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Direct construction of path integra1s in the lattice-space multiband dynamics
of electrons in a solid
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(Received 29 August 1985)

It is suggested that complex problems in ultrasubmicrometer electronics research may greatly

benefit from use of the path-integral technique. The use of the %eyl-Signer formalism of the

quantum dynamics of electrons in solids provides a rigorous and straightforward derivation of the

path integral in solid-state physics, both from the single-particle and from the many-body field-

theoretical description of electron dynamics, without the need to postulate a priori the isomorphism

between quantum operators and c-numbers of the base field. A rigorous construction of the path in-

tegral in many-body solid-state band theory necessitates a two-stage %eyl correspondence between

quantum operators and c-numbers of the base field, namely, the %'eyl correspondence of the base

field of "lattice-space" particle-dynamical variables and that of the continuum many-body field-

dynamical variables.

I. INTRODUCTION

A couple of observations on recent technical develop-
ments, as they potentially relate to ultrasubmicrometer
electronics research (USER), has led us to examine the
construction of path integrals in the lattice-space multi-
band dynamics of electrons in a solid: (a) The use of
supercomputers for evaluating fermionic and coupled
boson-fermion path integrals, for complex quantum
many-body system and lattice gauge theories, has recently
emerged as an exciting research activity in the last four
years, ' and numerical technique for carrying these calcu-
lations are gradually being established; (b) aside from its
well-known classical-dynamical property, there is a
problem-solving property associated with the process of
defining a significant path in state space or configuration
space, in the path-integral evaluation by means of com-
puter (Monte Carlo) Metropolis importance-sampling al-
gorithm. The author believed this conceptual property to
have much wider applications to problem solving in gen-
eral, and in particular to artificial-intelligence (AI)
research, operation research, and in discrete combinatorial
optimization (i.e., NP-complete complex combinatorial
problems) in science and engineering.

USER is faced with essentially two seemingly insur-
mountable difficulties: (a) giving an accurate description
of device physics in ultrasubmicrometer dimensions
where discreteness and/or atomicity in all physical quan-
tities of interest dominate the device behavior; clearly in
this case one needs to go beyond the continuum effective-
mass dynamical theories, and (b) obtaining the solution to
highly complex discrete combinatorial problems connect-
ed with the optimization of the system architectures. We
believe that solution to a wide range of very complex
quantum dynamical and combinatorial problems in USER
may be greatly benefited by both the powerful concept of
the path-integral technique, together with advances in nu-
merically evaluating it, and by the problem-solving prop-

erty associated with the process of defining the most sig-
nificant path in state space or configuration space.

First, let us clarify what we mean by our second obser-
vation since we will not say anything more about it in this

paper beyond the first section. It is interesting to note
that already highly complex (NP-complete) discrete com-
binatorial problems connected with the optimization of a
system architecture are beginning to benefit from the
problem-solving property associated with the process of
defining the most significant path, in state or configura-
tion space, in the numerical evaluation of path integrals.
This has recently occurred in the literature in the guise of
what Kirkpatrick, Gelatt, and Vecchi have called the
"annealing schedule. " Table I shows the essential ele-
ments of general problem solving, and of the combinatori-
al optimization process in particular (third column). Ele-
ments of the fourth column, which manage to define the
most significant path (calculated by means of a Monte
Carlo importance-sampling technique), are shown to be
isomorphic to the elements of general problem solving and
of general combinatorial optimization processes. The
fourth element (fourth row in the table) as stated is rather
vague, but its importance cannot be underestimated. The
plan is the reason for introducing search tree, search levels
(i.e., depths) and nodes at each search level in a tree; in
other words the fourth element is the niche for all ingenui-

ty that can be applied to the problem to efficiently coor-
dinate the second and third element. The plan then maps
out the evolution of the search toward the solution and,
therefore, gives the sense of directionality. Indeed, one
may view the search levels (depths) of the search tree to
correspond to the "imaginary time" in statistical physics.

The isomorphism shown in Table I can indeed be seen
in the work of Kirkpatrick, Gelatt, and Vecchi (although
they did not relate their method to a path integral) in their
computer solution to some specific combinatorial prob-
lems in wire routing, macroplacement, and partitioning in
computer designs, as well as to the classic traveling-
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salesman problem. Their algorithm corresponds to the
breadth-first search algorithm (a technique very well

known in the study of data structures and graph algo-
rithms and in AI research) in their use of the Metropolis
importance-sampling procedure for exploring the op-
timum configuration at each search level or "tempera-
ture. " Extension of their work can be found in Ref. 9.
The temperature which they have introduced, in an ad hoe
manner, in their optimization process can be viewed as a
measure of the different "levels of the search tree;" it
measures the evolution (denoted in Ref. 6 the annealing
schedule) toward the goal. We will not go into further
discussion in this paper on the problem-solving property
associated with the process of defining the most signifi-
cant path in state or configuration space since clearly
what remains are essentially practical and ingenious appli-
cations of this powerful and universal concept

The main objective of this paper is to cast the quantum
dynamics of electrons in a solid more accurately as a path
integral from the atomistic point of view, to explicitly in-

corporate discreteness, and to avoid the use of continuum
effective-mass dynamical theories. To the author' s
knowledge, this has not been explicitly treated in the
literature. As we shall see in what follows, path-integral
lattice-space quantum dynamics of electrons in a crystal-
line solid bear a very close resemblance and/or analogy
with the lattice-gauge theories of elementary-particle
physics. A further understanding and utilization of the
existing analogy could therefore conceptually lead to a
cross-fertilization of ideas, not only between quantum-
field theory and statistical mechanics, but also between
quantum-field theory, statistical mechanics, and
USER—microstructure-science dynamical problems as
well.

Path-integral solutions, in principle, can be written
down for a host of evolution equations in physics. '

The derivation and construction of the path integral (also
known as functional integral) in quantum physics has
only been of interest primarily to the people in
elementary-particle physics. '5 ' The role of isomor-
phism between quantum operators or quantum states with
the "c-numbers" of the base field is the central feature of
the construction process. So far, the method is character-
ized by postulating the intended isomorphism (with usual
assumption of normal ordering) and then giving a proof
that indeed the isomorphism is one-to-one. It is not at all
clear how this construction method is applicable to parti-
cles in solids, possessing multiband dynamics (more ap-
propriately "lattice-space dynamics" owing to finite band-
widths). What is needed, and to the author's knowledge
has not been done, is to eliminate the initial postulatory
aspect of establishing isomorphism or Weyl correspon-
dence between classical quantities and quantum operators
in the construction of path integrals. Indeed, as we shall
see, for many-body solid-state band theory the nonpostu-
latory %eyl correspondence is a two-stage process.

The outline of the rest of this paper is as follows. Sec-
tions II and III serve to define the first-stage %'eyl
correspondence via the Weyl-Wigner formalism of the
quantum theory of solids, proposed by the author some
years ago. Section II starts by showing that indeed in

solid-state theory the most convenient basic conjugate
variables are the lattice-point coordinates and crystal
momentum (limited to the first Brillouin zone). For this
reason, we refer to the dynamics of electrons in solids as
lattice-space dynamics, a term which may acquire signifi-
cant relevance for ultrasubmicron semiconductor devices.
It is through the use of the Weyl-Wigner formalism which
enables us to establish isomorphism between quantum
operators and c-numbers of the base field, without the
need to postulate a priori this correspondence. Section IV
develops the second-stage %eyl correspondence to com-
plete the formalism of a rigorous and straightforward ap-
proach to the construction of a path integral in solid-state
physics. The method sho~s clearly how the construction
runs parallel in both first quantization and second quanti-
zation, differences arise mainly from differences in the
number of dimensions and the class of the basic conjugate
dynamical variables being considered.

