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%'e consider the effect on a generic period-doubling bifurcation of a periodic perturbation, whose

frequency co& is near the period-doubled frequency coo/2. The perturbation is shown to always

suppress the bifurcation, shifting the bifurcation point and stabilizing the behavior at the original bi-

furcation point. %e derive an equation characterizing the response of the system to the perturba-
tion, analysis of which reveals many interesting features of the perturbed bifurcation, including (1)
the scaling law relating the shift of the bifurcation point and the amplitude of the perturbation, (2)
the characteristics of the system's response as a function of bifurcation parameter, (3) parametric
amplification of the perturbation signal including nonlinear effects such as gain saturation and a
discontinuity in the response at a critical perturbation amplitude, (4) the effect of the detuning

(~& —coo/2) on the bifurcation, and (5) the emergence of a closely spaced set of peaks in the response
spectrum. An important application is the use of period-doubling systems as small-signal amplifi-
ers, e.g., the superconducting Iosephson parametric amplifier.

I. INTRODUCTION

This paper concerns the effect of periodic perturbations
on dynamical systems near the onset of a period-doubling
bifurcation. We consider perturbations of a particular
sort, which we call "near-resonant:" if the unperturbed
system oscillates with fundamental frequency too and is
close to the onset of oscillations at to+2, then a periodic
perturbation will be near-resonant if it has frequency to&

nearly equal to co+2. Quite generally, near a bifurcation
point, one expects a system to be sensitive to even small
perturbations. Recently it was shown that systems are ex-
tremely sensitive to near-resonant perturbations. The first
detailed analysis of this sensitivity for period-doubling
systems was carried out by Heldstab et al. in their work
on one-dimensional iterative maps. ' Later, an analogous
theory for systems of differential equations was
developed. The theoretical expectations have been exper-
imentally demonstrated using an NMR laser. In the
present paper, we examine this sensitivity in great detail,
finding a number of interesting phenomena. Our major
result is that near-resonant perturbations suppress the on-
set ofsubharrnonic oscillations Stated differe. ntly, we find
that the bifurcation point of an unperturbed system is
shifted due to the presence of the (small) near-resonant
perturbation in a way that stabilizes the system. The mag-
nitude of the shift depends, of course, on both the ampli-
tude and detuning frequency of the perturbation, where
the detuning 5 is defined to be to, —to+2. The primary
purpose of this paper is to understand theoretically the

shift, and to test our theoretical understanding in a quan-
titative way against measurements made on a nonlinear
electrical circuit.

In addition to the shifted bifurcation point, the presence
of a near-resonant perturbation induces a number of other
interesting effects: for example, the rapid growth of a
large number of closely packed lines in the power spec-
trum near the frequency to+2. A se:ond purpose of this
paper is to describe this and other observed features, and
to understand them within the framework of a relatively
simple theory. This theory is compared with analog
simulations in Sec. VI.

The general topic of the effect of small perturbations on
systems near the onset of dynamical instabilities —not
necessarily period doublings —has a sizable literature de-
voted to it. Much of the previous work concerned ran-
dom perturbations. One interesting result is that the bi-
furcation point, in certain cases, may be a function of the
external noise strength. (In these studies a bifurcation of
the stochastic system is defined in terms of qualitative
changes in the stationary probability density, whose evolu-
tion is governed by a Fokker-Planck equation. ) The pre-
diction that external noise can shift the bifurcation point
away from the value for the corresponding deterministic
system has been verified experimentally.

In the case of these so-called noise-induced transitions,
instances are known in which noise can either stabilize or
destabilize the dynamics. In one example, where a stable
fixed point of the noise-free system undergoes a Hopf bi-
furcation, Hoffmann showed that noisy perturbations can
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shift the bifurcation point in either direction, depending
on the values of the other parameters in the problem.

Working in a inore general framework, Arnold has
shown, for linear systems of the form

x=3(t)x

possessing a fixed point xo, where A(t) is a deterministic
matrix, that the addition of a parametric noise term
8(t)x, with 8 a stochastic matrix, may serve to stabilize
an unstable fixed point or destabilize a stable fixed point.
Interestingly enough, it has been proven that the proper
choice for B can always serve to stabilize an unstable xo,
provided the trace of A is less than zero.

The effect of coherent (i.e., nonrandom) perturbations
has also been studied in this vein. For example, it is well-
known that the unstable equilibrium point of an inverted
pendulum can be stabilized by parametric oscillations. In
some recent work, Meerkov has investigated in a more
general way the issue of stabilizing systems —linear and
nonlinear —by introducing fast parainetric oscillations.
The goal of that work was to determine the conditions
under which "vibrational stabilization" is possible. Other
papers on this topic, but with a more specific focus, have
also appeared in recent years. Rosenblat et al. ' have
analyzed the problem of Benard convection, when the
fluid layer is heated from below in a time-periodic way.
They conclude that the periodic component of the heating
suppresses the onset of steady convection. That is, if the
fluid is heated at the (constant) critical temperature for
the onset of convection, the addition of a small, high-
frequency temperature oscillation applied at the bottom of
the layer stabilizes the subcritical (purely conducting)
behavior. More recently, a calculation was made of the
response of a one-dimensional nonlinear oscillator subject
to a small, parametric (not necessarily periodic) forcing,
when the unforced system is near the critical point for a
pitchfork bifurcation. " Again, the authors conclude that
the perturbations tend to stabilize the subcritical behavior.

All of the studies cited above address the general issue
of the effect of perturbations on systems that can undergo
dynamical instabilities. This is also a major theme of this
paper. By way of orienting the reader, we mention that
these other works all dealt with bifurcations of time-
independent states (i.e., fixed points of the governing dif-
ferential equations}, while this paper focuses on the
period-doubling instability, which is a bifurcation from
one time-periodic stable state to another. In this regard,
work concerning the effect of perturbations on discrete
mappings deserves mention, ' as does previous work on
noisy perturbations of continuous periodic systems near
the onset of various codimension-one bifurcations. ' '

Aside from this general question of how perturbations
can affect the stability properties of dynamical systems,
we have an additional motivation of a more specific na-
ture. We first came across the phenomena discussed in
this paper during an investigation of how period-doubling
systems can aet as small-signal amplifiers. It was found
that a dynamical system poised near the bifurcation point
between stable oscillations of fundamental frequency f
and fl2 will amplify periodic perturbations near frequen-
cies fl2, 3fl2, 5fl2, etc. (these are perturbations we

named "near-resonant" at the beginning of this Introduc-
tion). The theory developed in Refs. 1 and 2—which also
predicts that a siinilar phenomenon exists for other types
of bifurcations of periodic orbits —is based on a linearized
perturbation theory which assumes that the bifurcation
point for the onset of oscillations at f/2 is unshifted in the
presence of the small-signal perturbation. (Nonlinear ef-
fects were also considered in Ref. 1, for the specific ease
where the linear response vanishe=i. e., precisely at the
bifurcation point —and the detuning is zero. The issue of
a shifted bifurcation point is not addressed in that work. }
While analog simulations agree well with the theory for
small enough signals, for larger perturbations the shift of
the bifurcation point cannot be ignored. One of the pur-
poses of this paper, then, is to understand the amplifica-
tion mechanism of Refs. 1 and 2 more fully. An impor-
tant application of these ideas concerns the operation of
superconducting Josephson-junction parametric amplifi-
ers, as will be discussed in Sec. VII. The understanding
gained in this paper may provide an important clue to the
long-standing problem of the anomalous noise rise ob-
served in those devices.

II. OVERVIEW OF RESULTS

In this section we give an overview of our results, em-
phasizing their consequences, and providing some motiva-
tion for the approach taken in this work.

A. Theoretical results

We are interested in obtaining a general equation that
describes the dynamics of a system which is near the onset
of a period-doubling bifurcation and is subject to a near-
resonant perturbation. The general equation we derive is
a normal form, ' i.e., it applies to a broad class of sys-
tems. This class includes all generic (or nondegenerate)
systems which exhibit a period-doubling bifurcation of the
supercritical type, i.e., those in which a stable period-
doubled orbit emerges from the original orbit beyond the
bifurcation point, and which are subjected to a sinusoidal
perturbation. The general system of this type will follow
the normal form exactly only in the limit of small pertur-
bation amplitude and detuning, where higher-order terms
can be neglected. We assume coo (the fundamental fre-
quency) and cubi (the perturbation frequency) are both fixed
and not subject to any phase-locking phenomena; in other
words, the unperturbed system is considered to be nonau-
tonomous, presumably as a result of a periodic forcing at
frequency coo.

