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Unlike the case of regular networks, such as lattices, no method of general applicability exists for
dealing with random walks on complex networks. We propose a method, which is based on the
identification of certain types of walks on a one-dimensional segment as basic. Generating functions
for complex networks or for complex types of walks can all be constructed from the generating
functions corresponding to these basic walks. We also define basic walks corresponding to a net-
work. The properties of walks in a network composed of “black boxes,” each containing a network
by itself, can be expressed in terms of the basic walks defined for the single black box. This result
can be compared to the way the Kirchhoff rules allow one to calculate properties of a network of
“elements” in terms of the impedances of each of the elements. In the present case the combination
rules are more complex than in the electrical case. Our method is demonstrated by calculating mean
first-passage times on several structures: a segment, a segment with a single dangling bond, a seg-
ment with many dangling bonds, and a looplike structure. The results are analyzed and related to

APRIL 1986

the question of applicability of the Einstein relation between conductance and diffusion.

I. INTRODUCTION

The importance of the random-walk problem in many
areas of science and technology and as a mathematical
problem in its own right is well known. Some excellent
textbooks! and reviews? provide details of the enormous
advances this field has experienced since its inception at
the beginning of the century.

Many important problems related to random walks are
still open; others are only partially understood—and new
questions have arisen only lately. For example, the prob-
lems of self-avoiding random walks or random walks on
random lattices (with or without traps) or on fractals are
still subjects of many investigations. The recent interest
in these and related problems is partially due to their
relevance to the theories of percolation®*~® or flow
through porous media.'® In many problems the long-time
properties or the diffusion limit is of interest. In some,
one may be interested in transients.

Most methods that were applied to random walks of
complex nature (not on regular lattices, for example) are
approximate. Typical methods would be of the mean-
field type, effective-medium theory, renormalization
group (RG), and numerical simulations. Interesting re-
sults were obtained in the case of anomalous diffusion
(i.e., D ~power of the length scale) using scaling and RG
methods and assuming the Einstein relation to hold in this
case.*"% For example, one may calculate the diffusion
laws on finite scales and relate them to anomalous wave-
vector and frequency dependence of ac conductivities or
ac dielectric functions.*~%

While we see no point in presenting a survey of the
enormous literature in the field of random walks, we wish
to single out the problems associated with percolation,’
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because in this case it is the geometry which is the source
of anomalous behavior. So far, mainly scaling arguments
and numerical simulations were employed in this field.>—®
However, a microscopic understanding is still lacking.

In this paper we present a method of calculating prop-
erties of discrete random walks on networks, which—we
hope—is a first step towards the development of a micro-
scopic approach to random-walk problems on branched
(and other complex) networks, as well as to the related
diffusion problems.

The problems we deal with can, in principle, be solved
using a master equation approach.!! However, even for
relatively simple structures, this approach requires an
enormous amount of labor. In more complex cases (some
of which are solved in this paper), the application of this
method becomes impractical. In contrast, the method
presented here remains fairly simple even for quite com-
plicated structures.

In this paper we demonstrate our method by calculating
the mean first-passage times for several systems. The
basic idea is to divide complex networks into simpler units
whose contribution to the mean first-passage time is cal-
culated. One can then proceed by further iterating the
simplified network. When the system is geometrically
self-similar, the procedure resembles the renormalization-
group process. Among the results we obtain, we find
worthwhile mentioning the fact that the effect of many
“short” dangling bonds may be equivalent or different
from that of one or a few “long” dangling bonds (depend-
ing on the “limits” considered), in contrast to a simple ar-
gument based on a naive interpretation of the Einstein re-
lation. We also study the two channel in parallel structure
(“loop”) and compare the result to a one-channel struc-
ture. In this paper we present only relatively simple cases,
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since our main aim here is demonstrating our method.
Applications will be presented in future publications.

The structure of the paper is as follows. Section II con-
tains a definition of the problem and an outline of our
method. In Sec. III we apply our method to the random-
walk problem on a straight segment. Except for the obvi-
ous role of this section—to demonstrate that our method
actually works—it is being used to define and calculate
some basic quantities, which are then employed in all sub-
sequent sections. Section IV deals with the problem of a
random walk on a segment with a single dangling bond.
In Sec. V we treat the loop configuration. The problem of
many dangling bonds is treated in Sec. VI. Section VII
provides a summary of the results obtained in this paper
as well as some remarks on possible generalizations and
future work.

II. DEFINITIONS AND OUTLINE OF THE METHOD

Mathematically, the problem we deal with is that of a
random walk on a finite collection of points. A random
walker starts at a given point. At each “‘step” the walker
has a given probability to move to any point in the collec-
tion, including its present point. Thus, if we label the
points by i =1,2,...,N, we are given a set of probabili-
ties p;; to move, at each step, from point i to point j. The
numbers p;; must, of course, satisfy

N
EPU:I ’ (2.1)
j=1
pij>0 forall 1<i,j <N, (2.2)

and are otherwise unrestricted, in principle. A realization
or a path of an n-step walk is the (ordered) set of points a
walker has “actually” visited: i,,i5,...,i,. The numbers
ir, belong to the set {1,2,...,N}. Repetition (say i =i,
Is£k) is allowed, in principle, and n can be any natural
number. Given that the walker starts at i, the probabili-
ty of the above realization is [["Z} Pii+1- A walkis a

set of paths satisfying some restrictions. For example, we
may wish to consider a walk from a given point 4 to a
given point B in n steps. The probability of a given walk
is the sum of probabilities of all distinct paths (i.e., differ
from each other in at least one step) that satisfy the re-
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point A and reaches point B for the first time, namely
point B was not reached in any path before the walk end-
ed at B.