II. THE FIRST-STAGE %VEYL CORRESPONDENCE

It was shown years ago ' ' that an arbitrary operator
A,z in solid-state band theory can be expressed in terms
of the crystal momentum operator and lattice-point coor-
dinate operators. The reader is referred to Ref. 20 and
references quoted therein for the following results (we
make use of Dirac ket and bra notation for the Bloch
functions and Wannier functions in what follows):

/I, p (Nfi )— ~u. (p q)~~~..(p q»

where Aii (p, q) and hzz (p, q) are given by

322 (p, q)= ge( '/")i'"&q u, A, o
~

A—,~ ~
q, +u, A', o'), ,

~~~..(p q) = g e "'"""
I p u~ o—& &p +u ~' o'

I

or by the equivalent expressions,

322 (p, q)= ge' ' "' &«p+u, k, ,a
~
A, ~p u, A', cr')—, ,

X is the number of lattice points, p is the crystal momen-
tum (limited to the first Brillouin zone), q is the lattice-
point coordinate, 0.,0.' label the spin indices, and A, , A,

' label
the band indices. The operator nature of A,„has been
transferred to bi~ ~(p, q) in Eq. (1). Indeed bii (p, q)
can be rewritten to exhibit its operator nature in terms of
Pand gas

where

(4)

b2,2 (p, q)= ge("/")i'"'~ q+u, A, o)&q ,u, A', o' —
~

. , (5)
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022 ——g ~
q, A, ,a) (q, )l, ', cr'

~

= g ~p, k,a)(p, A, ', o'~ .

P and Q are the crystal momentum and lattice-point coor-
dinate operator, respectively, they are the canonical conju-
gate variables suitable for solid-state problems, i.e., one
can show that the following commutation relation
holds, 20,21

[Pl Qgl —. ~ij ~

I
(8)

The eigenvalues and eigenfunctions of Q are the lattice-
point coordinates and Wannier functions, respectively.
Likewise, the eigenvalues and eigenfunctions of P are the

crystal momentum (limited to the first Brillouin zone) and
Bloch functions, respectively. A22 (p, q) defined by Eq.
(2) or (4) is the Weyl transform of the quantum operator
A, in the Weyl-Wigner formulation of quantum mechan-
ics. ' Referred to discrete lattice (solid-state) problems
it is convenient to call A22 (p, q) the "lattice Weyl
transform" of A,~. Equations (1) and (2) can be viewed as
providing us with the exact mathematical prescription for
associating classical and more pictorial quantities with
quantum-mechanical operators and vice versa. It should
be pointed out that the corresponding classical quantities

may still contain Planck's constant h. Indeed the
classical-mechanical pictorialization of the classical quan-
tities given by Eq. (2) can often be achieved only after
decoupling the band of interest.

We write down the P-Q representation of a two-body
quantum operator as

A',g(Q, Q, P,P) =(Nfi )

P, q, AA, ', 0O', u, V,

P )q, k) A, ) 0') CT ) Q ) V

21
A(z ](2-](p p, q, q)exp —(q+u —Q) u exp —(p —P) u

21 21
Xexp —(q+u —Q) u exp (p P—) u —Q

where [ka j stands for symbol strings )l,al, 'a', [A, a ] for )(. a X 'a ', and

0

A(z ](z-](pp, q, q)= +exp —p u exp —p u (q —u, A, ,a
~

(q —u, X,a
~
A,~ ~

q+u, X, ', o ')
~
q+u, )l,'o'),

V) V

Q(~ ](-„-]——g ~q", A, ,a) ~q",X, ,a)(q",k', a'~ (q",A. ', a'~ .
q",q"

(10)

Equivalent expressions corresponding to Eqs. (4) and (5) can be obtained by using the unitary lattice Fourier transforma-
tion connecting the Wannier functions to the Bloch functions.

The formalism of the second quantization operators in solid-state band theory via the first-stage Weyl correspondence
given above is discussed in Appendix A. From Eqs. (A23) and (A24), we can immediately write down the general expres-
sion for the effective Hamiltonian in q (lattice coordinate) space as

~.rr= g ~2.) ..(qi —q2, qi+q2)A. (qi W2..(q2)
(1)

q ] ) q p ) A, ) A. ) 0') 0'

+
q ] )q2) A, ) A, ') 0)Cr')

q],q2, X,,X ', cr, 0 '

~[2, ][2, ](ql 'q2 'ql q2 qi +'q2 ql +q2)A, ('ql Vg (ql )62, ' '(q2) 4' '('q2) (12)

where to begin with, 3,"~' is the sum of electron kinetic
energies, relativistic effects plus the periodic potential of
the crystal lattice. A,'„' represents all the electron-electron
interaction potential of the relevant electrons under con-
sideration.

It is important to emphasize here that although the c-
number quantities occurring in Eq. (12) are simply matrix
elements in the Wannier-function representation of one-
and two-body quantum operators, as expressed by Eqs.
(A25) and (A26), respectively, there are significant calcu-
lational advantages in obtaining these c-number quantities
via the first-stage Weyl correspondence, Eqs. (A21) and

(A22). The Weyl-Wigner formalism of the quantum
theory of solids has a built-in mechanism for the decou-
pling of interacting bands, for obtaining a physically
transparent Weyl transform as a power series in the elec-
trornagnetic field strength. Moreover, for very-high-field
(e.g., high uniform magnetic field) quantization rules may
further be applied, in the sense used by Roth and Buot
to effectively include all powers of the magnetic field
strength, to the obtained Weyl transform. Therefore, in
this manner physically meaningful calculational progress
can easily be made, the Wannier functions and/or Bloch
functions become a little more than a formalistic tool
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rather than a real calculational tool from the beginning,
i.e., one does not begin by actually calculating all matrix
elements between Wannier functions of the "bare" one-
and two-body operators to obtain Eq. (12) above.
Through the first-stage Weyl correspondence, Eqs. (A21)
and (A22), one is able to start the quantum-dynamical
problem from the already calculated zero-field self-
consistent energy band structure.

We mill restrict ourselves to normal systems, i.e., the
average of products of field operators is identically zero if
in the given product the number of creation operators is
not equal to the number of destruction operators (e.g. ,
ground-state Fermi-sea quantum averaging). Symmetry-

breaking terms in the Hamiltonian remove the degeneracy
of the statistical equilibrium state and for this case aver-
age values of field operators are no longer zero. In ob-
taining electron-electron correlations, attention must be
paid to the number of interchanges of the field operators
in Eq. (12) to form combinations of nonzero averages. ~9

The idea of obtaining an optimal one-body Hamiltoni-
an, i.e., of the form of the first term of Eq. (12), is to in-
clude all average effects of the electron-electron interac-
tion and hence to separate out the true electron-electron
correlation effects. This leads us to incorporate in the
first term of Eq. (12) the following:

A& A. '&o &a'& q l, q2

~[pz][i.p](91 92~91 'V2~'V1+'V2~ql+ 72)+ (Ap&y(71)&i, 'g'(92) ~ Acr(li) 4'e'( l2)

&cr, o' '&q)&q2 ~&~'&ty&0'&ql, q2

~[~][i. ](91 72 61 f2 ql +q2 ql +02)

&«ij'-;(f»A. (e2) & 0 .(ei)A; (f2)

to obtain the band-theoretic Hamiltonian. The same expression is subtracted from the second term of Eq. (12), the re-
sulting term will then describe the true correlation between electrons. For treating correlation effects, the field-
theoretical Green's function technique has proved to be a very useful tool.

We will make some simplifications. Following Mattis and denoting the optimal band-theoretical Hamiltonian as A o