For a system near the onset of a period-doubling insta-
bility, the dynamics can be broken down into several com-
ponents, which have different time scales during which
they are of importance. First there is the periodic orbit
which is going unstable. We represent this by Xo(8)
where 8=coot, so Xo(8) is a periodic function of 8 with
period 2n.. The system is soft in one direction in phase
space due to the period-doubling instability but presumed
strongly stable (by comparison) in all other directions.
These stable directions have a very short time scale associ-
ated with them (for transient decay) and will be complete-
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ly ignored. Conversely, transients associated with the
period doubling have a very long decay time (many cycles
of cop). These are represented by a period-doubled oscilla-
tion Xi(8/2) with a period of 4m in 8, whose amplitude
may be slowly varying in time. How the amplitude varies
will depend on the bifurcation parameter and on the per-
turbation term. We call the amplitude of this period-
doubled term the reduced scalar variable x. Thus the
dynamical variable X can be expressed in terms of x as

X=Xp(8)+xX i(8/2),

where 8=rapt, Xp(8) =Xp(8+2ir), and Xi(8/2)
=—Xi((8+2m )/2).

In Sec. III A we will derive the "reduced equation" for
x, which is

l.4

x =lynx x+—e cos(5t), (2)

where p, is a bifurcation parameter (defined so that p, =O
is the unperturbed bifurcation point), e is the perturbation
amplitude (assumed positive), and 5—= cubi

—cop/2 is the
"detuning" of the perturbation frequency. This equation
is the normal form which governs the dynamics of the
perturbed bifurcation in nondegenerate cases.

Consider the case e=O (no perturbation). Then Eq. (2)
is the normal form for a symmetry-breaking bifurcation;
x =0 is the stable fixed point for p ~0, while x =+@p
are stable fixed points for p & 0. This bifurcation in x re-
sults in the period doubling of X for p & 0. Now consider
the case e&0 (perturbation present). Since the term
ecos(5t) appears in Eq. (2), there can be no fixed points
for x and the attracting solution must be a limit cycle. In
Sec. IIID we show that x(t) is a symmetric oscillation
[i.e., x(t}=—x(t+m/5)] below the shifted bifurcation
point ps, after which it undergoes a symmetry-breaking
bifurcation. The presence of a constant component to
x(t) for p &ps results in the appearance of cop/2 in the
frequency spectrum of X, heralding the onset of period
doubling, as is discussed in Sec. III E.

By studying Eq. (2) a number of important results are
obtained. A change of variables can eliminate one of the
parameters (either e, 5, or p). From this we obtain scaling
relations, the most important of which is the shift power
law: ps cc e r in the limit of small 5 as discussed in Sec.
III C. This relation remains true for nonsinusoidal pertur-
bations as well. The bifurcation shift ps is in general a
function of 5 and e, and in Fig. 1 we show a projected
view of this function, which was determined numerically.
Note that ps increases with e and decreases with 5 (but is
always &0}. Rescaling the equation allows one to study
the behavior in a two- (rather than three-) dimensional pa-
rameter space as we do for all other figures in this paper.

In order to better understand the dynamics of the non-
linear reduce equation [Eq. (2)], we use a combination of
two approaches: (1) the generation of analytic solutions
for a variety of limiting cases, such as large p or large 5
(see Sec. IIIF); and (2) the numerical determination of
certain features, such as the bifurcation shift, in the pa-
rameter regions ~here the nonlinearities are not small.

In Sec. IV we explore in detail the behavior in the limit
of small detuning. We call this the "quasistatic regime"

FIG. j.. Bifurcation shift p~ as a function of detuning 5 and
perturbation amplitude e. Determined numerically from Eq. (2).

because the reduced variable x(t) has a nearly zero time
derivative. When the operating point is between the origi-
nal and shifted bifurcation points, the quasistatic descrip-
tion breaks down for brief intervals during which there is
a rapid transition in x (t) followed by another long period
of slow quasistatic change. The result is a symmetrical
square-wave-like oscillation for x(t). This behavior is
easily observed experimentally, especially in a Poincare
section, i.e., a periodically strobed phase portrait. The
squareness of x(t) has important consequences for the
frequency spectrum, generating an euenly spaced set of
peaks which is centered on cop/2 (or an odd harmonic of
cdp/2} and which falls off syrnrnetrically on either side.
(We would like to suggest the name "menorah" for this
type of spectrum, due to its resembling a menorah or can-
delabrum. ) Another important feature of the quasistatic
regime is that there is a discontinuous change in the at-
tracting solution for x(t) at the bifurcation point. This
discontinuity is seen in the amplitudes of all the spectral
components. The pip/2 component jumps from zero to a
finite value, while the coi component drops by a factor of
2V 7. We plot the behavior of these two components over
a range of parameter values in Sec. IV B. This plot shows
that the coi response reaches a maximum slightly before
the shifted bifurcation point, and that the cop/2 response
continues to increase beyond its initial jump at the bifur-
cation point. The discontinuity is also observed when
varying the perturbation amplitude e. This is because the
bifurcation shift varies with e, and for any p & 0 there is a
critical e above which the bifurcation is suppressed. Thus
the parametric gain of the perturbation signal can (under
certain conditions) be highly nonlinear, containing a
smitchlike discontinuity Further di.scussion of this effect
can be found in Secs. IV B and VII.

When the detuning is large enough to be significant, we
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enter the "dynamic regime" which is the subject of Sec. V.
The bifurcation that occurs in the quasistatic limit is of a
very degenerate nature —x(t) undergoes a discontinuous
change at the bifurcation point. For nonzero detuning,
however, this degeneracy is eliminated and we expect a
generic (or typical) symmetry-breaking bifurcation of the
reduced variable x(t), resulting in a period doubling of
the dynamical variable X(t). As the detuning is de-

creased, we find that the behavior rapidly approaches the
discontinuous behavior of the quasistatic approximation;
i.e., near the bifurcation point one finds that x (t} changes
in a very rapid and nearly discontinuous way with bifur-
cation parameter. In fact this change can be so rapid and
occur over so small a parameter interval as to be indistin-
guishable for all practical purposes from a true discon-
tinuity in an experimental system.

In the dynamic regime there are several important func-
tions of the detuning which can be determined from the
reduced equation. We study three such functions. (1) The
shifted bifurcation point —this is perhaps the most impor-
tant feature in the parameter space, especially for small
detuning where x(t) undergoes a nearly discontinuous
change. (2) The bifurcation "width" —defined in Sec. V B,
this is inversely related to the rapidity with which x(t)
changes near the bifurcation point, and serves as a guide
to which levels of detuning will lead to the quasistatic-
discontinuous type of behavior in an experimental system
of finite resolution and noise. (3) Maximum gain —this is
the point at which the response at the perturbation fre-
quency ~& is at a maximum. It is a very important
feature to know for a period-doubling system that is being
used as an amplifier. The maximum always occurs be-
tween the original and shifted bifurcation points.

For intermediate values of the detuning, these three
functions are studied numerically and plotted, while
asymptotic expressions are derived analytically for large
detunings. All three curves fall off like 5 2 in this
asymptotic region. One interesting feature of these curves
is their behavior near zero detuning: the bifurcation shift
curve has a pointed peak with a discontinuous derivative;
the maximum gain curve has a cusp at 5=0; and the bi-
furcation width goes to zero extremely rapidly as 5 de-
creases, roughly like exp( —I /5).

B. Analog simulations

As a preliminary test of the theoretical results we made
measurements on a simple period-doubling system: the
forced Duffing's equation generated by an analog simula-
tor. We present the detailed results of this study in Sec.
VI.

The simulator is a precision electronic circuit from
which data was taken using standard electronic test equip-
ment including a spectrum analyzer. Some of our reasons
for choosing this system over a more complex experimen-
tal system are (1) very low stochastic noise level, (2) high
level of reproducibility, and (3) the possibility that some
results might be derived analytically for the Duffing equa-
tion (this has not yet been done except for the linearized
behavior' ).

