o6=1.823. (c) t =172 msec (r=1.26): solid line, N,, =22.8, J,=12.55, 05=0.45, s = —0.30, and f =0.35; dotted line, the classi-

cal LSW distribution (Ref. 9). (d) ¢t =219 msec (r=1.60):
f=0.022.

solid line, N,,=48, y,=13.38, 05=0.088, and s =—0.032, and
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macroscopic order plays an important role in Eq. (3) for a
system with spatial degrees of freedom. In addition,
many defects are usually produced at boundaries of
domains having different growth stages in space, where
the kinetics must be different from Eq. (3), as mentioned
in the Introduction. This often shows long-time transient
behavior for ¢ >>¢,,.

On the other hand, the behavior of oy and ¢, in the
presence of external noise is related to the multiplicative
stochastic process. It can be said that externally applied
noise rather strongly affects the early stage, according to
the distribution profile (the lognormal type). Once the or-
der is formed, external noise is relatively ineffective. This
can be seen clearly in the distribution profiles obtained
here.

Thus it may be said that the growth process of macro-
scopic order for the late stage is clearly different from
that for the early stage both with and without external
noise.

Figure 10 schematically illustrates one of the qualita-
tive reasons for the increase in ¢, Throughout the
development of the system to the steady state, there are
various paths y,y,,...,y, depending on initial fluctua-
tions as shown in Fig. 10(a). By repeating the measure-
ments many times, the frequency distribution of the paths
may be obtained around the most probable path and the
temporal change of oy may also be thereby obtained [Fig.
10(b)]. At t=t,, the deviation between the fastest
growth y; and the slowest one y, becomes maximum;
that is, o=0,,. This is a qualitative explanation with no
spatial information and cannot give us the interpretation
of the characteristic deviation from Eq. (7) observed for
the late stage. The result may be regarded as the devia-
tion of local growth processes in space, and the distribu-
tion may correspond to one of the spatial inhomogeneities
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FIG. 10. Schematic illustration of the growth process (y) and
the variance (o) as a function of time. (a) y,, the most probable
path (the averaged route); y;, the fastest growing path; y,, the
slowest growing path. At the fixed time ¢, the order y(¢,) on
the path y; is in a later stage of growth than that on the y; ;.
(b) 0,y, the maximum variance (the maximum deviation among
paths).
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of local growth in macroscopic order for ¢t>¢,. On
boundaries, in fact, many defects are produced and can-
celed by the competition of growth of the bulks or by
climbing and gliding on the walls. This would be another
origin of the anomaly by 0, We must take defect dynam-
ics into account there.

Considering what we have described above, we might
speculate as follows. The state at ¢ <1, is considered the
nucleation process, resulting in many nuclei of the macro-
scopic order. Those nuclei of macroscopic order have al-
ready grown over the whole area at ¢t ~1,,, although each
one is in a different growth stage in space. Since inter-
faces among them cause the production of many defects,
interaction among local orders takes place and some of
them grow and others decay. This corresponds to an ag-
ing process, which results in a spatially homogeneous pat-
tern through defect kinetics. In this stage, Eq. (3) may no
longer be valid, and a new kinetic equation would be need-
ed. In other words, using terminology and similarity of
kinetics of a first-order phase transition, for example,
such as a droplet growth process from a vapor phase, at
t~t, the nucleation process is already completely fin-
ished (new nuclei are not produced anymore). After that,
each crystal nucleus grows larger and becomes a single
crystal by the aging process during ¢ >1¢,,. In this period,
the growth kinetics (macrodynamics) is different from the
kinetics in the nucleation process. Namely, the interac-
tion among macroscopic orders that are spatially
dispersed inhomogeneously plays an important role for
t >1,,, similar to Ostwald aging.'®*”?® The application of
white noise produces large fluctuations (many modes) at
t <tp. At late stages (¢ >1,), such fluctuations are can-
celed by each other through the aging process.

However, a precise analogy of kinetics between crystal
(droplet) growth and the present order-formation process-
es cannot be made, because the conservation law is not the
same in relation to Eq. (3) and the defect dynamics is un-
known. Using the same viewpoint, we may be able to ex-
plain the white-noise effect on the distribution. No de-
tailed investigation of multiplicative stochastic properties
on Eq. (3), however, has been done. There is therefore no
proper model of the appearance of the lognormal distribu-
tion in the early stage. In general, however, it has fre-
quently been observed for a stochastic process with a mul-
tiplicative property, such as a cascade process, which
could apply here. In either case, for the early stage, the
growth kinetics in the presence of external noise is dif-
ferent from that in its absence. It is worth noting that a
size distribution of crystal growth due to the second-order
surface-controlled-growth (SOCG) kinetics has a similar
profile to the lognormal one.?””?® In addition, it is also
worth noting that the distribution experimentally obtained
for tllge late stage is well fitted with the LSW distribu-
tion.

Described in a more general sense, it is as follows.
There is no coupling among Fourier components of modes
in the linear growth regime (the very early stage). For the
late stage, however, coupling occurs because of the term
y>. When the system has spatial degrees of freedom, the
spatial interaction of modes is produced through the term
V?y, especially for the late stage, contrary to the case with
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no spatial degree of freedom. The difference, therefore,
must be due to spatial inhomogeneity producing many
domains and defects, i.e., growth of various spatial modes.
Such modes, however, are removed by mode selection dur-
ing the final stage after ¢,,. Namely, defects with oppo-
site signs of Burgers vectors cancel each other and disap-
pear. This is a growth process near the steady state. The
growth for the late stage, therefore, must be closely relat-
ed to the dynamics of defects.>!*!*> It will then lead to a
new macroscopic equation associated with defect dynam-
ics. The Burgers vector of defects would be the new order
parameter for this stage and would be conserved in large
I'. The present system is essentially in three dimensions,
unlike the common BR convection system, since I is
quite large (~55) and the structure is quite small
(~d /20) comparing to the thickness d. For cells of iden-
tical thickness, large I" leads to longer onset times (¢,,);
that is, lateral size, as well as thickness, also plays an im-
portant role in the present experiment. Therefore, we
must also take into account the effect of the dimensionali-

ty.
IV. CONCLUSIONS

The temporal change of the variance in a dissipative
structure formation for the early stage is in good agree-
ment with the result expected from the noisy Landau
equation as well as the result in the transient process of
the laser radiation obtained by Arrechhi and Degiorgio.’
However, it has a large deviation from theory for the late
stage ¢t >1,, when o has the maximum value (0, ). The
evolution of the distribution has a tendency similar to that
of oy(t); namely, it changes with time, showing charac-

teristic features. The distribution in the early stage with
external noise is quite different from one without, and ex-
hibits a lognormal profile. This suggests that the growth
kinetics for the early stage is strongly influenced by the
application of external noise. It is generally well known
that lognormal distribution comes from a multiplicative
process. This may be the case. For the late stage, howev-
er, its influence is not remarkable.

We have noted qualitatively an analogy between crystal
(droplet) growth and a dissipative structure formation for
the late stage in the present paper. Of course, there must
be differences between Kkinetics of a first-order transition
and of the instability in a dissipative structure. Although
the validity for the similarity between the crystal growth
and the macroscopic order-formation processes is not yet
clear, we believe that the analogy of the concept given
here may be valuable for future theoretical approaches.

Finally, we would like to stress that properties and ki-
netics at the late stage are clearly different from those at
the early stage in dissipative structure formation process-
es. This difference originates from defect motions.
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