Consider now a walk from A4 to B, in n steps, in which
a third point C was visited on the way. Define P c(n;)
as the probability of a walk to start at 4 and reach point
C for the first time in n, steps and Pcg(n,) as the proba-
bility to start at C and reach B in n, steps. Note the re-
striction on the walk from A to C (first time) and the ab-
sence of this restriction when moving from C to B. The
role of the restriction is to avoid “overcounting” of paths.
The probability P4g(n) to move from A to B “through”
Cin n steps is

ﬁgg(n)= 2 2 PAC(nl)ﬁCB(n2)8n1+,,2,,, ’ (2.3)
n;=0n;=0

where 8 is Kronecker’s symbol. (Note that if 4 =C, the
n =0 term contributes.)

Let Py (n) be the probability for a given walk to be per-
formed in n steps. Here W represents the relevant param-
eters of the walk (such as AC in the above example). It is
common to define the corresponding generating function'?
Gw(¢) as'?

Gw(d)= S Py n) 2.4)

n=0

where 0 <¢ <27. In what follows we may write G for
G (¢), the ¢ dependence being understood. We shall also
call G(¢) the ¢ probability of this walk, for reasons to be-
come clear later.

It follows from (2.3) and (2.4) that

G S3(6)=G 4c($)Gcp(d) , (2.5)

where the notation is obvious. The advantage of using ¢
probabilities is that, as we see from Eq. (2.5), ¢ probabili-
ties of parts of walks (such as AC and CB) multiply. The
restriction embodied in the Kronecker 8 in Eq. (2.3) does
not appear at the level of ¢ probabilities. Equation (2.3)
can be generalized for a walk from a point A4, to a point

strictions of the walk. We define a walk from 4 to B as Ay that goes through the points A;,4;,...,Ay_; in
“for the first time,” a walk in which the walker starts at that precise order. Using obvious notation
J
N N N _
Papap,..aym=3 3 = 3 Paga(m)Py 4(na) - Py 4 )8y yn s tnym - (2.6)
ny=0n,=0 ny=0

For reasons similar to those described above the probabili-
ties, Py 4  (0<i<N —2) refer to reaching A; | for the

first time and ﬁAN—l .
over to ¢ probabilities,

6AO,A| ..... AN(¢)=GA1A1(¢)GA1AZ(¢) e GAN_l,AN(¢) .
2.7

is not restricted this way. Going

I

Thus, the ¢ probabilities for subpaths (property restricted)
multiply.

Another kind of walk we wish to define is a branched
walk. It is a walk whose paths can be divided into dis-
tinct subsets we call branches. For example, a walker may
be required to go, in n steps, from a point A4 to a point B
through a point C or D, but not through both. The proba-
bility of doing so is (using obvious notation)
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Pn )PP (n2)8y, 1y

I| bA=

n
z nl PDB (n2)6nl+n2,n ’

where the restrictions applying to the various P’s are obvi-
ous. In the ¢-probability language

G 5P)=G [P $)G5P(¢)+G ()G (d) .
2.8)

This result, too, can be generalized to the case of many
branches and many subpaths. We write symbolically

Gup(8)=3 3 G2 ($)GE ()~ GL($), (29

where a symbolizes the different branches, r denotes the
number of subpaths (each branch may be divided into sets
of subpaths of different r’s), and a; labels the subpaths.
Equation (2.9) means that ¢ probabilities add and multi-
ply precisely as regular probabilities do (hence their
name), except that one does not have to worry about the
number of steps. As is well known,"? the knowledge of a

¢ probability G (¢) is equivalent to the knowledge of all

the corresponding probabilities P(n), since the inversion
is trivial (in principle).

So far we have dealt with a general set of points. It is
convenient for ease of labeling (and for obvious physical
reasons) to arrange the points on simple geometric struc-
tures such as segments (Fig. 1), segments with dangling
bonds (Figs. 2 and 3), loops (Fig. 4), lattices, etc. We
work in discrete time. (Hopping time distributions will be
considered in future publications.) Finally, for the sake of
definiteness of the calculations that follow (and for sim-
plicity), we define the probability distributions to be used
in this work as follows: (a) Each point has at most four
nearest neighbors, (b) when a point has fewer than four
nearest neighbors we consider it to have “fictitious” bonds
to itself (see Fig. 5) so that its total number of bonds is
four, and (c) a walker at a given point has a probability of
+ to use any of these four bonds (to itself and to its
nearest neighbors) (see Fig. 5).

We reiterate that our specific choice of probabilities
does not limit the generality of our results (as the reader
can verify).!® Our method can be applied to any choice of
probabilities (e.g., the expression for X [see Eq. (2.10)],
where the number of nearest neighbors is not four, is
changed, but it plays the same role in the expressions for
the more complex networks).

One consequence of introducing the fictitious bonds is
that the probability to stay at an “end point” like A4 in
Fig. 2, for one step, is 3, whereas the similar probability

FIG. 1. Straight segment configuration.
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FIG. 2. A segment with a single dangling bond.

at point B in Fig. 2 is 7. At a middle point on a segment
(such as point 2 in Fig. 1) this probability is + +. The cor-
responding ¢ probabilities [i.e., of staying at a §1ven point
for one step (this is a well- deﬁned walk)] are Se’¢, e'?,
and 3e’®, respectively.

In order to demonstrate our method we present in this
section a calculation of the ¢ probabilities in two simple
cases. The first is the ¢ probability for a walker to stay at
its initial point (not necessarily for one step, i.e., sum all
n), which is assumed to have r fictitious bonds (or 4—r
nearest neighbors) The probability per step to stay at the
initial point is 7/4 and the corresponding ¢ probability is

e'*(r/4). Thus, the ¢ probability to stay at a given initial
point with 4 — r nearest neighbors, X, /4(¢), is

X, 8= 3 [er /T
n=0
or
1
X, =, (2.10)
O = e

The next example is representative of the kind of tech-
niques we wish to develop. Assume a random walker
wishes to start at point A, and get to point C after having
visited a third point B at least once (see Fig. 6). Define
the following quantities: T g, the ¢ probability to start at
A and get to B for the first time, without having reached
C or returned to A in the process; T'pc, the ¢ probability
to start at B and get to C for the first time without having
reached A or returned to B in the process; and Qpg, the ¢
probability to start at B, leave B (i.e., not making any
move through a fictitious bond of B), and return to B for
the first time without touching either 4 or C in the pro-
cess. Xp is defined as the ¢ probability to stay at B. Note
that no information on the nature of the different paths is
given. As far as the ¢ probablllty to get from 4 to C via
B (which we define as G2;) is concerned, only these three
quantities are of interest. We call T3 and Tg¢ the prop-
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FIG. 3. A segment with many dangling bonds.
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FIG. 4. Loop configuration.

agators from A to B and from B to C, respectively. Qpp
is called the B vertex.

