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Heat-capacity study of one liquid-crystal compound
with smectic- A —hexatic-8 —crystal-8 transition
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High-resolution heat capacity measurements have been carried out in the smectic-A —hexatic-

B—crystal-B transitions of the compound 4-propionyl-4'-(n-heptanoyloxy)azobenzene. Qualitative-

ly, the heat-capacity anomalies of this smectic-A —hexatic-B —crystal-B transition sequence mimic

those of the smectic- C—smectic-I —smectic-6 transition of racemic 4-(2'-methylbutyl)phenyl-4'-{ n-

nonyloxy}biphenyl-4-carboxylate. The heat-capacity data near the smectic-A —hexatic-B transition

are broad and asymmetric and cannot be fitted with a power-law expression.

Detailed x-ray measurements have revealed two basic
structural forms for the smectic-8 phase, i.e., the
hexatic-8 (Refs. 1 and 2) and the crystal-B phases. '

For example, the smectic-B phase of N-4-( n-

butyloxy)benzylidene-4-(n-octy)aniline (40.8) was demon-
strated to have long-range positional correlations of the
hexagonal in-plane packing of the molecules as well as of
interlayer stacking. ' This kind of smectic-8 phase was
called crystal B. On the other hand, the smectic-B of n

hexyl-[4-( n-pentyloxy)biphenyl]-4-carboxylate (650BC)
(Ref. 2) has structure similar to the model proposed by
Birgeneau and Litster for a three-dimensional stacked
hexatic phase. This phase was called hexatic B, which
has very little interlayer correlation and in-plane position-
al ordering extends only over about 70 A, while the bond-
orientational order is long range. Miscibility studies of
650BC-40.8 mixtures have first demonstrated that a
transition can occur between these two phases in a 31
wt. %-69 wt. % mixture of 40.8 and 650BC. Subse-
quent heat-capacity studies on a 40.8-650BC 30.5
wt. %-69.5 wt. % mixture system showed only one large
first-order (with thermal hysteresis) heat-capacity peak
with transition temperature being consistent with the re-
ported transition temperature for the smectic-
A —hexatic-8 transition. Using 650BC and 40.8 as the
standard materials for miscibility studies, Goodby has
identified that two smectic phases reported by Poeti
et al. and existing below the smectic-A (SmA) phase of
4-propionyl-4'-(n-heptanoyloxy)azobenzene are hexatic-B
and crystal-8 phases. Then x-ray diffraction measure-
ments by Albertini et al. ' confirmed this phase identifi-
cation. For the convenience of our presentation, this
liquid crystal will be called compound PHOAB. Its
chemical formula is

Hs Cp—CO (C6H4)—N =N—(C6H4)—CO—0 C6Hig .

Its mesomorphic transitions are
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FKJ. 1. Temperature dependence of sample heat capacity per
unit area (sample thickness 22 pm) in the vicinity of the
smectic- A —hexatic-B and hexatic-B —crystal-8 transitions.
This is one of the cooling run results. The cooling rate was 20
mK/min far away from the transitions and 2.7 mK/min near
the transitions. For clarity only a portion of data are plotted
here.
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in cooling with the melting point at 92'C. Here we will

report our high-resolution heat-capacity studies on this
liquid-crystal compound in the vicinity of its smectic-
A —hexatic-8 and hexatic-8 —crystal-B transitions.

The details of our high-resolution calorimetric measure-
ment technique have been published elsewhere. The mea-
sured heat capacity per unit area ( Cq ) of the sample after
subtracting sample cell and addendum contribution is
shown in Fig. 1 for one cooling run. The thickness of our
liquid-crystal sample is 22 pm. The transition tempera-
tures Tztt ——88.44'C for the smectic-A —hexatic-B transi-
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tion and Taz ——84.32'C for the hexatic-8 —crystal-8 tran-
sition are slightly lower than the reported values obtained
by differential scanning calorimetry measurements
(DSC}." Here both hexatic-8 and crystal-8 phases are
monotropic. Also, once the sample was cooled below T~~
with a slow cooling rate (11 mK/min on average; 20
mK/min far away from the transitions and 2.7 mK/min
near the transitions}, the heat-capacity kink associated
with the hexatic-8 —crystal-8 transition became undetect-
able in the subsequent heating. The sample recrystallized
after being left in the crystal-8 phase for more than half
an hour.