and the two-body operator which describe the electron correlation by the sum of A, and 4,„, we have

eff =A O+4 g +A

where after a self-consistent procedure, discussed above for A o, we have

~0 g A, (gl iI2 91+92)4 ('Vl )6 ('V2)
A, , o,q&, q2

~II, i. (0 0 2p] 2/2)&ii, (y (qi )[&ii. ~ (g2) —&ni. ~, (q2) ) ]

rz~(2)cx
('ll 72 fI2 e» I i + Iz,ei + I2)6 ('914'i. (91)

x [1 Ap 2(92 )6icr&( 72 ) ( ~& 2@2(92 ) ) ] ' (17)

Equation (17) can be written in a more revealing form by summing over the spin indices. The result is '

where the quantities entering in Eq. (18) are defined as

J~,i.,(ei —e»e2 —qi'ei+e»ei+e2)

=2lI'P~'. 2"(ei —ez, e2 —ei;~i+a& ei+e2)

ni (q) = g n& (q),

S&.(q)+iS& (q) =Pj„(q)P&.,(V),

The basis states (Wannier function) used in Eqs.
(15)—(17) are assumed to be the self-consistent Wannier
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functions of the Hartree-Fock Hamiltonian. From Eqs.
(4) and (A21), it is clear that the general dependence on

crystal lattice coordinates of the matrix element in Eq.
(15) reduces to dependence on the difference of lattice
coordinates only. In the presence of uniform magnetic
field the appropriate basis states to use are the set of mag-
netic Wannier functions and its associated set of magnetic
Bloch functions. ' lt has been shown how one can
start from the self-consistent localized solution in the ab-

sence of magnetic field to the nonzero-Geld self-consistent
localized solution, with corresponding field-dependent re-
normalization of the bands expressed as a power series in

the magnetic field strength. Although the renormaliza-
tion of the bands can only be expected to be asymptotic, it
should be pointed out, however, that the existence of mag-
netic Wannier functions and magnetic Bloch functions
can be argued on the basis of the crystal symmetry (in the
presence of uniform magnetic Geld} alone. In general, the
renormalized bands can have very complicated depen-
dence in the magnetic field, incorporating the multiband
dynamics of Bloch eltx:trons which are very important,
for example, in the theory of diamagnetism of solids. ~'

The form of the effective Harniltonian in the presence
of a uniform external magnetic field is formally the same
as given by Eqs. (14)—(17), with additional dependence on
the magnetic field strength occurring in the matrix ele-

ments. However, for A o this form alone is not explicitly
gauge invariant. The explicit dependence of the matrix
element on the ve:tor potential or "gauge field" is re-

quired due to the nonlocality aspect of product of field
operator g (qi)f(q2}. This observation leads us to consid-
er the Peierls phase factor ' of the magnetic Wannier
functions.

An expression of the form

Pl

W(ri, r2)exp f A (r) dr p (ri)p(r2), (24)

where W(r i, r2) is a c-number, is a gauge-invariant quan-
tity. Now if the matter fields f are only defined on a lat-
tice, then Eq. (24} would read, using the mean-value
theorem for the integral, as

which can also be written as

W(q i q2 )exp ~ 2 (q2 ) '(q i q2 ) f (q 1 )$(q2 )
ie

where the last 1ine is obtained using Landau gauge
A (q) = —,

' 8Xq, 8 is the magnetic field strength.
We apply Eq. (26) to the expression for A 0 in Eq. (15),

at the same time incorporating the dependence on the
magnetic field strength 8 due to the field-dependent re-
norinalization of the bands. Using the Landau gauge for
the vector potential A(r) = —,8)& r, we obtain

ie 91+9'2
W(qi, q2)exp

i
Pic 2

(qi -q2} 4 (qi W(q2»

(25)

W P. '(q i
—q»~)exp

A, , cT,Q1, i/ 2

ie

X g&.(q, )g&.(q2) . (27)

The factor multiplying the field operators in Eqs. (25) and
(27) is indeed the correct form of the inatrix elements of a
one-body Hamiltonian, with symmetry of a crystal lattice
in a uniform magnetic field, between two magnetic Wan-
nier functions ' whose functional form is defined by

le
co&~(r —q;3)=exp — A(r) q to& (r —q;8), (28)

III. THE EVOLUTION OPERATOR AND SUM
OVER TRAJECTORIES IN BAND THEORY

This section gives the path-integral formulation of the
quantum dynamics of Bloch electrons in an external elec-
tromagnetic field, from a single-particle point of view.
One can define the evolution operator of the effective
Schrodinger equation as

l
U(t, t, ) =exp — (t t, )A,«——

where A e«has the form of Eq. (1). As is well known,

~
Iexp[ —(ue)(t —t, )~,«]I „~'

gives the probability of transition from state n at t =to to
state m at t=t and provides the accurate basis of the
"golden rule" for quantum transition rates.

%'e are interested here in expressing the transition am-
plitude as a "lattice path integral. " A well-known pro-
cedure to carry this out is to make use of the following
identity obeyed by the evolution operator:

n+1
U(t, t, )= g U(t, , t, , ),

j=1
where t„+1——t. Using the completeness of the %annier
functions which we will denote by the Dirac ket and bra
notation, we have

where explicit vector-potential (gauge-field) dependence is
given by the well-known Peierls phase factor. ' 4, and

A,„do not need a gauge-Geld term because they are
essentially "local" terms.

We may therefore write a universal effective Hamiltoni-
an for metals, semiconductors and insulators, and magnet-
ic and nonmagnetic crystalline solids in a uniform mag-
netic field as

~.«=~0"+~."+~. , (29)

where A 0
' is given by Eq. (27), and 4, ' and A,„' are of

the same form as Eqs. (16) and (17), respectively, but with
magnetic field strength dependence incorporated in the
matrix elements. Equation (29) is a generalization to
nonzero field of a universal A,tt given by Mattis ' in the
absence of magnetic field.
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where q' in general represents all the quantum labels of
the %annier function. By making the time intervals in-
finitely small or by letting n ~ ao, we can take advantage
of the linearity, in incremental time, of the small time
evolution operators to calculate the matrix elements, after
which it can be written again in exponential form but this
time as a c-number. In this manner, one can compose the
matrix elements of a large time evolution operator from
the matrix element of the small tiine evolution operators.
We have, from Eq. (30), for infinitesimal time intervals

&qj~&~jl~u. (pq)lqj )~, )~, i&

( '/A)p. (q —q
02q, q. +q

&&4,) 4i (34)

so that we can write, correct to first order in ( tj tj ) )—,

To calculate this matrix element of A,~~ between two
Wannier functions, we need the matrix element of the 5
operator, involved in Eq. (31), as given by Eq. (5),

&qj~jtrj I
U(tj tj-i) lqj-i j—l&j —I&

=(Ei)1 ) +exp p(qj —
qz i) e—xp (tj —

tz ))H(i ) (q ) (p, q) 52qq +z . (35)

The matrix element of a finite time evolution operator can therefore be written as

& q l
U(t, t()) l q() & = lim

5~ oo

q;

i "+' 9'j+9'j —]X exp g (tj tj —1) pj H(&(&7) (in) ) pj &

j5 J J tJ tJ, » — 2
(36)

p2
, + v(Q),

2P2l
(37)

which is a Hamiltonian, for example, of a shallow impuri-
ty in a semiconductor. Then the lattice Weyl transform
[Eqs. (2) or (4)] of Eq. (37) is clearly of the form

.+V(q)2' (38)

Substituting Eq. (38) in Eq. (36), and completing the
square in the exponent so as to make a Gaussian p sum-