There are many types of routes that contribute to ch.
For example, A—-B—-C or A—-B—-B—>A—->B—-C,
where the notation is obvious. To take all of these into
account we proceed in several steps. First, we calculate
the ¢ probability to get from B to B (not necessarily for
the first time) without touching 4 or C. The ¢ probabili-
ty to do so, Rp, is

Rp=Xp+XpQpXp+XpQpXpQpXp+ - .

The first term in (2.11) represents the possibility of just
staying at B (including also “zero step,” i.e., not staying
there). This probability is represented by the term “1” in
Xp). The second term represents the possibility that the
walker stays at B for some time, then takes a path out of
B (that does not touch A4 or C), which ultimately leads
back to B and then stays at B for some time (which can be
zero, as mentioned before). The other terms are “repeti-
tions” of the paths represented by the second term. Obvi-
ously the different terms in (2.11) represent distinct paths,
whose ¢ probabilities should be added. The “renormal-
ized” B vertex is, from (2.11),

Xp
C1-XpQp

Similarly we can define R 4.

Next we take into account the fact that a walker can go
from B to A and return. Assuming T, =T ,p (with ob-
vious notation), we calculate S5, the probability to get
from A to B (not necessarily the first time) without
touching C, and eventually remaining at B. It is

Sp=R,T R +R,4T pRpT pR4T4pRp
+R,TpRpT45R 4T pRpT 43R 4TypRp+ "~ .
(2.13)

(2.11)

Ry (2.12)

The first term represents the paths that start at A4, return
to A4 an unspecified number of times (without touching B
or C), then reach B without returning to 4 on the way,
and finally move from B to B without touching 4 or C
for an unspecified number of steps. The next terms in-

TETEIEEEE

FIG. 5. “Fictitious” bonds.
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FIG. 6. Black boxes containing points 4, B, and C (see Sec.
1D).

volve getting from A4 to B, moving from B to B as before,
then returning to 4 and moving back to B (represented by
T%p), and so on. Summing up (2.13) we obtain

R, T, ,zR
Syp=—stEE (2.14)
1-T4pR4Rp
The final path is to C. Thus we finally obtain
TR RpT,
3 4 48 B (2.15)

T 1—T2,R,R,

Equation (2.15) is the result in this case. It has been ob-
tained by successive renormalizations, each renormaliza-
tion taking into account a set of subpaths whose ¢ proba-
bilities can be summed up as a geometric series. These re-
normalizations are constructed so as to take into account
the different branches of paths. In Secs. III—VI we shall
treat specific examples and calculate explicitly the propa-
gators and vertices themselves.

To conclude this section, we define mean first-passage
times in terms of the ¢ probabilities (as is standardly done
in the literature). Let P, z(n) be the probability to reach
B for the first time in n steps, after having started at A.
The mean first-passage time (¢) from A4 to B defined as

@

> nP4p(n)
(1y="=>
2 PAB(n)
=0

n

(2.16)

Let G 4p be the ¢-probability corresponding to P,p. Then

d
(5 :ﬁ—GAB(dJ)

. (2.17)
GAB(¢) ¢=0

It is easy to see that for structures for which 4 and B are
connected, G 45(¢) | 4_o=1; hence
(t)=

Ga5($) | g0 - (2.18)

da_
di¢
Now that the essentials of our method have been present-
ed we turn to several specific examples.
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III. RANDOM WALK ON A SEGMENT

In this section we present a detailed calculation of the
generating function of the random walk on a segment (see
Fig. 1). This problem can be obviously solved using stan-
dard master equation methods; the aim of the calculations
in this section is to further present details of our method
and, of course, show how it works on a simple test case.

We wish to calculate the probability Py(n) of a walker
starting at one end of a segment to reach the other end for
the first time in n steps. We shall do so by calculating the
appropriate generating function, which will subsequently
be used to calculate the corresponding mean first-passage
time.

The points on the segment (of length N) are denoted by
0,1,...,N. The problem is to calculate the generating
function Gy corresponding to Py. To this end we define,
as in Sec. II, the following quantities (the ¢ dependence of
these quantities is suppressed).

(i) Ty, the @ probability to leave O on the first step and
reach N for the first time, without having returned to 0 in
the process.

(i) Qy, the @ probability to leave O and return to it for
the first time without having reached N in the process.

Note that

Q]((P)=0

(i.e., such a walk does not exist for N=1).

The generating function Gy can be expressed in terms
of Ty, Qy, and X3, [see (2.10)]. A walker at point O can
stay there for a number of steps (with ¢ probability X3 ,,),
move out of 0 and return to O without having touched N
(with @ probability Qy ), then stay at O and repeat the pro-
cess a number of times. Eventually it will start out at 0
and reach N without returning to O again (with ¢ proba-
bility T ). Thus, the processes that lead the walker back
to 0 have the @ probability

X3/a+X3/40nX3/4+X3,4On X308 X3+ *

(3.1)

The last process is starting at 0 and reaching N without
returning to O any longer. Its ¢ probability is Ty. Hence

_ X34Ty
1-X3,40n

It remains now to calculate T and Qy. This is done by
finding and solving recursion relations for these quanti-
ties.