The simulator was used to check several results of the

theory. (1) The shift power law was checked by plotting
measured values of the bifurcation point as a function of
the perturbation amplitude for very small detuning on a
log-log scale. The results show excellent agreement with
the predicted —, power law. (2) The system response at
the perturbation frequency was measured on a spectrum
analyzer for a sequence of bifurcation parameter settings.
This was done with very small detuning and constant per-
turbation amplitude. The results were rescaled for a best
fit with the theoretical curve for the quasistatic regime,
given in Sec. IV B. The agreement is excellent, particular-
ly below the shifted bifurcation point. (3) The bifurcation
shift was measured for a sequence of detuning values.
These values were rescaled and compared with the
theoretical plot given in Sec. VB. Again the agreement
was found to be excellent —particularly the matching of
the pointed peak feature. (4) Spectra were generated cor-
responding to the three special cases (all in the quasistatic
regime) which are calculated analytically in the Appendix.
These all show the symmetrical set of evenly spaced peaks
mentioned previously. The agreement with theory in all
cases is quite good, although there is some deviation of
the higher-order peaks due to the nonzero detuning used.

In addition to these simulations, a few qualitative ob-

servations were made on a more complex system: a
forced magnetic oscillator, described in a previous work. '

The system had to be modified slightly by adding a con-
stant term to the forcing and changing from a negative to
a positive damping. This encouraged period doubling and
discouraged the Hopf bifurcation which was the main
focus of the previous study. We made only qualitative ob-
servations on this system. A shift was easily observed in
the bifurcation point which occurred in the predicted
direction, suppressing the bifurcation. We also observed
the square-wave behavior of x(t), which is predicted to
occur between the original and shifted bifurcation points
for small detuning (quasistatic regime). However, for
reasons discussed previously, we decided to take accurate
measurements using simulations rather than this more
complex system.

III. THE PERTURBED BIFURCATION

A. Derivstion of reduced flow (normal form)

X=F(X,8,p), (3)

where XER", 0=not, and p is a bifurcation parameter.
%e assume p=0 is the bifurcation point and that near
this point exists a periodic solution to Eq. (3):
X=XO(8,p), which satisfies Xo(8,p)=Xo(8+2ir, p) and
is asymptotically stable for p &0. At p=O we assume a
supercritical' period-doubling bifurcation of this orbit, so
that for p & 0, Xo is an unstable orbit and there is a coex-

In this section we give a detailed derivation of Eq. (2)
(the normal form}. First we will review a linearized Flo-
quet analysis' of the unperturbed system and then show
how this can be modified to include the influence of the
dominant nonlinear term and of the perturbation. For the
unperturbed system, we assume the dynamics are
governed by a differential equation of the form
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g—:X—Xo(8,p) . (4)

isting stable period-doubled orbit.
The behavior of transients near Xo can be studied by

Floquet analysis. Define

the transformation we made via Eq. (8) in order to obtain
all real quantities. Since X(8/2, x) and X((8+2m )/
2, —x ) are the same point in phase space [see Eqs. (9) and
(10)], the values offNL and g must have the syminetry

By linearizing Eq. (3), it follows that

g=DF(XO) g (5)

fNL(x, 8/2) = —fNi ( —x, (8/2)+a ),
g (x,8/2) = —g( —x, (8/2)+n ) .

(12)

(13)

where (DF);J =OF~/Bx~
~ x x . Note that (DF);~ is

periodic in 8.
Floquet theory shows that the solution to this equation

can be reduced to

We now average' the equation for x over two periods
of coo. Because of symmetry the quadratic (in x} com-
ponent of fNL is eliminated by this averaging process so
that the dominant nonlinearity is cubic:

g= QzkZk(8),
k

x =px x—+eg,„(x,5t),

where

(14)

where zk is a complex scalar satisfying

~k —Pk2k (7)

and Zk(8) is a periodic function of 8. The pk are called
the Floquet exponents. In general, pk, zk, and Zk may be
complex while rt must be real since X is real.

When near a period doubling, one of the exponents, say
pi, is of the form @+iso/2 where p is real and small. In
this case Zi must be of the form

Z (8)=e ' X (8/2)

where Xi(8/2) is a real function satisfying

Xi((8/2)+m) = —Xi(8/2) .

(8)

(9)

%e assume that the other Floquet exponents are strongly
stable compared to pt, having negative real parts. The
terms corresponding to these exponents in Eq. (7) will
therefore decay rapidly and can be ignored. Thus we find

X(8/2, x) =Xo(8)+xXi(8/2), (10)

x =px+fNL(x, 8/2)+ eg(x, 8/2)cos(co&t),

where fNL(x, 8/2) is the nonlinear dependence of x on x
and g(x, 8/2) gives a linear approximation of the infiu-
ence of the perturbation ecos(toit} on x. The functionsfNL and g depend on 8/2 rather than 8 only because of

where x is a real sca1ar satisfying x =px.
%e are now ready to extend this analysis to include

nonlinear effects and the infiuence of a near-resonant per-
turbation. Equation (10) is effectively a reduction of the
dynamics to the center manifold' for the period doubling.
For this case, the important dynamics occur on a two-
dimensional surface with a Mobius-strip-like character
(i.e., a band with a half-twist in it) which includes the cen-
tral orbit Xo(8). The scalar x may be thought of as a
transverse coordinate on the strip which is zero on the
central orbit. The dynamics of motion on this surface are
governed by the equation for x. Nonlinear and perturba-
tion terms in the full dynamical equation will introduce
similar terms into the equation for x. We are not interest-
ed in other effects of nonlinearities, such as curvature of
the center manifold, because these effects will be small as
long as xX& is small compared to X0. A general expres-
sion for x is thus

dX
~ 3 ]/3=@ix i

—x i +gq„(e x i,5iti ),
dti

(15)

where p, , =It, /e ~ and 5, =5/e ~ .
We now wish to consider the limit of small perturba-

tion e~0 with p i and 5i fixed. In this limit

g (e' xi, 5iti )~g (0, 5t, ). This is the case we will be dis-
cussing for the remainder of the paper, i.e., what are the
properties of this perturbed bifurcation in the limit of
small perturbations?

The expression for g,„(0,5t) can be simplified: Define
4m

g=—(1/4n) f g(0, 8'/2)e' ~ d8',

then

g,„(0,5t)=(e' 'g+e ' g')/2
=

~ g ~
cos(5t+50),

where 50 ——arg(g). The factor
~ g ~

can be set to unity by
appropriate definition of e, and 5O can be set to zero by
appropriate choice for t =0. Thus x satisfies x =px —xi
+ecos(5t), which is what we set out to prove in this sec-
tion, i.e., this is Eq. (2), the normal form. Note: for non-
sinusoidal perturbations odd harmonics of ecos(5t) may
appear in the normal form.

B. Dynamics in the Poincare section

The dynamics of the reduced variable x(t) is related to
the behavior of the Poincare map' for the system. Sup-

&+4 /
g,„(x,5t) = (coo/4m ) g (x,coot'/2)cos(cuit')dt'

r

= ( I /4n ) f g(x, 8'/2)cos( ,
' 8'+5—t)d8'

0

and 5=coi —c00/2 is the detuning of the perturbation fre-
quency. The coefficient of x can always be made equal
to —1 as in Eq. (14) by an appropriate choice of scale for
x. The scale factor is incorporated into the definition of
Xi(8/2). The sign of the x term must be negative for a
supercritical bifurcation.

Under conditions where x(t) is of sufficiently small
magnitude, it is a reasonable approximation to replace
g,„(x,5t) with g,„(0,5t). We can clarify this with a
change of variables. Let x~ x/e'~ ——and t, =e ~ t Sub-.
stituting these into Eq. (14) we obtain
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pose the initial intersection of the orbit with the Poincare
(surface of) section occurs at time to where X=X~0~.
Then from Eq. (1), the nth iterate of this point (i.e., the
point n cycles later) is given by

X,„,=X0(80)+(—1)"x(r,)Xi(8o/2)

where 8o re——ro and t„=ro+2rrn/coo Since the vectors
Xo(80) and Xi(80/2) do not depend on the iteration n, the
important dynamics in the Poincare section are one di-
mensiona/ A.s a result of this, the sequence of points in
the Poincare section all fall (approximately) on a straight
line in the Poincare section, and the motion on this line is
governed by the slowly varying x(t„). Below the bifurca-
tion point the attractor is a single line segment, while
above the bifurcation point, there is a back and forth
iteration between points on two line segments. In the
latter case, both segments are constrained to lie on the
same straight line mentioned previously. For some small
parameter interval past the bifurcation point, these seg-
ments will overlap, appearing as one segment. (They are
easily separated, however, by strobing every other cycle. )

The point beyond which these segments no longer overlap
is called the separation point and is discussed further in
Sec. V C. Note: the line segments are actually limiting
cases of highly eccentric elipses; the eccentricity results
from the close proximity of the period-doubling instabili-

C. Rescaling the equation —shift power law

In a previous subsection, we derived Eq. (2), the re-
duced equation governing the dynamics of the perturbed
bifurcation. This equation depends on the three parame-
ters in the problem: the bifurcation parameter p, the per-
turbation amplitude e, and the detuning 5. However, it is
possible to eliminate one parameter by rescaling the equa-
tion. This is particularly useful for doing numerical stud-
ies of the equation, since a reduction in the dimension of
the parameter space greatly reduces the number of data
points needed to survey the behavior of the equation, as
well as making it much easier to display the results.
There are several ways in which the rescaling may be ac-
complished; we consider two of these. In the first of these
forms, e is eliminated, while in the second p is eliminated.
Subscripts 1 and 2 denote the parameters and variables of
the first and second forms, respectively.