mation, we are led to the well-known Feynman path in-
tegral. '

where (qz+qz i)/2 are restricted to lattice points only, as
a result of carrying out the summation over q in Eq. (35).
Note that in this paper the corresponding classical Hamil-
tonian function is rigorously obtained from the quantum
Hamiltonian operator by the use of the lattice Weyl
transform.

A more revealing form of Eq. (36) can be obtained if we
assume an effective Hamiltonian derived from Eqs.
(1)—(6) to be of the form

IV. THE SECOND-STAGE %'EYL
CORRESPONDENCE: PATH INTEGRAL

IN MANY-BODY PROBLEMS

"d&) lp&=pi(j(1) lp&, (40)

In order to extend the notion of sum over trajectories
for the finite time evolution operator to many-body prob-
lems, whose Hamiltonians are expressed in terms of field
operators as dynamical variables, we need to extend the
notion of eigenfunction and eigenvalues to field operators,
i.e., to canonical variables with large or infinite number of
components. For Bose field operators, that is, canonical
field operators which obey the usual commutation relation
as P and Q do, there is no difficulty in defining the eigen-
functions and eigenvalues and the path-integral formula-
tion is formally identical as for Hamiltonian systems ex-
pressed in terms of P and Q. For a Bose system let (t&(R)
be a field operator defined on a lattice and let &(R) de-
fined through the Lagrangian be a field operator which is
canonically conjugate to (t (R). Then we define eigenfunc-
tions and eigenvalues as

Pd~)
I q & =q~(~)

I q & (39)
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where the field configuration qi(R) is the eigenvalue of
the field operator pi(R) and pi (R) is the conjugate vari-
able to qi (R); A, and 8 label the components of P and &.
The vector dot product now reads

H(pq)= f d vexp —p U &q ——,'U lA lq+ —,'U&,

p q = +pi(~)qi. (~) . (41) 4(p, q) = f d "u exp —q.u
l p ——,

'
u & &p + —,

'
u l,

With this convention for the vector dot product we have
the same rules for the transformation function, complete-
ness and orthogonality of the basis states, as for the con-
tinuous momentum and coordinate dynamical variables of
M, components, where N is equal to the total number of
lattice points and A, is the total number of bands under
consideration. Therefore EA, is equal to the dimension of
p and q in Eq. (41). Corresponding to Eq. (1) we have

or by the equivalent expressions

(44)

(45)

H(pq)= f d~ u exp —
q u &p+ —,'u lA lp ——,'u&,

jeff NA. NASH pq gp 6(pq)= Jd" vsxp —p U ~q+ —,'v)iq ——,'U
~

.

where H(p, q) and b, (p, q) are given by
Corresponding to Eq. (36) we have for the Bose field sys-
tern

n n+1 p.NA.
l n

&ql «r ro) lqo&= »m f ''' f ffd"'q g exp' —g(r —ii —i) p" ' —H p
l =1 i=i j=1 . j j-1

Thus there is no difficulty in formulating the path
integral for many-boson problems. For a many-particle
Bose system &= ( fi/i)P ' whe—re P

' is the complex con-
jugate of p, and hence p = ( —R/i)q'.

In order to directly construct the path-integral formula-
tion of many-body fermion (Bloc» electron) problems, we
have to extend the concept of eigenvalues and eigenvectors
to canonical field variables that obey the anticommutation
relations. 's' Since the fermionic dynamical field opera-
tors anticommute, this means that we need a c-number
base field of eigenvalues which anticommute (eigenvalues
are elements of the Grassmann algebra) rather than the
field of ordinary complex numbers. In other words, we
will need a quantum representation in terms of external
algebra rather than in terms of physical algebra or observ-
ables. The elements of this external algebra commute
with the elements of the physical algebra or ordinary
complex numbers, but anticomrnute with the canonical
field operators. Let us denote the fermionic field opera-
tors as g and g, where m and r subsume all indices per-
taining to spin, band index, and lattice-point position
coordinates. We will assume in what follows that the di-
mension of f+ and 11 and their eigenvalues is even.
Indeed, for the many-body problems considered here, this
dimension is even and is equal to 2%A., where the factor 2
accounts for spin, X is the total number of lattice points,
and k denote the total number of energy bands under con-

sideration.
The canonical field operators satisfy the second quanti-

zation or canonical field equations:

t4 fp)=IN PpI=o (48)

t0 0pl=4p. (49)

i —'iiiv'q'
l

ol i —ia&i g

(5o)

(51)

For fermions, we substitute P =ilf . Thus for fermions,
we have

l
q'& =e~ ~'

l
q'=o&, 1(

l
q'=o& =o,

&
p'

l
= &p'=o

I
~' ' &p'=o

I
@'=o

(52)

and in addition we also have the following construction:

I
p'& =e '~

I

p'=o& 0"
I
p'=o& =o

(54)

where the "dot product" is defined by P q'= g
In Eqs. (52)—(55), we retained the symbol p and q for the
eigenvalues with the understanding that for fermions p

The following general eigenvector construction holds for
both boson and fermion dynamical operators:
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and q are elements of a Grassmann algebra, not ordinary
c-numbers. It is important to note that since f and g are
non-Hermitian, the operator group generating the eigen-
vectors is not unitary. Thus, in contrast with boson
canonical variables case, for fermions the eigenvector

I
0 &, with zero eigenvalue, will acquire a distinguished po-

sition in the external quantum-mechanical representation.
Using the identity e "Be "=B+[A,B], where the

commutator [A,B] is a c-number, one can easily verify
that indeed

& p'
I

p"
& =(p2NX p2Nk) (pl pl

= g'(p.' —s.")=&(p' —s"»

where the delta function symbol is retained to denote the
products of eigenvalue differences. The reason for this is
that according to the definition of Grassmann integrals

J d [q']6(q' q")—= g g (q„"—q„')=1, (68)
k ~qk k

&s'
I P.=&s '

I

p' =p.'&s '
I

(57)

(58)

pk —pk
k ~Pk k

(69)

Furthermore, we obviously have the following differential
operator realizations:

Furthermore, using the resolution of identity given in Ap-
pendix B, particular to the external representation, we can
derive the following:

&p'ls'"&=&(p' s")= f—d[q]eI'
&s'l 0=, &s'1=&p'I

dp ~p
(60)

& q'
I
q"

& =5(q' —q")= J d [p]e

Bq' Bq' ' (61)

0 ls '& = —
, Is '& = ls '&

Bp Bp
(62)

Bq Bq
(63)

where the arrows denote the left and right derivatives.
Using the identity e "e =e e "e("' 1 for the case where
the commutator [A,B] is a c-number, we have the follow-
ing expression for the transformation functions:

(64)

(65)

&
q'

I

q"
& =(ql qi)(q2 q2)

= P (q" —q' ) =5(q' —q"), (66)

Using the infinitesimal form of the operator group gen-
erating the eigenvectors, Eqs. (52)—(55), one can also
deduce the following relations:

where d [p]= g dp represents the volume element in a
multidimensional space. Perhaps the above relations are
enough to convince the reader that the properties of exter-
nal representation in terms of eigenvalues defined on a
Grassmann algebra are formally identical to that of a
quantum representation in terms of boson canonical vari-
ables. Other formally identical properties are derived in
Appendix B. However, one must bear in mind that in-
tegration over anticommuting variables has an entirely