The walker that wishes to walk from O to O under the
conditions specified in the definition of Qy has to start by
xPoying from 0 to 1. This process has a ¢ probability of
+e'?. At 1 it may stay as long as it pleases [with @ prob-
ability X, ,,; see Eq. (2.10)]. It may subsequently leave 1
for the part of the segment between 2 and N and return to
1 (with @ probability Qy _;). Then it may stay at 1 for
some time (again with ¢ probability X,,,) and repeat the
process that leads it back to 1 without touching N or re-

Gy (3.2)
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turning to 0. The ¢ probability describing these processes
is

X+ X108 1 X102
+ X108 1 X1 298 i XK1+ )

(3.3)

Note that each term in the geometric series in Eq. (3.3)
represents a certain number of repetitions of the process
1—segment (2,N)—1. Finally, the walker returns to 0
with @ probability +e¢‘?. Hence

X5
1—-X,,0nv 1’

which is a recursion relation for Qy. Before we turn to a
solution of (3.4) we derive a second recursion relation for
QOn. To do that we consider two distinct types of paths
that contribute to Qy: those paths that contain the point
N —1 and those that do not. The contribution of the
paths that do not reach the point N —1 is precisely Qx _;.
The ¢ probability of leaving 0 and reaching N —1
(without returning to 0 in the process) for the first time is
Tn_;. Upon reaching point N —1 the walker may
choose to stay there (with ¢ probability X, ), then move
into the segment between point 1 and point N —1 and re-
turn to point N —1 (with ¢ probability Qy _;). The pro-
cess can then be repeated. This set of paths has a total ¢
probability

Ty _ (X n+X1 0981 X12
+X 1208 1 X1 29N X124+ 0)

X\
1—X,,0n 1

The fact that the different terms in the geometric series
are repetitions of a type of process should by now be clear.
Finally, the walker returns to point O (remember that it
should not get to N if it wishes to contribute to Qy) with
@ probability Ty _,. The total contribution of the paths
that contain the point N —1 is thus

Xin
1-X1,0n 1

Adding the ¢ probabilities of the two types of paths we
obtain

Oy =(5e'®) (3.4)

=TN—1 (3.5)

2
Ty

Ty_1 X1,
NN 1—X,,0n 1
from which we obtain a formula for T,
( —QyN1—X ) |12
Ty= On+1—Qn 129N . 3.7)

X1/2

The sign of Ty will be dealt with later. Thus, upon solv-
ing Eq. (3.4) and using (3.7) we obtain all we need to cal-
culate Gy.

We start by solving the recursion relation for Qy. De-
fine
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Sy=X1,0n (3.8)
and

a=(5e'%X,,)%. (3.9)
It follows from Eq. (3.4) that

1

SN+1=(1 1—-SN . (3.10)

Define
Ay
Sy=—. 3.11
N By ( )

Substituting (3.11) into (3.10) we obtain

AN+1=CNGBN (3.12)
and

By 1=cy(By—Ay), (3.13)
where cy#0 is an arbitrary constant. Define

By=(1¥Z) C,)By and Ay =([]Y=) C,)Ay. Obvious-
ly, Sy=Ax/By. It follows from Egs. (3.12) and (3.13)
that

Ay 1=aBy , (3.14a)

By, 1=By—Ay . (3.14b)
Hence,

By, 1+aBy_1—By=0. (3.14¢)

Equation (3.14c) has two independent solutions of the
form A{‘{ » where A,, solve the quadratic equation
A2—A+a=0,ie.,

7t1,2=°1—i—‘/;_—W : (3.15)
Note that

MAy=a (3.16)
and

AM+Ay=1. (3.17)

Thus, the general solution of (3.10) is

S a(HAY "' HAY G18)
N HMtHA '

where the numerator in (3.18) is A4, and the denominator
is the general solution of Eq. (3.14c). H, and H, are so
far arbitrary constants. Using now (3.8) and (3.9)

AY T (Hy /H A !

Oy =(=e¥%X, ) (3.19)
NThe VAN L=, /HOAY
Using now (3.1), we finally obtain
. RARRLIY Publt
QN=(‘1%62'¢X1/2)—T'N“‘_‘ (320)
A=Ay
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Equations (2.10), (3.2), (3.7), (3.15), and (3.20) thus consti-
tute a closed solution of Gy(g).

Finally, we turn to obtaining numbers with this calcula-
tion. We wish to obtain the mean first-passage time
(MFT) from point O to point N. Using (2.17),

d

(t)= dig i

, (3.21)
GN(‘P) =0

which means we have to know Gy(¢) only to first order
in ip. To do so, we expand Qy, Tn, X1,2, X34, Ay1,5, and
a to first power in i@. It turns out to be convenient to de-
fine ip=e€” and expand all quantities in powers of €. It
follows from (2.10) that to order €’

X, =2+2¢é (3.22)
and

X3,4=4+12€%, (3.23)
and, using Eqgs. (3.9) and (3.22),

a=1+€+0(e) . (3.24)
Substituting (3.24) into (3.15)

Ai,=7tie+O0(€) . (3.25)

Note that it suffices to calculate A, , to first order in € be-
cause in Eq. (3.20) both numerator and denominator van-
ish in the limit €—0. The first-order terms then cancel,
and only a term of O (€?) survives. Using (3.22) and (3.25)
in (3.20) we obtain

_N—-1 @N+D1HIN-=-1) 4
Ov= av T N e€+0(*).  (3.26)
It follows now from (3.26), (3.22), and (3.7) that
__ L 2N+1, 4
Ty= aN BN € +0(e%) . (3.27)
Now, from (3.2), (3.23), (3.26), and (3.27) we obtain
Gy=142N*+N)E+0 () . (3.28)

Note that Gy(¢=0)=1 as it should. Finally, using (3.21)
and (3.28) it follows that

(t)=2N242N, (3.29)

which is the dependence of the MFT on the length of the
segment. Note that for large N we obtain N>~ (t). If
we wish to define a diffusion constant this way, we obtain

N2 1
2ty 4
We also wish to note that in a finite system the regular
definition of a diffusion constant, i.e., (distance)?/time, in
the long-time limit is useless since the distance is bound-
ed. The above result suggests a possible meaningful defi-
nition in this case.