The first rescaling form is

parameters (e, p, and 5) which leaves the new parameters
pi and 5i unchanged and therefore results in similar
dynamics. The way to do this is to maintain p and 5 pro-
portional to e . From this fact one can obtain scaling
rules for specific features of interest. If ps is the location
of the shifted bifurcation point, then it obeys the shift
power law

2/3 (19)

under the condition that either 5 is insignificantly small
(this is the quasistatic cas~see Sec. IV) or that 5 is also
kept proportional to e . This effect is easy to observe in
experimental systems and was accurately verified by our
analog simulations of Duffing's equation (see Sec. VI).

The second form for rescaling the equation is

X2 3=sgil(p )x p
—x 2 +eicos(5ir 2 ),

dt2
(20)

where x2 x/I p I

'" ri=r
I p I

e2=«
I p I

'" 52=5/
I p I, and sgn(p) is the sign (or signum function) of p.

This form is particularly useful for cases where the bifur-
cation parameter p, is held fixed. The fact that the form
of the equation depends on the sign of p results from the
fact that the sign of r2 must be the same as t Thes. e two
cases show distinctly different behavior, but this should be
expected since p =0 is the unperturbed bifurcation point.

In this paper we emphasize the behavior of the first
form [Eq. (18)) over that of the second form [Eq. (20)],
since one of our main goals is to understand the nature of
the bifurcation shift. The second form is analyzed in de-
tail for the quasistatic case in Sec. IV, where we examine
nonlinearities of the response as a function of e. Howev-
er, the reader should be aware that in other sections of the
paper where the second form is not discussed, results
given for the first form in terms of p~ can be converted
to the corresponding results for the second form by

52 51/I pi I
an

X2 xi/I pi I

'"
D. Stabilizing effect of the perturbation

For one-dimensional forced systems of the form
x=f(x, t), the stability of a T-periodic orbit may be
found by computing I (Bx/c)x)dt along the orbit. If
this integral is positive, t5Iien deviations from the orbit will
grow, i.e., it is an unstable orbit, while a negative result
implies stability. From Eq. (2),

dx )

dt&
=pix i

—x i +cos(5iii ), =p —3x
x

(21)

where xi ——x/e', t, = re ', p, =p, /e, and 5, =5/e
This form is particularly useful when studying the situa-
tion where e is a fixed parameter because then p& and 5&

are linearly dependent on the parameters being varied, i.e.,
p) ~p and 5& ~5. Numerical studies of this equation are
to be found in both Secs. IV and V and are compared with
the results of analog simulations in Sec. VI.

From the rescaling that resulted in Eq. (18) we can im-
mediately determine some important scaling laws. This is
because it is possible to find ways to change the original

Even without having an explicit solution for the periodic
orbit x (r), a number of conclusions regarding its stability
can be drawn. Clearly, for p ~0 any orbit must be stable,
since p —3x & 0 for all x. Furthermore there can be only
one such periodic orbit and it must have the symmetry
x (t) = —x (t +n/5) This fo. llow. s from the inversion
symmetry of Eq. (2)—an asymmetrical orbit x+(r) always
has a complementary form x (t) such that x (t)
= —x+(r+rr/5), but two stable solutions cannot coexist
since they would have to be separated by an unstable or-
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bit, and these are not allowed for p & 0.
For p =0 the unperturbed solution x =0 is on the verge

of instability since p —3x =0. However, the perturbed
solution is an oscillatory function of x, and fB x/B xdt
will still be negative for @=0 since p —3x &0 for all x.
Thus the bifurcation point„where the symmetrical oscilla-
tion x, (t) becomes unstable, will be shifted to some new
bifurcation point pe which is greater than 0. Numerical
studies indicate that for p &pe the only solution is x, (t),
while for p y p,n there are three solutions: x, (t), which is
unstable, and a complementary pair of asymmetrical or-
bits x+(t) and x (t), which are stable and emerge from
x, at @=pe in a symmetry-breaking bifurcation. These
two solutions (x+ and x ) correspond to the two possible
phases of the actual period-doubled orbit X(t).

E. Frequency spectra

From Eq. (1), X=Xp(8) +xX i (8/2). We Fourier
decompose X0 and X~ as

Xp(8)= ga„e
2n'

where a„=(1/2m ) Xp(8)e '" d8, and
0

Xi(8/2)= g b„e (23)
n odd

4m

where b„=(1/ m4) f X&(8/2)e '" ~ d8.
For n even, b„=0 because of the symmetry

X~(8/2) = —X~((8/2)+n ). The attracting solution for
x(t) will always have period 2m/5 and so it can be ex-
pressed as

This type of spectrum only occurs when
~ p& ~

is not
large. For pi~ —oo the reduced response x (t) is approx-
imately sinusoidal (see Sec. III F1) and thus only c& and
c i (ci ——c' ~) are significant. Thus there will be only
two peaks near top/2: —,

'
top+5 (this is co&, the perturbation

or signal frequency) and —,'cop —5 (sometimes called the
idler). The behavior is similar for p, ~+ oo (see Sec.
III F 2) except for the addition of the top/2 peak itself.

l. Prebifurcation limit (ts/» ~s~ —oo)

For )si sufficiently negative, the cubic term in Eq. (18)
can be neglected. Since p&

——p/» ~, we are interested in
the limit p/» r ~—oo. In terms of the original variable
and parameters of Eq. (2), we obtain the linear equation

x =px+»cos(5t) .

This can be solved exactly:

(27)

x (t) = [5sin(5t) —p cos(5t)] .
52+F2

(28)

Thus the response is linear in the perturbation amplitude
e. The behavior in this limit has been studied previous-
ly' and will not be discussed further here.

F. Limiting cases of the normal form and their solutions

We will now examine certain limiting cases of the
normal-form equation for which the nonlinearity may be
treated as small. The analytic solutions we determine here
will later be used to study the asymptotic behavior of
several features of interest such as the bifurcation shift.

x(t)= gc e' s', (24) 2. Postbifurcation limit (p/» ~3~ ,oo)

2m/5
where c =(5/2m) f x(t)e ™tdtThus the. complete

0
spectrum of X is given by

n n odd, Px —x —2Px +2P3 3/2 (29)

Here we make a linear approximation to px —x using
its derivative evaluated at the zero which occurs at
x =+p', thus

For every odd multiple n of cop/2 there will be a group of
closely spaced peaks at frequencies

co„=n(top/2)+m5, n odd .

Substituting this into Eq. (2) we obtain

x = —2px+2p i +»cos(5t) .

The solution to this equation is

(30)

As will be shown later, the amplitudes fall off with in-
creasing

~

m
~

forming a symmetrical structure of evenly
spaced peaks of decreasing heights away from the center.
Below the bifurcation point x (t) is a symmetrical oscilla-
tion satisfying x(t)= —x(t+n. /5). This has only odd
harmonics, suppressing all even values of m in Eqs.
(24)—(26). In particular, the central peak in the spectrum,
which is cop/2 (or a harmonic of top/2), is not present
below the bifurcation point. Above the bifurcation point
there is a pair of complementary asymmetrical attractors,
corresponding to the two possible phases of the period-
doubled response. The asymmetry results in a complete
spectrum with all m values allowed. The presence of a
constant component to x(t) results in the appearance of
cop/2 in the spectrum of X(t) since bicp in Eq. (25) is no
longer zero.