different significance, it signifies differentiation with
respect to the integration variables. In all mathem. atical
operations, the anticommutation property must be taken
into account. The fact that we are dealing with even-
dimensional Grassmann variables p and q will greatly
simplify the task of taking anticommutation into account.

We have relegated to Appendix B the details of how to
directly construct the functional-integral representation of
the matrix element of the evolution operator from the
underlying external quantum-mechanical representation
(c-numbers are elements of the Grassmann algebra). We
have also derived the partition function and lattice tem-
perature Green's function as path integrals. The reader is
referred to the derivation in Appendix B for the following
results. The transition amplitude between a state %' speci-
fied at time to and a state 4 specified at time t is given by

n+1 n+1 n+1 q. q. q. +q.
&~'I P&= f gd[p]gd[ 8'( ~ p(qo),

where qo ——q at time to, q„+i ——q at time t=t„+i, and e=(t to)/(n+1)—. The wave functions are defined as
p(q„+i)= &4

I q„+i & and g(qo) = &qo I
4&. H(pq) is the Weyl transform of the many-body Hamiltonian 4 (1(,p) and

is obtained from A (ft,g) by simple replacement of Pt to p and P to q. The zero-temperature Green's function is ob-
( —i JA)P totained from Eq. (72) by substituting 4= & %0 I

e'~"' 'g„and 4= age '
I %0& and dividing the result by i & 4 I+00&,
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where
~
%0} is the ground state of the many-body system. A more useful result is obtained for the grand partition func-

tion

e ~=Trexp[ P—(A p—N)]—:Trexp( —PK) .

We have the expression for the grand partition function given by'

n+1 n+1 q. q.
e ~= f g d[pj]d[q, ]exp —e g p,"

j=l j=l
qj+qj —1+E Pj, (74)

where whenever qo appears in the action, we take qo ———q„+1. %'e also have the equivalent expression'

V

~= f H d[p ]d [q, ] p ~ g

where @=PI(n + 1},and whenever p„+i occurs in the action of Eq. (75}we take p„+i
———po.

Thus the partition function for finite P forces us to define the eigenvalues q and p to be antiperiodic with period P.
That the corresponding canonical field operator may also be considered as antiperiodic with period P can be seen from
the expression for the finite-temperature Green's function (~& ~'). This result can be extended to the "many-operator"
Green's function and the antiperiodicity of period P hold for each of the time variables.

The antiperiodic boundary condition on the eigenvalues p and q is precisely what is needed to preserve the antiperiodi-
city in each of the time variables of the Green's function in the path-integral formulation. '7 Indeed, the finite-
temperature Green's function can be written as a path integral:

y y(7-, T') = e~"—Tr[U(P, 7.)q U(r, ~')qi, U(~', 0)]

n+1 n+1 q. q.
11m q exp ' —6' p

(n+1)e=P

qj+qj —1+E pJ 'q crp y

(77)

where

n+1f dp f dq= lim f g [d "p(j)d q(j)],
n~co j

Z = —e, andpo

&(p,q)= f dt p(t). +K(p(t), q(t)) . . (78)
dq (t)

dt

If we denote the right-hand side of Eq. (76) by (q~~ },
then it is easy to show that (q~ ) = (pz ) =0. Physically
this is the consequence of the conservation of the number
of particles, as this result can also be interpreted as
(P(~) }=(g (r) }=0. The formal definition of the
Green's function has been rigorously given by Kato,
Kobayashi, and Namiki. The one-particle Green's func-
tion is defined as

(79)

where g„(w') (also elements of the Grassmann algebra) are

components of artificially introduced external sources in
the extra symmetry-breaking term added to the Lagrang-
ian of Eq. (78) to have a nonvanishing average value of
the field operators; the desired extra term to be added to
S(p,q) of Eq. (78) is

P P
p g t+ g qdt (80)

where q and q are additional anticommuting variables.
The right-hand side of Eq. (79) is a functional derivative,
but reduces to ordinary differentiation in the discrete-
time-step case defined by Eq. (76). Indeed Eq. (79) yields
the well-known general formula for the finite-temperature
Green's function

(81)

where T stands for the well-known time ordering symbol.
The two- and many-particle Green's functions are similar-
ly defined, e.g.,
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P~r sp(r) r2, r')rq) = lim
q-o 6rj„(r'))5gs(r2)

= (Tfst(r2)g„(r()g (r))Qr(rp)) . (82)

G (rt, rt, J)

=Z ' f dp f dq exp S—(p,q, g', P)

P
+ f (P I+p rI+rI q)dt

All of these Green's functions can be obtained by differen
tiating (functional derivative in the continuum time limit)
the generating functional G(rt, r) ),

G(ri, ri )=e~"f dpdqexp —S(p, q)
PQ

P
+ (p "r) + ri 'q)dt

(83)

S(p,q, g)= f dt p(t) +Q'(t)dq (t), dP(t)

—H(p(t), q(t), P (t),4(t))

Z '= f dp f dq f dP' f dPexp[ —S(p, qP', P)] .

(84)

(85)

with respect to the external sources g and g and taking
the limit where g and g go to zero. To complete the dis-
cussion on the path-integral formulation of the many-
body system, we note from the preceding sections that for
a system of fermions and bosons, requiring both commut-
ing and anticommuting dynamical variables for its
description, one can similarly construct the path integral
by considering product eigenvectors. The generating
functional will be of the form

H(p, q, g', P) is obtained from A (gt&P, P', P) by the re-
placement g ~p, P~q, P'~P', P~P, with periodic
boundary conditions for the boson variables, and an-
tiperiodic boundary conditions for the fermion variables
as before, over the length of t equal to P.

We close this section by applying the results obtained
here to the many-body Hamiltonian of Eq. (29). We write
explicitly the effective Hamiltonian of Eq. (29) (a' and 13'

do not include spin indices 0 ):

~.sc c)= Xc ~"&e&+ X(o & ~'&'v&c& cv.~'&'—(o&o»
a, P a, P

rxr(2)ex rr~(&)eX

a, P, ~,~,
(87)

~-t =exp
~

~(q» qi @'~"(qi —q;~)4.~.. .A'c

8'~p' ——WP~g~(0, 0;2qi, 2qz, 8) )

~ ~tr'", , = ~~",~,"(qi q2, q q&, q—)+qp, q—)+q~,B) .

(89)

where ( )HF may be approximated by the Hartree-
Fock ground-state average, and from Eqs. (27), (16), and
(17),

quoted therein for a start in this direction. For practical
evaluation of the functional integral using anticommuting
variables the reader is referred to some recent interesting
work by Samuel. The use of the Grassmann algebra in
lattice-gauge-theory calculations is discussed by Wilson'
and Kadanoff. The use of Monte Carlo methods for
evaluating fermionic and coupled boson-fermionic path
integrals using a computer has recently emerged as an ex-
citing research activity in the last four years. '

V. SUMMARY AND CONCLUDING REMARKS

The Weyl transform H(p, q) or Weyl symbol (correspond-
ing c-number function) of A, tt is then obtained by replac-
ing f by p wherever it occurs and similarly substituting q
for g. We then have K(p, q)=H(p, q) pp q which can-
be substituted in all path-integral formulas of this section.

We will not go into the explicit evaluation of the finite-
temperature Green's functions describing the dynamics of
Bloch electrons as this will lead us far afield. The reader
is referred to the work of Sherrington and the references

The concept of lattice-space dynamics of electrons in