The functions Ty(@) and Qy(@), which we have de-
fined and calculated in this section, as well as X ,4(¢), are
important building blocks of many other generating func-
tions, as the examples in Secs. IV—VI will show. We

D= (3.30)
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went into great detail in this section in order to demon-
strate our method in as clear a fashion as we can. The
key idea in the derivation is that of dressing the “bare”
propagator Ty(¢) by processes @ and X. One then uses
recursion relations to obtain the full generating function.

IV. A SEGMENT WITH A SINGLE DANGLING BOND

The configuration that is the subject of this section is
depicted in Fig. 2. We wish to calculate the ¢ probability
for a walker starting at point A4 to reach point C for the
first time. Using this ¢ probability we shall calculate the
corresponding mean first-passage time. The power of our
method now shows up—the desired generating functions
depend solely on quantities that were already defined and
calculated in Secs. I-III: the T, Q, and X functions. Us-
ing these entities it is now a matter of a few lines to calcu-
late the generating function G in this case (the master
equation approach becomes rather messy here).

As seen in Fig. 2, the problem involves three segments
AB, BC, and BD of lengths n,, n,, and nj;, respectively.
The corresponding basic functions are T,,‘,Q,,l; T,,z,Q,,z;

and T, ,Q,, (as defined in Sec. ITD.

We start by defining V,, the renormalized A vertex, as
the @ probability to start at 4 and return to 4 without
reaching B in the process. The argument goes as in Sec.
III, resulting in

Va=X3/4+X3/40n X3/4+X3/40n X3/4Qn + -~

or
. £
1-X3/40,,
The partially renormalized B vertex Qp is defined as the
@ probability to start at B and return to B without having
reached A4, C, or D in the process. Noting that the ¢
probability to stay at B is X, and that the walker can
perform excursions into 4B, CB, or DB after having

stayed at B (each such excursion being represented by
Qn,s @n,» OF @y, respectively), we obtain

05 =X1/4+X1/4(Qn +CQn,+Cn;)X1/4
+X1/4(Qn, +Qn,+Cn )X1/4(Qn, + On,
+Qn ) X1/a+ -

V., 4.1)

or
_ Xy /4
1_'/Y1/4(Qn] +an+Qn3) '

Another path that leads from B to B is going to 4 or to
D and returning to B for the first time (recall that in the
processes represented by Q, or Q,l3 the end points A4 or

D, respectively, were not touched because of the definition
of the Q’s), a process whose ¢ probability we define as Sp.

The ¢ probability of going from B to A and back to B
involves T,fl and is renormalized by repeated Qn, excur-

sions from A4 to A. This leads to a total ¢ probability to
go from B to A and back to B for the first time,

Op 4.2)
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T2 X34 ,
'1-0n X3/4
and a similar contribution from the excursion to D. Thus
Sp= TaiXon + oo : 4.3)
1-Q, X3 1-05 X3

The walker starting at B can make any number of excur-
sions without touching A or D (including the possibility
of staying at B all the time or only for zero steps) which
are represented by Qp. Then it can perform an excursion
in which A4 or D are reached, rest at B, and so on. Defin-
ing Ry, the renormalized B vertex, as the ¢ probability to
go from B to B without reaching C, we obtain

O
1-QpSk
Now, to reach C, the walker starts at A4, performs

motions represented by V4, then moves to B (with ¢
probability T, ), performs motions whose @ probability is

R; 4.4)

Rp, and finally reaches C with ¢ probability T, . Conse-
quently,

G=V4T,RpT,, . (4.5)
Equation (4.5) expresses the desired generating function in
terms of known quantities and is, therefore, a closed ana-
lytic solution for G. To calculate the corresponding MFT
we have to calculate the quantities in (4.5) to first order in
i@ or second order in €.

As a consistency check we find it useful to evaluate G
at @=0. This is a relatively easy calculation that should
yield G=1. Indeed, we obtain in this limit

T,= 4—n s (4.6a)
n—1
= , 4.6b
On an ( )
X3/4—4 ’ (4.6¢)
Xi4=+, (4.6d)
Vy=4n,, (4.6e)
4
19 111 (4.6f)
n, nj, ns
1 1
Sp=—+—, .
B an, + an, (4.6g)
Rp=4n, , (4.6h)
and
G(p=0)=1. (4.61)

This is an easy check that is recommended in all calcula-
tions of MFT’s. As far as the calculation of (z) goes, it
is useful to employ the following trivial identity. If

m
G=HA,',

i=1

(4.7)
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where A; are any €>-dependent functions, then

04;
G aez i=1 Ai a€2
In our specific case
196 _ 1 s 1 % 1 3Ry 1 T
G 3 V4 3¢ T, 3 Ry 3¢ T, 3¢
4.9)

Note the appearance of quantities such as (1/T)(3T /d€?),
whose value can be calculated and tabulated once and for
all. The aim is to reduce the expression in specific cases
to a sum of such “universal” expressions. For example,
(1/V 43V, /3€?) can be further reduced, using Eq. (4.1),

av i), ¢
‘VIT 86: +X':/4 8632/4 l—Xslan1 5%()(3/4Q,,l),
(4.10)
or
1 W4 1 s Ksnln 9Q,,
Vi 3¢  Xsu 06 1-X34Q, Q. 0€
DT W 5V (4.11)
1-X3/4Qn X34 O€
In the limit €2—0 we obtain
(t)=-é—§e—G2=2(n,+n2)2+2(n,+n2)+4n2n3. (4.12)