3. High detuning l-imit (5z~ oo)

a. p& ~pq~. Here we are interested in behavior in the
limit 5&~oo (or 5/» ~oo) with p, small, of order 5i
and less than the bifurcation value p, ie. In this regime the
solution to x, =pix& —xi+cos(5&t&) is approximately3

1x i (t)=—sin(5iti )
1

(32)

since p&x& and xi are both much less than cos(5&ti) for

x(t)=+@'~ + [5sin(5t)+csin(5t)] . (31)
52+ 4p2

Thus we see that the response is linear in e as in the prebi-
furcation limit, but now there is also the constant term

1/2
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xi(ti)=(1/5i)sin{5, ti)+a sin( 5t, )+b cos(5iti)

+csin(35, t, )+d cos(35iti) . (33)

This expression can be substituted into the reduced equa-
tion and the method of harmonic balance' applied to ob-

tain approximate expressions for the coefficients. The
desired correction coefficients for the fundamental sine
and cosine terms are

almost all of the orbit. However, we would like to im-

prove this solution obtaining the lowest-order correction
due to the p,xi and x i terms (we will actually use the re-

sult to study the asymptotic behavior of the maximum

gain in Sec. VD). Although we only wish to determine
the corrections to the fundamental Fourier component of
the solution, the presence of the nonlinearity means there
can be coupling between this component and the higher
harmonics. The most significant higher harmonic is the
third harmonic, i.e., cos(35t) and sin(35t). These couple
through the cubic term to the sin(5t) and cos(5t) com-
ponents by cross-multiplying with 1/5 sin(5t) [the approx-
imate solution for x(t) which is much larger than the
corrections]. Thus we expand x (t) as

that xt -0 since the cosine term is changing very slowly.
Thus the quasistatic equation is

cosf =x i
—p ix i

3 (39)

where $=5iti 5——t T. his equation exhibits three different
behavior patterns depending on the value of p&. The three
cases are p& ~0, 0(p~ Q p~g, and p~ )p&g, where

p[/ =3/4 1.889 88.
For pi & 0, the right-hand side of Eq. (39) is a monoton-

ically increasing function of x, . In this case there is a
unique inverse to Eq. (39) giving xi as a continuous func-
tion of t, a typical case is shown in Fig. 2(a). At pi ——0,
x, (t) develops two points of infinite slope as in Fig. 2(b).
For p»0, the right-hand side of Eq. (39) is no longer
monotonic, developing two extrema as shown in Fig. 3.
There is now a central region in which there are three
solutions for xi for a given value of cos(5, ti). For
O~p&gp~~, the extrema have magnitude less than 1.
When the value of cosP passes one of these extremal
points, a sudden transition takes place as shown in Fig. 3.
This results in giving xi((j)) a square-wave character as
shown in Figs. 2(c) and 2(d). In particular, one has

a =( —1/5i)[(pi —3/45i) +1/165i],
b =(1/5i)(3/45i —p i) .

b. p» pili. Here the solution is of the form

1
xi(t) =K+ sin(5iti)+ f(ti ),

5i

(34)

(35)

(36)

(a) (b)

K =+(p, i
—3/25')'i (38)

where K is a constant and f(t) is a small periodic func-
tion with zero time average. We would like an expression
for K as a function of pi. Substituting the expression for
xi into Eq. (18) for dxi/dti we find

df/dti -(p, iK K 3K/25—i)—
+(pi/5i —3K /5i)sin(5iti)

+(3K/25i)cos(25it, ) —(1/5i)sin (5iti), (37)

where we have omitted all f (t) terms on the right-hand
side because the most significant of these terms is of the
order of 5i while df/dt, is of the order of 5, 3. The
solution to this equation cannot be periodic unless the
constant term on the right-hand side is zero, hence

-2
0

(e)

r

(d)

r
lI

Equation (37) is easily solved to obtain an approximation
for the correction term f ( r i) if desired.

IV. QUASISTATIC REGIME (8/e ~3
&& 1)

A. Dynamical picture —occurrence of "square response"

We will start off this subsection by discussing the
behavior of the first form of the rescaled equation, Eq.
(18), in which e has been suppressed, and then later we
will discuss the second form, Eq. (20), in which p has
been suppressed.

In the limit ! 5i! « 1, we can make the approximation

FIG. 2. Shows x~(t) for various values of the bifurcation pa-
rameter p, i in the quasistatic limit ! 8~! && 1. Solid line, the at-
tractor for x~(t). Dashed line, unstable solution to the quasi-
static equation [Eq. (39)] for x~(t). Dotted line, other stable
solution to Eq. (39) which is not part of an attractor. (a)

p& ———p&~, where pl~ -1.889 88 is the shifted bifurcation point:
xl(t) nearly a perfect cosine. (b) pl ——0: (original bifurcation
point) nonlinearities become apparent. (c) pl ——

2 p&~. transients

occur, as in Fig. 3, giving xl(t) a square-wave character. (d)

p &

——0.99p l~ just below the shifted bifurcation point. (e)

p& ——1.01p&~ just above the shifted bifurcation point, transients
no longer occur, two complementary attractors now exist,
separated by an unstable orbit. (f) pl ——

2 pl~, attractors now

have little harmonic content.
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so as to eliminate e and assume it to be fixed. As we dis-
cussed in Sec. III C, we can eliminate p instead, resulting
in Eq. (20). This is useful for studying nonlinear gain ef-
fects, where e is varied while p is held fixed. The quasi-
static form for this equation is

ezcosg=x2 —sgn(p)x2 .3 (40)

X)

FIG. 3. Transients (dashed lines) occur when cos(5t) passes
the extrema of x ~

—p&x& in Eq. (39) giving x~(t) a square-wave
character.

xi(/+2m ) =xi(((}),

where x i+ is the most positive root of Eq. (39) and x i is
the most negative root. The jumps occur at equally
spaced intervals with the phase specified by the quantity

P, = —arccos(4p, /27)'~

where P„ is in the range n/2 to 0—. F. or p» pili the ex-
trema have magnitude greater than 1. Since this is out of
range of the cosine function, the transitions no longer
occur, and xi(P) is a continuous function again. Howev-
er, x, (P) now has two stable solutions xi+ and xi
which are complementary forms of each other, i.e.,
xi+((t)= —xi ((t+m}. These solutions are asymmetrical
and have a constant component, as shown in Figs. 2(e)
and 2(f). These two stable solutions are separated by a
third solution, which is symmetrical but unstable. The
appearance of the constant component in xi(P) results in
the appearance of coo/2 in the spectrum of X(t) as dis-
cussed in Sec. IIIE. However, this is not an ordinary
period-doubling bifurcation in which there is a continuous
change in X(t) with bifurcation parameter. Rather, in the
5i~0 limit, there is a discontinuous change in x (P) [and
therefore in X(t)] at the bifurcation point as can be seen

by comparing Figs. 2(d) and 2(e). This results in the sud-
den appearance of a response at aio/2 of finite amplitude,
and also a sudden drop in the response at co&, as is shown
in detail in Sec. IV B. This discontinuity is an artifact of
the quasistatic limit. However, for small detuning the
true x (t) exhibits an exceedingly abrupt (though continu-
ous} change near the bifurcation point, which for all prac-
tical purposes may be considered a discontinuity and
described by the quasistatic result. This is discussed fur-
ther in Sec. VA.

So far we have been considering the behavior of Eq.
(18}in which we have rescaled the parameters (e, 5, and p)

%e are still considering the quasistatic case, but now the
condition is that ~5z~ &&1 (where 52 ——5/~p ~) rather
than

~
5,

~
&&1 (where 5i ——5/» ). There are clearly two

forms of Eq. (40) depending on the sign of p. For p nega-
tive, the right-hand side of Eq. (40) is monotonic so there
can be none of the switching behavior previously
described. For small ez the response xz(t) will be nearly
sinusoidal with amplitude proportional to e2. For higher
e2 the fundamental component of x2(t) will be reduced
(from the linear gain result) due to the cubic nonlinearity.
For p positive the behavior is quite different: for suffi-
ciently small ez the system must be period doubled (i.e.,
have aio/2 in its spectrum); but as e2 is increased, it
reaches the critical value ebs ——p&z ——2/i/27, where
xz(t) goes into the switching mode, and the period dou-
bling is suppressed. This results in a dramatic and discon-
tinuous change in the response, as will be seen in Sec.
IV 8. These nonlinear effects may have important practi-
cal ramifications for small-signal amplifiers. We return
to this point in the final section.

B. System response at co& and ~p/2

e fixed, p varied

Here we present the results of numerical studies of Eq.
(18). The constant co and fundamental c, Fourier com-
ponents of x i(t) (as defined in Sec. III E) were determined
for a large number of values of pi in the range —2p, z to
+2@i~, where pili ——3/4' . There are two solutions for
xi(t) in the period-doubled regime. We give data for the
case with positive co', for the negative case multiply co by
—1 and leave c~ unchanged.