Qualitatively, heat-capacity peaks associated with those
two transitions mimic the ones with the smectic-C (Sm C)
—smectic-I (SmI) —smectic-6 (Sm6) transition in racem-
ic 4-(2'-methylbutyl)phenyl-4'-(n-nonyloxy)biphenyl-4-
carboxylate (2M4P9OBC). ' A quick heating run im-

mediately after a quick cooling run just into the crystal-8
phase reveals that the heat-capacity anomaly for the
hexatic-8 —crystal-8 transition in the heating run is larger
than that in the cooling one. In this experiment, the heat-
ing and cooling rate is about 0.6 K/min to eliminate the
effect of recrystallization. The result that the heating run
has a larger hest-capacity peak than the cooling one is
similar to the SmI-Sm 6 transition of 2M4P9OBC.
From the viewpoint of the overall molecular arrangement,
Sm C, SmI, and Sm6 can be thought as the tilted counter-
parts of smectic-A, hexatic-8, and crystal-8, respectively.
Namely, the former three phases have finite molecular tilt
angle with respect to the smectic layer normal and the
latter three phases have zero molecular tilt angle on aver-
age. However, the existence of the coupling between the
molecular tilt angle and the bond-orientation ordering
predicted by theory, ' in principle, will make some differ-
ence in physical properties between the phase transitions
among the phases with tilt angle and the ones without.
To our knowledge, no one has ever seen bond-
orientational order in the SmC phase, which is suggested
by a theoretical calculation. ' This indicates that the cou-
pling between the tilt angle and bond-orientational order
is very weak. The similarity between heat-capacity peaks
of smectic-A —hexatic-8 —crystal-8 transitions reported
here and those associated with the Sm C-SmI-Sm6 transi-
tions of 2M4P9OBC also hints that coupling between the
tilt angle and bond orientational order is weak. In both
transition sequences, the one developing bond-
orientational long-range order (smectic-A —hexatic-8 or
SmC-SmI) has a much larger entropy change than the
one developing further positional long-range order
(hexatic-8 —crystal-8 or SmI-SmG}. This is consistent
with the fact that the bond orientational order is accom-
panied by a fairly large correlation length (=100 A) for
the short-range positional order. The same behavior was
observed in the smectic-A —hexatic-8 and the hexatic-
8—crystal-E transition of 65OBC.

Figure 2 shows in detail the heat-capacity peak associ-
ated with the smectic-A —hexatic-8 transition from the
same experimental run as Fig. 1. Because the heat-
capacity peak is rather broad, the result from thermal
hysteresis measurements between heating and cooling runs
was not conclusive. Similar to the Sm C-SmI transition of

I-

a 50

C3

l-

25

~ ~
~ ~

1

87. 5

0

~t

~ ~
~4

~ ~

1

+e
~ ~

~ ~ ~ ~ o ~ t ~ ~ ~
~1

88.0 88.5 89.0
TEMPERATURE ( C)

89.5

FIG. 2. Details of heat capacity per unit area in the neigh-
borhood of the smectic-A —hexatic-8 transition obtained from
the same experimental run as that in Fig. 1.

2M4P9OBC, here we also obtain a steeper variation of
heat capacity on the high-temperature side of the transi-
tion. An attempt to fit the data to a power-law expression
with a linear background contribution failed. Integrating
the area under both heat-capacity peaks after subtracting
the background contribution, we obtained heat of transi-
tion ELHI~ ——4.27 J/g and bH+z ——0.2 J/g, which agree
with the results from a DSC measurement. " In calculat-
ing ~, the density (1.06 g/cm ) measured by Albetini
et al '4 was u. sed.

After the smectic-A —hexatic-8 transition in 65OBC
was found to be continuous, ' we have carried out exten-
sive heat-capacity studies on the smectic-A —hexatic-8
transition of various compounds in the homologous
series of n-alkyl-4'-(n-alkoxy)biphenyl-4-carboxylate
(nrnOBC). ' All those smectic- A —hexatic-8 transitions
were found to be continuous with a large critical exponent
a (=0.6) characterizing the heat-capacity anomaly. One
important difference is that unlike the compound
PHOAB, all those nrnOBC compounds do not have a
crystal-8 phase below their hexatic-8 phase.

Here we report first the heat-capacity measurements on
a single-component compound with the smectic-
A —hexatic-8 —crystal-8 transition sequence. One heat-
capacity peak of the compound resembles the SmC-SmI
heat-capacity peak of 2M4P9OBC but not the smectic-
A —hexatic-8 heat-capacity peak of nmOBC compounds.
X-ray diffraction studies demonstrated that temperature
variations of in-plane positional correlation length near
the smectic- A —hexatic-8 transition for compound
HPOAB and 65OBC are similar. Another important
feature characterizing the hexatic-8 phase of 65OBC is
the herringbone-type molecular arrangement, which has
not been reported for the compound HPOAB. Detailed
x-ray work on compound HPOAB to check the existence
of herringbone structure may be a crucial hint to address
the different behavior in these two smectic-A —hexatic-8
transitions. In order to investigate the evolution from an
almost symmetric smcctic- A —hexatic-8 heat-capacity
peak of 65OBC to an asymmetric one in the compound
HPOAB, calorimetric studies on binary mixtures of those
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two compounds will be performed. It would be interest-
ing to understand what the relevant factors for the
smectic-A —hexatic-8 transition to be continuous or oth-
erwise are. So far the experimental studies on the
smectic-A —hexatic-8 transition have been concentrated
on nmOBC compounds and the homologues of the com-
pound HPOAB. Synthesizing and investigating other
kinds of liquid-crystal compounds with the smectic-

A —hexatic-8 transition are very important for a better
understanding of this intriguing and interesting phase
transition.
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