Note that when n;=0 we recover the result of the
straight segment, Eq. (3.29). Another interesting aspect of
this result is the asymmetry between n; and n,. This ef-
fect follows from the fact that it matters whether the ran-
dom walker goes from A4 to B or from B to A, because in
one of these cases it meets the dangling bond earlier than
in the other. The linear dependence on nj is also worth
mentioning. It means that the time spent in the dangling
bond is proportional to its length, which indicates a uni-
form probability distribution in the dangling bond.
Whether this effect is general remains to be seen. The ef-
fective diffusion constant in this case is sensitive to the
limits considered. For example, when n;— w0, n,,n;
remaining fixed we obtain D =+, as in the case of the
simple segment. In the limits n,,n;,n;— o but
ny/n{—const and n,/n,—const, we obtain an
anomalous diffusion constant that behaves like ¢ ~3/%,

We conclude this section by mentioning again the
power of the “dressing” technique we have presented. In
Sec. V we turn to a slightly more complex case.

V. A LOOP CONFIGURATION

We turn now to our third example. It is slightly more
complicated than the previous ones, but we can still calcu-
late the appropriate generating function with the aid of
our basic functions. The geometry of the loop configura-
tion is depicted in Fig. 4. The structure is composed of
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four segments AB, BEC, BFC, and CD, of lengths n,, n,,
n3, and ng4, respectively. The corresponding basic func-
tions are T, ,0pn; Tn,Qny TnyQny; and T,,,0,,. We
shall also need X/, (for the vertices 4 and D) and X, 4
(for the vertices B and C). As in the preceding, we wish
to calculate the generating function G for starting at 4
and reaching D for the first time and deduce the MFT,
which is denoted by (z) as before. The calculation
proceeds by a series of renormalizations as before.

First, we renormalize the A vertex. This renormaliza-
tion includes the possibility that the walker starting at 4
may stay there (with ¢ probability X3,4) or make an ex-
cursion into the segment 4B without touching B (the cor-
responding @ probability is Q, Nz The contribution of
these processes is the ¢ probability Q, for the walker to
start at A and return to A without having reached B.
Considerations similar to these appearing in previous sec-
tions lead to

Q=—0 (5.1)

The first renormalization of the B vertex, Qp, will in-
clude the following possibilities: the walker stays at B
(corresponding to X ,4) and/or wanders into BA, BEC, or
BFC without reaching A4 or C (the corresponding ¢ prob-
abilities are Q,, Q,, and Q, ). The resulting formula

for QB is
_ Xisa
l_X]/4(Qn]+an+Qn3) ’

Similarly we renormalize the C vertex by including excur-
sion from C into the segments CD, CEB, and CFB. The
resulting renormalized vertex Qc is

_ X1/4
1—X1/4(Qn, +Qn, +Qn,)

Next we define a further renormalization of the B ver-
tex, which includes all possible excursions leading from B
back to B. The walker may go to 4 (with ¢ probability
T,,), perform motions described by Q4, and then return
to B (again with ¢ probability T, ). This process thus has
a @ probability T; Q4. Alternatively, the walker may
choose to go to C via BEC and eventually return through
BEC, a process whose @ probability is T,,Qc. It may
wish to perform a similar walk through BFC, contribut-
ing T33Qc to the @ probability. Finally, it may use seg-
ment BEC to reach C and return through BFC or go the
other way around. This possibility has a ¢ probability of
2T,,T,,Qc. All together, the @ probability of leaving B

and reaching A or C before returning to B is

Sp=T5 Q4+ (Ta,+ s, Qc . (5.4)

Op (5.2)

Qc (5.3)

Now the walker starting at B may perform a Qp-type
walk. (Qp includes the possibility that this walk lasts for
zero steps, i.e., it is not performed. This possibility is
represented in Qp by the n=0 term of the sum defining
X\1/4, which is 1. This 1 then multiplies whatever walks



33 ANALYTIC METHOD FOR CALCULATING PROPERTIES OF . . .

are subsequently performed. This is why we consider Qp
as the first possibility, since Sz does not contain a zero-
step term.) Then it can perform an Spz-type walk, then a
Qp-type walk, and so on. It follows that the fully renor-
malized B vertex, which we denote by Rp, and which
contains all walks from B to B which do not reach D, is

__ %
1—QpSp

Now G is the product of (a) the renormalized A4 vertex
Q4, (b) a term T, representing the motion from 4 to B,

Ry (5.5)

(c) the fully renormalized B vertex (whose significance
was explained before), (d) a term (T, ,+Tn,) representing

the transition from B to C (via BEC or BFC), (e) a term
Qc representing the renormalized C vertex, and (f) a term
T,, representing the transition from C to D. Thus, we fi-

nally obtain

G =0, TanB(Tn2+Tn3)QCTn4 . (5.6)
At this point we wish to mention that if we had tried to
solve this problem by the master equation approach, we
would have had to perform an extremely tedious calcula-
tion. The method we presented makes the derivation of
the result (5.6) a rather straightforward task (which, after
gaining a little experience, becomes almost trivial). A use-
ful diagram showing the possible distinct paths for the
loop case is shown in Fig. 7. The “ends” appearing in the
diagram contain points that the walker has previously en-
countered. At such a point x the walker is assumed to
“go back” to a point x* represented by the same symbol x
as the end point. This point x* is the first time the point
x is encountered by the walker. For example, once one
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FIG. 7. Branching of paths in the loop case. Each arrow is
labeled by the appropriate ¢ probability.

reaches a B end point, go to B* and continue “walking”
until point D is reached. We found that diagrams such as
Fig. 7 are useful in deciding which paths should be in-
cluded in each renormalization of the vertices. The calcu-
lation of (¢) is now a matter of straightforward algebra
(although somewhat tedious). The result is