The constant component co is proportional to the am-
plitude of coo/2 in the spectrum of the dynamical variable
X(t) [related to x (t) by Eq. (1)]. Below the shifted bifur-
cation point p&~ the component co is equal to zero.
Crossing p& ——p&q, it jumps discontinuously to a value
a=4'~ 27'~ /2n. =1.3128 (the exact expression is derived
in the Appendix). The results are shown graphically in
Fig. 4(a). The solid line is the numerically determined
value of co for Eq. (39), while the dashed line gives the
unperturbed behavior, i.e., Eq. (39) without the cosP term

~

c i ~

is proportional to the amplitude of coi in the spec-
trum, and

~
ci

~
/co gives the ratio of the amplitudes of co&

and mo/2. c& has both real and imaginary components
corresponding to —,

' of the cos(5iti) and ——, of the
sin(5iti) components of xi(t), respectively. These are
plotted along with

~
ci

~

in Fig. 3(b). The
~
ci

~

curve
was accurately followed by data taken in the analog simu-
lations. These results are presented in Sec. VI. This curve
is important to the theory of parametric amplifiers, as it
describes how the gain at the signal (perturbation) fre-
quency varies near the bifurcation point. As can be seen
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in the figure, the gain continues to rise as we pass the

original bifurcation point p=O.
~
c,

~

reaches a max-
imum value of approximately 0.897609 at /1, 1-1.77960.
It then decreases slightly to the value v 7a/4 (=0.868 32)
at p&

——p&~-1.88988. At this point there is a discontinu-
ous drop in

~

c I ~

to u/8 (=0.164 10), followed by further
decrease as p increases. The exact values of cl on both
sides of the discontinuity are calculated in the Appendix.

The value of Imcl can be determinlxl exactly for all

values of p, i. It is zero except in the interval 0 & p, I & p, iil
where the hysteretic transitions in the cycle (see Fig. 3)
break the cosine symmetry allowing a sine component.
The integral in ((I defining Imcl can be converted to a
simple integral in x yielding

Imc I
—— 3p, I/—4Tr .

2. p, fixed, e varied

As pointed out in Sec. IIIC there are transformations
between the variables and parameters of the e-fixed (sub-

script 1) case and those of the p-fixed (subscript 2) case.
Here we need e& =

I pi I
and x2 ——x I /

I p I I

'

this case has some very interesting features, we have con-

verted the numerical results plotted in Fig. 4 and present
them in Fig. 5. (Note that here cc and cl are components
of xp, not x, .)

For IM &0 [Fig. 5(a)] the behavior is linear for small e,
but the gain falls off for higher e, with c, eventually go-
ing like ez/ for large e2. col is always zero in this case.

For p & 0 [Figs. 5(b) and 5(c)] something much more in-

teresting occurs: the cled and I cl
~

components of x2(t)
have very pronounced step-function-like behavior. This
step occurs at E2=E2g=2/27', as discussed in Sec.
IV A. This behavior occurs to all higher harmonics c„of
x (t) as well: the even-n components switch off, while the
odd ones undergo a dramatic increase. (Note that at the
bifurcation point the behavior of all the c„may be deter-
mined exactly; see Secs. 2 and 3 of the Appendix. ) This

type of behavior could be very useful in producing a
switchlike response to a perturbation signal when it
crosses the critical amplitude threshold.
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FICr. 4. Numerical determination of constant, co, and funda-
mental, cl, components of xI(t) for

~
51

~
&& 1. These are pro-

portional to the coo/2 and ~I components of the dynamical vari-

able X(t), respectively. (a) Solid line: co as a function of pa-
rameter pI. Note that co ——0 for p& ~p». Dashed line: unper-
turbed result, goes as pl~ . (b) Solid line:

j cl
~

as a function of
parameter pl. Dashed line: Rec&, this is ~ the cos(5t) com-

ponent of x&(t}. Dotted line: —Imc&, this is 2 the sin(5t) com-

ponent of x l(t).

FIG. 5. Nonlinear gain behavior; perturbation amplitude e
varied while p held fixed, numerically determined in the quasi-
static limit, Eq. (40). (a} p &0 case, gives fundamental com-
ponent cl (real) as a function of e2/e», where e» ——2/27' -'.

Shows how gain falls off at high amplitude. (b) pg0 case,
shows co, the constant component of the reduced variable (cor-
responding to the 2cuo component of the dynamical variable)

which switches off for e2~ @2~. (c) p ~O case, shows cl, the fun-
damental component of the reduced variable (corresponding to
the ~& component of the dynamical variable), which is also
discontinuous at e2 ——ezra. Solid line,

I
c, ~; dashed line, Reel,

dotted line, —Imc 1.
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3. Asymptotic behauior

In Secs. IV 8 1 and IV B2 numerical results were
presented showing how the response at frequencies co( and
coo/2 varied with bifurcation parameter and perturbation
amplitude in the nonlinear region ~here x and px are
comparable in magnitude. Considerable simplification re-
sults in the limit of large p or small e. The results can be
applied to the behaviors of both of the rescaled equations,
i.e., Eqs. (39) and (40).

The asymptotic behavior of c, in the limit
p/e ~ ~—ee may be determined directly from the
asymptotic form of x (t), i.e., Eq. (28) of Sec. III F. In the
5~0 limit this becomes

lim c~=((/2m) I [cos ((+(y, , /3)cos 0jd((.
p) —+0 0

Ko ——3I ( —,') /(m' X2' i )=0.5797973,

Ki =2 ~ ir/[3'~ Xi ( —, ) ]=0.2377247 .
(51)

The result is easily transformed to the second form equa-
tion for xz in terms of e2.

ci ——Koe2 +Kisgn(p, )e2
' ' . (52)

(50)

This integral can be done (use 3.621-1 from Ref. 19) re-
sulting in

x (t) = (el—p )cos(5t) .

It immediately follows that

lim ci ———e/2p .
P/E / ~—co

(43)

This extends the results given graphically in Figs. 5(a) and
5(c) to higher values of ei. Its accuracy is about 1% at
the maximum values graphed and improves for higher e2.

11m co ——p 1/2

P/8 ~+ ao

(45)

lim c, =e/4p .
P/2 ~+ oo

(46)

Again, these are Fourier components of x(t); for x, (t),
co ——(Mi and ci ——1/4@i,' for X2(t), co ——1 and c~ ——e2/4.
Note that the asymptotic behavior of ci is not symmetric
about @=0, going like (./2~@

~

for the p&0 case and
e/4~ p ~

for the p&0 case. Like the previous ease, these
results ean be us(xl to extend the range of Fig. 4; they are
already good approximations at p &

——+2p &q.
To extend the range of Fig. S, we need the behavior for

1arge e2. This corresponds to small p] in Fig. 4. For
small p &, we expand c

&
in a power series in p].

C ) =I(}0+K]P]+
Here we will only evaluate Ko and Ki. From Eq. (39) we
find

Bx i /B(M i ——x i /(3x i
—p & ) . (48)

For p& small this is approximately 1/3x &. Using the fact
that x, =cos' P at pi ——0, we expand x i for small p& as

xi -cos' (t(+pi/(3cos' P) .

From this we obtain an approximation for c&.

Here ci is the fundamental Fourier component of x(t).
The result is easily converted for the rescaled cases: for
x i ( t ), c i = —I /2p i, and foi x2 ( r ), c

~
= —E2 /2

Since c& is proportional to e, it is clear that the system
will behave like a linear amplifier, producing a response at
the perturbation frequency, coi, which is proportional to
the amplitude of the perturbation. The result can be used
to extend the range of Fig. 4, as it is already a good ap-
proximation at p &

———2p &~.
In the p/e r ~+ ao limit, the asymptotic behavior is

determined by Eq. (31). In the 5~0 limit this becomes

x (t) =p' '+(e/2(u)cos(5t) .

Thus we find

V. DYNAMIC REGIME

This section deals with the behavior of the reduced
equation when the detuning is significant. Unlike the pre-
vious section we will work solely with the first rescaled
form of the equation, Eq. (18).