solids may take significant meaning in ultrasubmicron de-
vices and microstructure research, which take advantage
of the ever increasing availability of high-speed large-scale
computing, as discreteness and/or atomicity in almost
all physical quantities of interest begins to dominate the
device behavior. In the process of exposing lattice-space
dynamics, we have unified various aspects of quantum
physics through the Weyl-%'igner formalism of the quan-
tum theory of solids.
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Notably, (a) we have generalized, and given a rigorous
definition to, the distribution-function operator technique
of Brittin and Chappel and that of Klimontovich to
particles possessing Iilllltlbaild dynamics (Appeildlx A);
(b) we have incorporated gauge invariance to a universal
effective Hamiltonian ' and indicate how one goes about
making a real calculation of deriving the effective Hamil-
tonian (first-stage Weyl transform in external elec-
tromagnetic field); (c) we have generalized the method of
Soper' and Berezin' for constructing path integrals and
unified their results for the functional-integral expression
of the partition function and corresponding finite-
temperature Green's function. In Appendix C, we present
a simple calculation to demonstrate an applicability of the
path-integral technique to the poorly understood very-
high-field regime of charge transport in a solid; the "hot-
electron Green's function" is analytically calculated for
the case where the continuum effective-mass theory is still
valid. The result can easily be extended to include scatter-
ing by a one-body potential, a problem of interest to
submicron device physics. The same application may now
further be generalized to the atomistic, or discrete, regime
of USER using the formalism developed in this paper.

The first-stage Weyl correspondence essentially enables
us to start the quantum-dynamical calculation for nonzero
external electromagnetic field from the known zero-field
energy band structure. Weyl-Wigner formalism (with
built-in mechanism s for decoupling the band of in-
terest, and yielding a better physical understanding) pro-
vides a straightforward approach to establishing isomor-
phism or %eyl correspondence between operators and c-
numbers of the base field, all of which lead to a natural
and direct construction of path integrals for single-
particle and many-body problems of the lattice-space
dynamics of electrons. It is hoped that implementation of
the key ideas presented in this paper to problems in
USER, ultralarge-scale integration (ULSI) and micro-
structure science as a whole will take its place with the
advent of the scientific-supercomputer age.

It is interesting to note that, already in the past, the in-
terdisciplinary nature of semiconductor solid-state physics
and elementary particle physics has appeared explicitly on
several occasions in the physics literature. Indeed for a
very highly nonparabolic two-band model of some solids
(e.g., Bi and Bi-Sb alloys), 2 the nonrelativistic quantum
dynamics of Bloch electrons, in an external electromag-
netic field, exactly maps onto the theory of fermions in
elementary particle physics. ' ' Clearly, path-integral
lattice-space dynamics of electrons in solids, as discussed
in this paper, bears a very close resemblance to and analo-

gy with lattice gauge theories of elementary particle phys-
ics. A further understanding and utilization of the exist-
ing analogy could therefore lead to the participation of
USER—microstructure-science dynamical problems in the

cross-fertilization of ideas between quantum-field theory
and statistical mechanics.

A final comment concerning dissipation is in order.
Most applications of path integrals are for nondissipative
systems. However, the operational nature of the path-
integral technique is clearly evident in the construction
process. On the other hand, the dissipative aspect of the
operational point of view is a property of the process or
operation and occurs when the process itself involves a
"heat bath" or "nonfunctional" system of a large number
of degrees of freedom. That path-integral techniques are
naturally capable of treating dissipative systems has
indeed been demonstrated by Feynman and Vernon
more than two decades ago.
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(Al)

A p= x x A()p x x x x . A2

We decompose the field operators in terms of the Wannier
functions:

q, i,, cr

0'(x)= g A.(e)&e~~l .
q, A, ,cr

(A3)

(A4)

P and P satisfy the following anticommutation relations:

t A.(e»A. (q') I+ =
I A.(e),A. (q') I =o, (A5)

(A6)

Substituting the expression for A,'z' and Ao'~' given by
Eqs. (1) and (9), respectively, we obtain the following:

APPENDIX A: SECOND QUANTIZATION
OPERATORS IN SOLID-STATE SAND THEORY

Let A,"p' and A,'~' denote one-body and two-body
quantum-mechanical operators, respectively. Following
the usual prescription of second quantization procedure
we write A,"~' and A ',~' in terms of field operator g and its
adjoint f as

OP

p~q~~~~ ~cTscF ~&

~~i.'..(J,V)e'"'"""A.(e+o)A. (e —U), (A7)
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We can make contact with the work of Brittin and Chap-
pel on the distribution-function operator techniques by
rewriting A', z' and A'z' as

right-hand side of Eq. (A15) is the lattice Weyl transform
of the two-particle density-matrix operator p

' ',

P, g, A, , A, , CT, CT

~ u ..(p q)f u.
(1) (1) (A9)

~t~ ]tx. -]T'&'&'q'q'

a'" =(xx')-'
OP X ~I~~«[xr«(p» q q)

Pa g, ~,~,CT, CT )

P, ig ) A, ,A, CT, CT

(2)~f [~~«[xr«(»»q q) (A10)
Xp "~q+u, X,o)

~
q+u, A, , cr) . (A16)

= +exp —(p u+p u) &q —u, A, ', cr'~ &q —u, g'cr'~
U, V

where

f ~~ (p q) = g e'"'"""A.(q+u)A. (q —u), (Al 1)
P, q, A. , A, ', CT, CT'

(1) (1)~~~..(p q)p~~. .(p q» (A17)

The expectation value of A,'„" and A,~', Eqs. (A9) and
(A10), respectively, is thus given by

(2)f [x~«[Xz«(»»q q)

= y exp (p'u+p'u) 0 (q+u)eg-(q+ )
2l

U, U

P) ig, k, ) A, , CT, CT,

P, g, A„A, , CT, CT

(2)~ [~~«[x e«(»»q q )

(~)
Xp~~ ~~~ ~~p,p, q, qi.

X+~ —(q —u)gq (q —u) . (A12)

&f8 (p q) ) =pI. ~..(p,q), (A13)

where the right-hand side of Eq. (A13) is the lattice Weyl
transfcrm [Eq. (2)] of the density-matrix operator p" ',

(1)
p~~..(p, q)

2L= +exp —p. u &q —u, g', o'
~

p'"
~
q+u, k, g)

V

and p'" is the one-particle density-matrix operator. Simi-
larly, we have

/ /(2) r — -~ g {2)
&& [~«[~ -«(»»q q') =p[~.«[x -« "p p q q'

where [A,cr][A. cr] stands for A, 'cr'A, o). 'cr 'Aoand the,

We can now see that the quantities f ~'~' (p, q) and

f I&' «[&-«(p,p, q, q) given above for solid-state band theory

correspond to the Klimontovich second quantization
operator for one- and two-particle [interacting free parti-
cles, not interacting Bloch particles to which Eqs. (All)
and (A12) generally apply] phase-space distribution func-
tions, respectively, which were also obtained by Brittin
and Chappell. Our band-theory result essentially differs
from that of Klimontovich and Brittin and Chappell"
by replacement of integration by summation and the ab-
sence of "half-displacements" of the field operators. Brit-