4nt46n,—1 1 1 4ny33—2,73—6 1 1 1 P
()=———F"—" |1+ [n4+—— | — : = I+ |ng+<— |—+ [na+<5— :
3 ‘T35 | ny 32153 T3 |y ¢ 353 | 2o34
4ny34—2734—6 1 333 2nt+ 1 1
= = 1+ |ng+ — |+ 142 (ng+— | —
32534 M Y T2
2ni+1 1 1 3 2n3+1 3 2n2+1
2 42 |+ 1 2,3 3 1 S 1 1 2,3 4 ’
3 ny3, 3 353 | ny 234 n33,; 353 | n3 234 3
(5.7)

where nj=n;+nj, n;jr=n;+n;j+n, Z;=1/n;4+1/n;,
and 2 =1/n;+1/n;41/n;. We found no way to sim-
plify Eq. (5.7) in the general case. In simple limiting
cases, though, one obtains more transparent results. For
instance, when n; =n,=n,=n we obtain

(t)=20n%. (5.8)

The MFT corresponding to a straight segment of length
3n (which is what we obtain by completely disconnecting
one of the two segments of which the loop is “composed”)

is 18n%+6n. Thus in the large-» limit, the “addition” in
parallel of a segment of length n to another segment of
length n does not change (t) very much. Choosing
ny=n;=n4=n and nz=n +nd, & satisfying |8| «<1
(strictly speaking, n& should be an integer), we obtain

(t)=20n2+7n%8+0(8%) , (5.9)

which shows the direction in which small changes in the
lengths of one of the two segments of which the loop is
composed change the MFT. It increases when the seg-
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ment is made slightly longer and becomes smaller in the
opposite case. It is, of course, interesting to check other
limits of (¢), but since we are mainly interested in
presenting our method, we shall not dwell on this point
here. We turn now to our last example.

VI. A SEGMENT WITH MANY DANGLING BONDS

The system that we treat in this section is depicted in
Fig. 3. The segment is of length Nn. Each subsegment
has a length n and has two dangling bonds—one at each
end. Thus there are N + 1 dangling bonds, each of length
m. We wish to calculate (¢), the MFT for getting from
point O to point N, and the corresponding generating
function. To this end we define the following functions.

(i) Qn(@), the @ probability to leave O and return for
the first time to O, without reaching N on the way (but it
is allowed to reach end points of the dangling bonds).

(ii) Tn(g), the ¢ probability to leave 0 and reach N for
the first time, without having returned to O on the way.

(iii) r,, (@), the @ probability to leave 0, move into the
first dangling bond (the one connected to 0), and return
for the first time to O (it is allowed to touch the end point
of the first dangling bond).

(V) t,(@)ytm (@), (@),gm (@), the T and Q functions of
simple segments of lengths n and m, respectively. [Note
the change of notation—#’s and ¢’s here are the same as
T’s and Q’s in Secs. II-V. The T’s and Q’s are reserved
for the whole segment, as defined in (i) and (ii).]

(v) X, /4,X1/2,X3 4, as previously defined.

We now turn to the renormalization of the vertices.
First we calculate r,,. It is obvious that a walker that
leaves O for the first dangling bond can either return to 0
without having touched the end point of the dangling
bond (with ¢ probability g,,) or reach this end point for
the first time (with @ probability t,,), stay there (with ¢
probability X3,4), then move into the dangling segment
and return to the end point, without having touched 0
(with @ probability g,,). Then it may repeat this process,
and eventually return to O (with ¢ probability #,,). Conse-
quently,

2 Xan

—_— (6.1)
" 1 _X3/4qm

T'm=qm +1

To solve for Ty and Qp, we derive recursion relations,
in N, for these quantities. The first relation is

ON=Gn+7m+tm Xin : 6.2)
T 1—X 1 4(QN 1+ Gn)

The first two terms in (6.2) represent the fact that the
walker can either start out at O, move into the segment
(0,1) without touching 1 and return to O, or move into the
first dangling bond and return to 0. Alternatively, it may
choose to move to 1 (with ¢ probability ¢,). It can then
stay at 1 (with @ probability X, ). It may leave 1 and re-
turn to 1 for the first time without having touched 0 or N
(with @ probability Qy _;+g,). After having stayed at 1,
left it, and returned to it as many times as it pleased, with
@ probability

Xi/4
1—X,/4(Qn—1+4n)

the walker eventually returns to O (with ¢ probability ¢,).
All together, the motion from O to 1, the excursion from 1
to 1 without touching O or N, and the return to O produce
the third term in (6.2).

The second recursion relation that we derive is

Ov=0y_,+T3 Xiss (6.3
NN N = X @y 1 +40) ’

The first term in (6.3) represents all paths leading from 0
to 0 without reaching the point N —1. The second term
represents all paths in which the walker reaches point
N —1 (with @ probability Ty _,) and eventually returns to
0 (again with @ probability Ty _;). In the meantime it
can stay at N —1, move to the right into the segment
(N —1,N) without touching N, and return to N —1 for
the first time (with ¢ probability g,). It may choose to
move upwards or to the left of N — 1, without touching 0,
and return to N —1 for the first time (with ¢ probability
Qn _1). Thus an excursion leaving N —1 and returning to
N —1 for the first time without having touched 0 or N
has a @ probability of Qx _+¢,, and the totality of such
excursions, including resting periods at N —1, has a ¢
probability of

X154
1—X,,4(Qn+4,)

>

which yields the second term in (6.3).