A. Crossover to ordinary period doubling

From the discussion of the quasistatic case, it should be
clear that a degenerate sort of period-doubling bifurcation
occurs in the 5i~0 limit. In that case the reduced vari-
able x i(t) makes a discontinuous (but nonhysteretic)
change as pi passes the bifurcation point. In this section,
we show that for small (but nonzero) 5i an ordinary
period-doubling bifurcation does take place, but very rap-
idly over a small interval of pi. Figure 6 shows a se-
quence of events occurring in the case of 5i ——0.1. This
sequence shows how xi(t) evolves from the switchlike
behavior expected below p]z to the continuous but
asymmetrical behavior expected above p~q. What hap-
pens is that forpi just slightly below the quasistatic value
of p, is (=3/4' ), the orbit will (for very carefully chosen
pi) tend to delay its transitional jump of the quasistatic
picture and go part way down the unstable (negative
slope) section of x i

—pixi as shown in Fig. 6(a). Such an
orbit can be stable as long as the time integral of pi —3x i

(=dx/dx) over the urhole orbit is negative As (M is in. -

creased, the orbit extends farther down the unstable
branch until it finally loses stability in a symmetry-
breaking bifurcation, Fig. 6(b), at p=p, z (note that pili
depends on pi). Beyond this point there are two asymme-
trical attractors which are inverse images of each other.
Initially the two attractors include both positive and nega-
tive values of x, [Figs. 6(c) and 6(d)], but they eventually
separate at (M=p, &s [Fig. 6(e)], x, +(t) being entirely posi-
tive and xi (t) being entirely negative. Beyond this point
the portion of the orbit in the unstable (negative slope)
section of x& —p&x& rapidly decreases as shown in Fig.
6(f). The change in pi between Figs. 6(b) and 6(e) is
exceedingly small, approximately S.293& 10 ". This is
called the bifurcation width and is discussed further in
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V C. Note that in going from Fig. 6(c) toto 6 d) one ofSec. . o e
size and van-"lobes" of the attractor dkmtntshes in sizethe'o s o e

ishes. This occurs over an extremely short iinterval of p],
even compared to the bifurcation width.

2 I I I I I I I I I

[
I I I I I I I I I

)
I I I I I & I I I I &! I I

B. Bifurcation shift versus detuning

l. numerical results

The shifted bifurcation point IttIs is a .unct'a function of the
rescaled detuning 5I (5I=5/e ). At IttI=IMIs there is a

-b kin bifurcation of the reduced variable
xI(t) which corresponds to the period-doub tng i urca-

d in the attractor for Eq. (18) and looking or
b stud ing thepoint where asymmetry commences or by y'

stability integra p —x1 ( 3x d—t) one can accurately deter-
as a function of 5I. This function is plotted inmine p&& as a unc

Fig. 7. Perhaps the most striking feature o
'

gof this fi ure is
the point pea, a w

'
ed k t hich point the derivative is discon-

tinuous. e were a. W ble to accurately reproduce this curve
analoincluding t e poinl d' th ointed peak with data taken in the ana og

simulation of Duffing's equation (Sec. VI .

f I I I I I I I I I I I I I I I I IQII I I I I I I IJJ~LJJJ~
-2 0 2

8)

FIG. 7. Numerical results for Eq. (18) showing three func-
tions of the rescaled detuning pi. piB the bifurcation point, p1~
the maximum gain po&nt, an p1s p

~ ~ ~

the se aration point. or

~
5,

~
& 2, asymptotic formulas may be usedsed which are given in

the text.

2. Small-5q limit
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xI -1—2(IMI/3) +3(IttI/3)' [xI —((ttI/3)' ]
—5ItI/2 . (53)

This equation has one very simple so utiution which exists
only for certain values of pI and 5. The solution is

It is possible to determine the slop p&ze tI /d5I exactly
in the limit &~ . e po ~0. %e resent here a heuristic argument

le accura-'
h h been checked numerically to reasonab e accura-whlc as n c
Th roach is to use the fact that ccy. T e approac

%'e will dis-both exhibit quadratic extrema. %'e w'xi —pixi ot ex i
'

cuss the behavior near the maximum o cos t ) occur-
ring at rI =0, and the maximum of x, —Itt txI occurring

/3)' The behavior at the corresponding
minima is related by symmetry.

In the quasistatic picture, a sud enen transition occurs
aximal value ofw en cosh s(5 t ) increases past this maxim

x — x . However, as discussed in Sec. VA, w p&
'

when is
very near the bifurcation potnt IMIs, this transition is de-

d d the cosine function tends to follow xI —IttIxI
us the uadra-into the unstable negative slope region. T us q

tic maxima o cos r an x I—f (5t) d x —p x must nearly coincide,
x = — I/3)' at t =0. Expanding xI —IttIxI and

about their maxima,cos(5ItI) through quadratic terms abou e'

Eq. (18) becomes

FIG. 6. Sequence shows the behavior of x1, 1 ryf (t ) ve near the
'

t (=1.83132247757070) for a detuning ofbifurcation point p1B
~ (t) vs51 ——0. 1. Solid line shows the attracting solution x1 t1 vs

cos(5 t ). Dotted line [(a} only] shows the function x', —p, ,x,cos( 1ti . o e n
which the attractor follows (in the 61~0 limi ) plimit) exce t during

D h d line shows the complementary attrac-transient jumps. as e ine
~ ~ I

tor which exists for the cases beyond the bifurcation point

(c) pl ——p1B+ 3 pi~, where @1~——5.293)& 10

( ) =p +p1~=—p1s, the separation point.pl plB + 3 pl &' e pl p1B 1 fV

(f) pi = 1.001piB.

x I ———(pI/3)' '+ [1—2(pI/3)'~']tI (54)

and it has the property that x is constant.
' '

ynt. It is easily veri-
fied that this occurs when pi and 5& are related by

5I ——+(12(ttI)' [1—2(IMI/3) ] .

This solution has the important propertyrt that x is small
for negative t and remains sma p11 for ositive t in the un-

f x . This indicates that the system is verystable region o x &. is
hin behaviornear the bifurcation point since the switching e avior

the unstable regionwhich normally occurs upon reaching e
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has been suppressed. Differentiating Eq. (55} one obtains
a linear approximation for the bifurcation point @I' as a
function of 5I ..

PILI-3/4' —(1/3'i )
~

5i i
(S6)

Numerical results agree with the linear expression given
above for small 5I', however, higher-order terms deter-
mined numerically do not agree with those implied by Eq.
(55). Apparently, the approximations we made are not
valid beyond the linear term.

liiii pIa =3/25I
5)~ oe

(57)

This result has been checked numerically at 5I ——2 where

Iuiz ——0.371 135, a 1% deviation from the formula, and at
5I ——10 where p Ia —0.014 999989 8, a 0.0001% deviation.

3. Asymptotic behavior, 5~~ ce

In the period-doubled regime, we obtained [Eq. (36)] the
asymptotic expression xI(t I) =E+(1 /5I) sin( 5It I), where
E is approximately (Iui —3/25I)'~ . The presence of the
constant E in the solution for the reduced variable xI(t)
corresponds to the presence of coII/2 (i.e., period doubling)
in the spectrum of the dynamical variable X(t). Thus the
bifurcation point (where K vanishes) is

point, the orbit must spend about half its tiine in the un-
stable region of x, , where xi —

ILI, Ixi has negative slope.
Deviations from the correct orbit in the unstable region

1/5l
grow exponentially. This sensitivity goes like e, since
a decrease in 5& increases the time spent in the unstable re-
gion during each cycle. An approximate empirical fit to
the numerical data is

p I w -1.1325I exp( —2.0977/5, ) . (58)

This formula was checked numerically at 5i ——10. Here
IMIs

——0.025+5X10, so the deviation from the formula
at this point is less than 0.02%.

D. Maximum gain versus detuning

This is accurate to about 2% over the range 0.1 ~5 &0.7S
which corresponds to 5)&10 "~p&~ &5&10

The asymptotic form of x I (t) is studied in Sec.
III F 3 b, and found to be

x, + (i) =(p I
—3/25', )'"+(1/5, )sin(5, r I )

[see Eqs. (36) and (38)]. This solution will be entirely pos-
itive when (IuI —3/25I)'~ =1/5I, hence the asymptotic
behavior of @is is

lliil pis =5/25I
5)

C. Bifurcation width

As discussed in Sec. VA, near the bifurcation point,
x (t) changes very rapidly over a very small parameter in-
terval (relative to the bifurcation shift) when the detuning
is small. In order to obtain a measure of this interval and
how it varies with detuning, we define the separation
point @is. This is the point following the bifurcation at
which the two attractors no longer overlap, x, +(t) being
entirely positive and xi (t) being entirely negative, as
shown in Fig. 6(e}. The bifurcation width IuIn is just the
difference between the separation point and the bifurca-
tion point.