tin and Chappell have shown that the expectation value of

f '"(p,q) which we will denote by &f"'(p, q)) is equal to
the Wigner distribution function, which is shown here to
be the lattice Weyl transform, Eq. (2), of the density-
matrix operator. In the solid-state band-theory case, using
arguments analogous to those given by Brittin and Chap-
pell one can easily verify that indeed,

Equations (A17) and (A18) calculate quantum-mechanical
averages in exactly the same manner as calculating
classical-mechanical averages using the phase-space distri-
bution function. However, some differences in the quanti-
ties involved must be noted. For multiband particles
Aq'q (p, q) and AIz «[z-«(p, p, q, q) which are the lattice
Weyl transforms of A,"~' and A',~', respectively, do not in
general resemble any of the dynamical expressions in clas-
sical mechanics, since they are in general, functions of R,
Planck's constant divided by 2m. . Moreover, the method
employed here to derive Eqs. (A9) and (A10) is quite
rigorous as compared to the ansatz employed by Brittin
and Chappell to derive Eqs. (III.35) and (III.36) of their
paper. The classical functions contemplated in their equa-
tions are limiting cases of the general classical functions
(Weyl transforms) used in Eqs. (A9) and (A10) of this pa-
per, in the limit that the crystal lattice points form a con-
tinuum and there is only one band. For some interesting
applications of the distribution-function operator tech-
nique to equilibrium and nonequilibrium problems, the
readers are referred to Refs. 48, 50, and 51.

Solutions to problems in solid-state physics often start
by writing down the effective Hamiltonian. ' ' However,
the writing down of a correct (good approximation to the
problem at hand) effective Hamiltonian usually hinges on
one's intuition and experience. We will give a rigorous
derivation of a universal effective Hamiltonian for Bloch
particles through the first-stage %eyl correspondence dis-
cussed in Sec. II. We will cast the effective Hamiltonian
of a many-body problem which we assumed to be a sum
of one- and two-body operators, Eqs. (A9) and (A10),
respectively, in a form that is more familiar and most
amenable to field-theoretical perturbation techniques.
First we derive the effective second quantization one- and
two-body operators in lattice coordinate space. This is
immediately done by carrying out the summation over the
(momentum) variables in Eqs. (A7) and (A8). The result
1s
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ig)U)A, )A, )O', CT

W'u'..(» 2qWz..(q+UWz. .(q —U»

(A19)

W&& (2U, 2q)= ge' ' "'«'"Azz (p, q),
p

WIz ][z -](2U, 2U ~ 2q, 2q )

(A21)

g) 0)A, ) A, ) CT) CT )

Q)U)X) A, )CT)CT

WI~][z -]( 2U, 2U i2q, 2q)

X)th) (q+U)ggq+U)

2E (p)= +exp —(p.u+p U) A[& ][&-](pp,q, q) .
p)p

(A22)

X+;(q-U)1[i (q -U),
where we have defined

(A20) A more transparent form is obtained by transforming the
lattice coordinate variables involved in the summation and
wAtlng

8 &,R&, A, ) A, ') CT) CT'

R j )Rp)A)A, )CT) CT )

R ))Rp) A)i)I, )CT)CT

Wiz' (R, —Rz,'Ri+Rz)fz (Ri)g)„(Rz),

WIi~][zg] (R i Rz, R i
—Rz', R i

—+Rz, R i +Rz )pi~(R i )+g g(R i )](i, ,g, (R z )|['i.~ (R z) .

(A23)

It is easy to show by using Eqs. (2) and (A21), and Eqs.
(10) and (A22), that indeed

W'i'i'~~ (Ri Rz,'Ri+R—z)= (R],Ago'
~

ADp'
~

Rz/A, 'yo'),

(A25)

f [~)[gg](p~p~q~q )

= +exp —(q u+q u) ai (p —u)
2i -- t

Xaz (p u)aT-„(—p+u)a—), (p+u) . (A30)

Substituting the last two equations in Eqs. (A9) and
(A10), we obtain(A26)

W[~][i ~](Ri —Rz,R i Rz,'R i+R—z,R i +Rz)(2)

=(Rik,cr
~
(Rik, cr

~

A', p' ~RzA'cr') ~R,zA'o'), ,

as one would expect from the form of Eqs. (A23) and
(A24). Our result also shows that W'" and W' ' are
functions of the sum and difference of lattice-point coor-
dinates only.

To derive the effective one- and two-body operators in

p (momentum) space we lattice-Fourier-transform the
field operator in q (lattice coordinate) space to the p
(momentum) space:

P (q+v)=(NR )
'~

+exp —~ (q+U) a (p),

P, Q) k) A. ) CT, CT

P) Q, A, )k ) O', O' )

P, Q ) A, )X ) CT) CT

WI~][& -](2p, 2p, 2u, 2u )

Xaz (p —u)az (p —u)

Wi'z (2p, 2u )

Xaz (p —u)ag (p+u), (A31)

w~ere

Xai-(p+ u ,)a,i (p +u), (A32)

i(rp(q —v) =(Kiri )
' g exp .(q —U) ap(p) .

(A28)

Wzz «(2p, 2u) = g exp —u q A z), (p,q),(1) 2E

WI»' ]g ](2p, 2p;2u, 2u)

(A33)

The equivalent expression for the one- and two-partic]e
distribution-function operators f"' and f ' ' can thus be
written as

(&) 2Ef zion~(p q)= gexl) —u.q ai.(p —u)ai. ~(p+u),

(A29)

2E= +exp —(u q+u. q) A[& ][) ](p,p, q, q) . -

(A34)

A familiar second quantization form in p (momentum or
wave vector) space is again obtained by transforming the
momentum variables involved in the summation to yield
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k I,k2, A., A, ', 0,cr'

w&&'..(k, +k„.k2 —k&)

Xo~(k & )o&& (k2), (A35)

The proof can be shown by comparison with'

1= lp'=»&q'=01+0,
I
p'=»&q'=010'+. . . (82)

(2)
Aop ——

ki, k2, A, , A, ', cr, e',

k l, k&,X,X ', 0',o'

~{2)
[Acr][X0]

x(k)+k2, k(+k2, k2 —k&, k& —k( )

= ]q'=0)&p'=0~ +/, ~q'=0)&p'=0~ tP, + . (83)

Corollary 1.1. In terms of the q eigenvectors only or in

terms of p eigenvectors only, we have the following ex-

pression for completeness:

)&a~ (k~ )ax -(k~)a&, —,(k2)o~ ~ (k2),

(A36)

&= ls'&(, „)&s"I
(84)

where again one can easily show that

W~~~ (k)+k2, k2 —k))=&k, 1&a
~

Hop&
~

kp1&,'o'), (A37}

~(g )g-)(k]+kg k)+k2ikp —k), k2 —k) )

=&kiA, o
i

&k&Xo
i 2,'p' ikpX'o') ik2A, 'o'),

(A38)

as expected. The virtue of the calculation presented here
is that it explicitly shows the functional dependence of the
matrix elements, entirely quantum-mechanical quantities,
and their exact relation to the lattice Weyl transform of
the corresponding operators through the defining rela-
tions, Eqs. (2), (4), and (10), and its equivalent expression
(A21), (A22), (A33), and (A34).

(85)

Corollary 1.2, The scalar product in the q representa-
tion is given by

+

«&I k & =4&q'&(

=&)I&(q')ll, — „f(q")
&)q' &)q"

, + „P(q')g(q")
Bq

APPENDIX 8: DIRECT CONSTRUCTION
OF FERMIONIC PATH INTEGRAL ((&(q)f(q) = 11 P(q)f(q)

Bq

We will generalize the method and unify the results of
Soper' and Berezin' to construct the path-integral forms
given in the text. We make use of the eigenvectors con-
struction given by Eqs. (52}—(55). The reader is referred
to Ref. 34 for the notations used here. The basic idea is to
formulate the Weyl correspondence in the external rep-
resentation of fermions. We will need the following
theorem s.

Theorem 1. Resolution of identity in the external repre-
sentation is given by

= f dlq)(()(qW (q),

and similarly in the p representation.
Theorem 2. For any operator A, we have

&»'I ~., Ie'&(, ~, )

(86)

1 =exp f ~

~

q'=0) &p'=0
~

e& '&

Bp

t +-

=e~ '~
~

q'=0) &p'=0
~
exp

Bq

Proof:

=e '~
l

p'=»&q'=01 exp —0'
Bp

(81)

=(z, z, ) &s"
I ~; I

v'&

But TrA, P is also given by

(88)
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Trc40p = q d 8 p Hop q

= f d[q ]d[p ].& ''&'p'=0I [1+(p y)+ - - ]~.,[1+(q.q)+ ] I

q'=0&

=(p'=0
I A, I

q'=0)+ (p'=0
I
1(&A, g, I

q'=0)+ . (89)