The only unknowns in Eq. (6.2) are the Qy’s. To find
them we solve the recursion relation (6.2) in much the
same way as we solved Eq. (3.4). Define

SN=0ON—Gn—"m - (6.4)
Note that
S,=0. (6.5)

The recursion relation for Sy reads

Sy 1= b_"SN , (6.6)
where

a=t} (6.7a)
and

b= Xll/ — (24 +rm) (6.7b)
Define

Sy= '—;% ; (6.8)
then, from (6.6),

Ay 1=aBy , (6.9a)

By,1=aBy—Ay , (6.9b)
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up to a multiplicative constant taken to be 1 (see Sec. III).
It follows as in Sec. III that
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AMopg=—"T"7", (6.11)

and Eq. (6.5) was used. Now using (6.4) we can find Q.
The algebra is somewhat tedious, but straightforward, and
we obtain

A1y
SN:aW, (6.10)
where
J
1 1 2 4n?—1 n+m
=y Tt T, T

where €2=ig as in previous sections. Ty is subsequently
found from Eq. (6.3). In the limit €2—0 its value is
1
Ty= .
N7 4nN
To calculate the MFT we need the corresponding generat-

ing function Gy. Considerations that should be obvious
by now lead to

(6.13)

G X1 T (6.14)
N -x 008 Y '
which lead to the following MFT:
(t)=2N?n(n+m)+2Nn(m +1) . (6.15)

Note that for fixed n and m the leading dependence on ¥
is quadratic. When m=0 we regain the formula for a
straight segment of length Nn, as we should. The depen-
dence of (t) on m is linear, as in the case of a single dan-
gling bond (meaning, perhaps, that the probability distri-
bution along the dangling segments is uniform).

In the limit of large N, (t) is invariant under the
transformations

N—->N/k , (6.16a)
m—km , (6.16b)
n—kn , (6.16¢)

which means that a dilution of the “density” of dangling
bonds by a factor k, keeping the total length of the seg-
ment (0,N) fixed (i.e., Nn is fixed) and also keeping Nm,
the total length of the dangling bonds [its exact value is
actually (N +1)m] fixed, does not change (¢). This re-
sult would imply that a naive Einstein relation approach
(see Sec. VII) could work here. Note also that by making
the following replacements,

Nn

n—->—2—- s (6.17a)
N2, (6.17b)
m-»‘—A—[—J—gi"l , (6.17¢)

which keep Nn and (N + 1)m fixed (i.e., replace the origi-
nal segment by a segment with three dangling bonds), we
obtain that (¢) remains unchanged.

In summary, we have shown in this section how our

(6.12)

method enables one to perform the calculation of the gen-
erating function corresponding to a rather nontrivial case.
To leading order in N it seems that diluting the dangling
bonds, while keeping their total length fixed, leaves the
MFT unchanged. Thus the effective diffusion constant
D=N?1?/2(t) also remains unchanged. In other limits
(m very large) this statement may not hold. The con-
clusion is that such geometrical transformations should be
approached with care.

VII. SUMMARY AND CONCLUSIONS

We have presented a method for calculating properties
of discrete random walks on a discrete network. The
method involves the definition of “basic walks” on a seg-
ment, whose probabilities are denoted by T, Q, and X.
Once the probabilities of these basic walks have been cal-
culated, the probability of any walk on a network can be
calculated, in principle. In practice, the algebra may be
tedious, yet much simpler than that involved in a straight-
forward solution of master equations. It should be obvi-
ous from our calculations that given a black box (which
contains a network) to which only two points 4 and B are
“connected,” all the properties of a random walk which
involves entering the black box and leaving it (except for
the properties that are directly related to events inside the
box) can be calculated from T, g, Tgy, Q44, and Qpp (the
notation, we hope, is obvious). The result can be obvious-
ly generalized to a black box with a larger number of “ex-
ists.” The meaning of this result is that when dealing,
e.g., with networks, one may replace parts of a network by
their “effective” properties (7°s and Q’s) in an exact way.
Such an approach can be useful when dealing with self-
similar objects. For example, using this approach one can
calculate properties of a walk on networks, which contain
(infinite) sets of nested loops, fractals (at least some), etc.
More details will be presented in future publications,
where application to physical systems will also be present-
ed. Some of our results can be generalized to continuous
(in time and/or space) random walks. Efforts in this
direction are being pursued by the authors.

It is interesting to note that exact iterative processes
have been used in the literature (sometimes known as
multiple-scattering techniques) to solve certain aspects of
random-walk problems (cf. Eq. 1 in Ref. 14) such as hop-
ping conductivity or motion (decay) of excitations (Refs.
14—18). In the present paper we have mainly concentrat-
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ed on mean-first-passage-time problems. The problems of
transport using our method will be dealt with in subse-
quent publications. We shall only reiterate that one of the
novel elements in our approach is the identification of
some basic random walks, which differ with respect to
other approaches. This fact is shown to be useful in cal-
culating a large variety of physical quantities.

Our final remark concerns the relation between the ef-
fective diffusion constant D defined for MFT calcula-
tions, and the real diffusion constant D, which appears in
the Einstein relation. Strictly speaking, the two quantities
are different. We expect, though, that D and D will have
the same asymptotic dependence on the geometry for
homogeneous systems (e.g., a long segment). For more
complicated systems the situation is, however, different.
Let us consider the example of a segment with a dangling
bond [cf. Eq. (4.12) and Fig. 2]. A naive interpretation of
the Einstein relation D ~o /7, o being the electrical dc
conductivity and 7 being the volume fraction of the me-
tallic cluster within a box of linear size (n;+n,), yields
(we choose n| >>n,)

D~1 forny<n,, (7.1a)

n3
D~— forny>n;. (7.1b)

n
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By contrast, from Eq. (4.15) we obtain (for n;>>n,,
ni<<nyn;)

(ny+ny)?*  n?

2'4'"2"13 nonj ’

The difference between Egs. (7.1b) and (7.2) results from
the fact that in the calculation of D =n?/2(t), the aver-
age of t includes paths that contribute extremely large
“trapping times” in the dangling bond. In general, when
(t) has a very long tail, one should expect that D=£D
(which is related to the fact that (1/¢t)s.1/(t)). Thus,
the results presented in this paper indicate that one has to
be extremely cautious when calculating the finite time dif-
fusion constant in an inhomogeneous system.

D=

(7.2)
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