, )&u'I =(- , '~ , )Iq'&&a'I

= f d[q']d[p']e "Iq'&&p'I (811)

The last result is the completeness relation used by Hal-
pern, Jevicki, and Senjanovic' for constructing fermionic
path integrals, which was later generalized by Soper. '

We will now establish the Acyl correspondence. We
make use of the following identity for an arbitrary opera-
tor A:

&= le"&( „~ „)&»"I& I»'&(, , )&q'I

(812)

and therefore the theorem is proved.
Corollary 2.1. The expression for completeness in the

p-q mixed representation is given symbolically by

1= f d[q']d[p']e '' Iq'&(p'I . (810)

Proof:

b(p, q)= f d[u]e zl'"Iq+u)(q —u
I

. (817)

A(p, q), which is a c-number quantity, represents the
Weyl transform of an arbitrary operator A and (816) is
the realization of Weyl correspondence in the external
algebra representation. One can show using the differen-
tial operator realization of Eqs. (60)—(63) and the proper-
ties of the delta function in the external representation
that indeed A(p, q) can be obtained from the operator
A(gt, f) by replacement as gt~p and g—+q. One can
easily check the consistency of the expression (815) by
calculating the trace of A. From (89) we have

TrA= q' ' eJ''~ p' A q'

q A p, q p q e

u u A —u (818)

The last line of Eq. (818) can indeed be shown to be the
variant expression for the trace of an arbitrary operator
specific to the external algebra representation. To show
this one makes use of the form of Eq. (87) using only q
variables.

We note that an arbitrary operator A can also be ex-
pressed in the form which is a variant of Eq. (812),

' —S''e+u e

(813)
„)&e"

I

~
I e'&(, . )

&~'
I

where the last line is obtained using corollary 2.1. Intro-
ducing the change of variables

where

= f d [q] f d [p] A (p, q)b, (p,q), (819)

p =p —u»

p =++u» q =q+v,
(814)

&(p,q)= f d[u]ez~ "(q+u
I
3 Iq —u),

Z(p, q)= f d[u]e'" Ip+u &&p —u
I

.

(820)

(821)

we obtain

~ = f d[q]d[p]A(p, q)h(p, q),
where

(815)
U(r ro)=e

—(i/A)(t —to)m "+

j=]
(822)

We are now in the position to calculate the path-
integral expression of the evolution operator

~(p,q)= f d[.]. '"'&p+-. Ig Ip (816) Using the resolution of identity (theorem 1) we have

T
U(r, r, )=

I q„+,)
dqn+ l

or the equivalent expression

n+]
II ~qj, )&vol, (823)

T
U&o, oo&= lz. +i&(

8
&3pn+ l

)&no I
.

+1 n$ g t
II ~

&pjlU(r, , r; )Ip,
&)Pj dPj' l— (824)
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It will be convenient to use the representation of an arbitrary operator given by Eqs. (815)—(817) in evaluating the
products in Eq. (823) and similarly the representation of Eqs. (819)—(821) in evaluating the products of Eq. (824). We
have from (817) and (823), making use of Eq. (66), the following:

(q, lb(pq) lqt i)= f d[u]e 't'"(q, lq+u)(q —u lqj i)
= f d[u]e t' "P(q +u —qj ) g(q". , q"—+u")

A y

= f d[ ] '"+[2 —(q —q )]g[q" (q —
, +q )/2].

a y

-p (q -q, ) Qj-1+6'g=e ' ' 5 —q
2

(825}

By virtue of Eqs. (815) and (822) we may then write, correct to order ( tj —tj, ),

(qq l
U(tj. , tj i) lqj i)= f d[p]e

' ' t 'exp ——'(
J tj i)—H p, (826)

With the aid of corollaries 1.1 and 1.2, we can symbolically write

n+' n+' n+' 9 —9 —1 1 q +0 —1U(tt)=f gd[p]f pd[qllq. & p — & p," ' ' +&H p, ,
' 2'

j=1 j=O j=1

Similarly the use of Eq. (824} together with Eqs. (819)—(821) yield the equivalent expression

n+1 n "+' P' —P' —1 r' P'+P' —1U(t to}=f Pd[pt] f Qd[qj]lp. +i&exp'& g ' '
q ———H ' ' qj-

j=0 j=0 j=l
(828)

Using the expression for the trace given by Eq. (818},we have fram Eq. (827)
r

n+1 n+1 n+' q —0 1 i V. —9' —1TrU(t, to)= f gd[p, ] f gd[q, ]&(qo+q. )exp —e g p," ' ' +—H p,
j=1 j=l

(829)

which upon integrating over d [qo] leads to Eq. (74) for the grand partition function, with antiperiodic boundary condi-
tions on q resulting fram the Kronecker delta function in Eq. (829). Equation (74) corresponds to the result given by
Soper. ' Similarly taking the trace of the expression in Eq. (828) yields the equivalent expression for the trace of
U(t, t, ),

n+1 n n+' P —P —1 i g +P —1TrU(t, t )= f g d[pt] f pd[q ]5(po+p„+i}'exp e g 'q i — H—
j=O j=O j=l

(830)

which upon integrating over d [p„+,] leads to Eq. (75) for
the grand partition function, with antiperiodic boundary
conditions on p resulting from the Kronecker delta func-
tion in Eq. (830). Equation (75) corresponds to the result
given by Berezin. ' In closing, we note that one can com-
bine Eqs. (74) and (75) to obtain a properly symmetrized
form of the "Lagrangian. "

APPENDIX C: HOT-ELECTRON
GREEN'S FUNCTION

We take a simple Hamiltonian of free electrons subject-
ed ta a very intense electric field. This model is of some

x V —xF xdx
2&l

(Cl)

where E is the electric field. The one-particle Green's
function is defined by

G(x, t,x', t')= (Tg(x, t)g (x', t')) . (C2)

For hot-electron physics, me may take our ground state to

relevance to the formulation of high-field carrier trans-
port in submicron devices;
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be the vacuum or empty band. The Heisenberg equation
of motion is

we can also write the field dependence of f(x, t) as

y(x t) e (i—/s)arty(x ()) (C6)
(l/tt)A t ( ) ~ —(i/ A)p t'

Bt

=[/(x, t},A ], (C3)

Equation (C2) for the Green's function can therefore be
written as

G (x,t;x't')

.„a1b(x,t)
tjt

V~ —x.F P(x, t)=A P(x, t),
2m

where P is independent of the field operators. Therefore,

so that the time dependence of the field operation is in
general given by

y(x t) eti/tile ty(x ())e (i/—a)ski

However, for the Hamiltonian of Eq. (Cl), the right-hand
side of Eq. (C3) is linear in the field operator and becomes

j. e(t t )(0
~
g( 0) — ti JPlt t q—t( 0)

I
0)

1 ti)(x
~

e (i/—ti)srtt t')
~

—i)i' (C7)

where ket and bra denotes the eigenvectors of position
operator. Therefore, we have reduced the problem to
finding the kernel or propagator of a Schrodinger equa-
tion to a Feynman path integral with Hamiltonian A .
%'e can immediately ~rite'

(x
~

e " "' " ''~x'}=(x
~
U(t, t') ~x')

n 8+1 2

m q; m 2@i e '"+" exp q; —q; r +—F q +q; &, C8
j=1 2RE'; i rti

where q„+&——x and tIo
——x . Equation (C8) represents a set of Gaussian integrals. The integration may be carried out on

one variable after the other. In this manner, a recursion process'3 can be established, and after 3n integration we have in
the limit n~oo

(x
i
U(t, t') ix') = 2n.i fi(t t')—' —3/2exp,

~

x—x'
~

+(t —t')im, , F (x+x')
2trt(t t')— m

exp
im (t—t') F-~ 3

24% m

where t —t'=(n + 1)e, n ~ ao, e~0. We now take the Fourier transform of Eq. (C7), using Eq. (C9),

6 (k, k', t, t') = G (x, t;x't')e ' 'e' ' dx dx' .
1

(2tr)

By making a change of variables, (x —x') =to, and integrating over to and x' variables, where the integrals are all Gauss-
ian, we obtain

r

t

G(k, k', t, t')= ——e(t —t'}5(k—[k'+(F/trt}(t —t')])exp ——f dt'
2m

(C10)

Equation (C10) was also obtained by Jauho and Wilkins, in their discussion of nonlinear transport properties, by solv-
ing the equation for the Green s function. The virtue of the calculation presented here is that path-integral formulation
allows for a generalization to a wider class of problems.
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