The separation point is actually quite easy to observe
experimentally, provided the detuning is not too small.
As discussed in Sec. IIIB, the dynamics of the reduced
variable x (t} are related to the behavior of the Poincare
map. Beyond the bifurcation point, the iteration sequence
in the Poincare section goes back and forth between points
contained in two line segments. These segments are con-
strained to be collinear and initially overlap. p~q is the
point beyond which they no longer do so.

In Fig. 7 we show numerical results giving the separa-
tion point as a function of detuning for Eq. (18). As can
be seen, the bifurcation width is extremely small below a
detuning of about 0.6.

Numerical results indicate that the bifurcation width
falls off very rapidly with 5I. The smallest value mea-
sured was at 5~ ——0. 1 where p&~-5.293)&10 ". This is
certainly far beyond the resolution of most experiments.
Thus the discontinuities of the quasistatic picture will ef-
fectively be observed in real experiments with finite detun-
ing. The reason for the rapid decline in width is that, as
discussed in Sec. VA, when one is near the bifurcation

We saw in the quasistatic case that the maximum gain
(or response at coi) occurs slightly below the shifted bifur-
cation point. This type of behavior continues into the re-
gion where 5i is significant, i.e., the maximum gain lies
between p~ ——0 and p& ——p]~. We will call the maximum
gain point Iuisr and the value of the fundamental Fourier
component at this point cil. In Fig. 7 we plot the nu-
merical results for pI~ versus 5I and in Fig. 8 we plot
cIIIr versus 5i. Note the interesting cusps that occur at
5I ——0.

In Sec. III F we showed that in the 5I~ Oo limit, xi(t)

I I I I I II I I | I I I I I I I I I

i

I I I I I I I I I

i

I I I I I I I

0-2

FIG. 8. Plots of cl~ vs 5I where cl~ is the value of the fun-
damental Fourier component of x&{t) at the maximum gain
point pl~ {see Fig. 7}. This corresponds to the maximum ob-
tainable response at the perturbation frequency for a particular
detuning and perturbation amplitude.
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hm p iM 3/45 I
5)~ao

and has amplitude

c IM - ( —I )( I/25 I
—1 /325 I ) (61)

VI. ANALOG SIMULATIONS

A. Description of the simulator

In order to get some idea how wel 1 the theoretical re-
sults might be followed by a specific physical system, we
chose to study the forced Duffing's equation on an analog
simulator. The perturbation term E cos(~It) is added to
the forcing term resulting in the equation

y'+ yy +zy +Py =3 +8 cos(capt)+E cos(toit)

The simulator is a precision electronic circuit whose pri-
mary components are two integrators (to convert y' into y)
and two multipliers (to produce y from y). This system
was adjusted to the threshold of a period-doubling bi-
furcation at the approximate parameter setting:
y=6.7X 10', += 1.5X 10', P=3.0X 10', & =3.5 X 10',
8=2.4 X 10, and cup-2m X 502 Hz. In the form of the
equation above, y was measured directly from an output
of the simulator in volts, and cop/277 is the frequency of
the forcing oscillator in hertz. Typical oscillations were
on the order of 10 V in amplitude. Note that the equation
can be simplified, if desired, by rescaling y and t so as to
set two of the parameters (such as a and P) to unity. The
constant forcing term A was produced by applying a volt-
age reference V~, to the system [where 3 = (3 X 10 ) Vd, ].
This term is very important in that it breaks the symme-
try of the equation, which in turn makes it easier for the
system to reach a period-doubling bifurcation (without the
prerequisite of a symmetry-breaking bifurcation as in a
symmetric system). b, Vd, was used as our bifurcation pa-
rameter, where 5Vd, is Vd, minus the bifurcation value of
Vd, (- 1.17 V). Note that in some of our data we give the
measured perturbation amplitude as V„g, where
E=(4.24& 10 ) Vsig.

In using a simulator, as in experimental systems, one
has to consider the effects of noise. Consequently it is
necessary to compromise between using low-amplitude
signals, where noise interferes, and high-amplitude sig-
nals, where higher-order nonlinearities will affect the
quantitative agreement with the theory. Several of the re-
sults we present were done for V„.s ——80 mV, at which
point the response of the system to this perturbation can

can be approximated by Eq. (33). We are interested in the

expressions for the coefficients a and b [Eqs. (34) and

(35)] of the sine and cosine components, respectively. In
terms of a and b,

~

c I ~

(the fundamental Fourier com-

ponent) is

lc, l

= —,'[(a+1/5, ) +b ]'

= 1/25i —1/325, —( I/45' )(PI —3/45i ) . (60)

From this expression, we find that asymptotically the
maximum occurs at

be on the order of 5—10 % of the amplitude of the funda-
mental oscillation. As the reader will see in the following
sections, we obtained very good agreement with the
theory .

C. Data compared to theory

Here we present the results of our analog simulations.
A very simple but striking result is a plot of bifurcation
shift versus perturbation amplitude for small detuning.
This is shown in Fig. 9, a log-log plot constructed to
demonstrate the —', power law. The solid line is drawn

through the lowest amplitude point with a slope of —', . As
can be seen, it is almost a perfect fit over the range shown,
over which the perturbation amplitude was increased by a

f 000 I I I I I Ill[ I I I I I I lli I I I I I I I4.

Ioo

O

O
O

l 0
D

C7

I I J ~+J~~ I I I I I III I I I I I I I I

IO IOO l 000
perturbation amplitude ( mV )

FIG. 9. Data from the simulator, showing the bifurcation
shift 6 Vd, plotted against the perturbation amplitude V„~ on a
log-log scale. The data are for very small detuning. This
demonstrates the 3 power law. The solid line has slope exactly

3 and passes through the lowest amplitude point.

B. Rescaling experimental data

In our simulations (or any similar experiment), we
are concerned with three types of parameters. ( 1 )

Detuning —in our experiment there is a driver (or pump)
at frequency cop and a perturbation (or signal) at frequency
coI. We vary the detuning by changing col and define it as
5=co I

—cop/2. (2) Perturbation amplitude —we control the
amplitude V„s [ cc E in Eq. (62)], and we assuine that e
(from the theory) is proportional to V„s. (3) Bifurcation
parameter —we varied this by adjusting 5Vd, [ Vd, ~ 3 in

Eq. (62)], but other parameters could have been used in-

stead. We assume p o- 6Vd„ i.e., higher-order corrections
are neglected. In order to compare our results with the
theory, V„g and 6 Vd, must be rescaled to obtain e and p .
However, most of the numerical results are given in terms
of pl and 5I, where pi p/e an——d 5I =5/E . By re-

scaling an appropriate theoretical curve to match (as
closely as possible) the experimental data, we can calculate
6/Vsls and p, /b, Vd, . In addition there is a scale factor re-

lating the amplitudes of measured spectral components at
frequencies cop/2+ m 5 to the Fourier components c
of x, ( t) as determined by the theory.



33 SUPPRESSION OF PERIOD-DOUBLING ANAND NONLINEAR. . .

l

I

l I I I

I
1 l I l

[
l I I l

I
l l I l

I

l 1 l I l l l l I

60

50
E

-40

o $0
U
O

~ 20

0 'I' i i i I i » i I i » i I i i i i I i

-2 -l 0 1

detuning ( Hz)

l l l I l i « I i

2

actor o 128. The detuning was decrea d 1se as ow as
u reasonably be achieved, approximately 0.03 Hz.
Another impressive result is a plot of bifurcation shift

versus detunin for
shown in

'
g or a constant perturbation am 1't dpiu e,

n
' ' " '

pea predict-'n ig. 10. The distinctive "pointed k" ed'

y e theory (Sec. VB) is accurately followed b h
data. The solid lin

o owe y t e
e so i ine is the theoretical curve (generated nu-

data
merically) and the scaling factor f hrs or t e experimental

ain e est it to thisata were determined so as to obtain the b f
In pi . 11 wes&'g. show the response of the system at the

perturbation frequency as a function of bifu
rameter, for ve sm

n o i urcation pa-
or very small detuning —approximately 0.10 Hz.

his shows what is perhaps the most dramatic effect: t e
discontinuity at the shifted bifurcation point. As dis-
cussed in Sec. V, while the discontinuity only reall
in the limit of 5~0 it~, it exists for all practical purposes for

FIG. 10. Bif'
urcation shift AVd, as a function of det

'
5

Rescaled for besbest fit to theoretical curve (solid line) from F'
'

n o etuning 5.

Note that thee simulation data points follow the pointed eak of
ine rom ig. 6.

the theoretical curve.
e poin e peak o

I 1 I 1 t 7 7 T T r f t TT 7 'i r 'T T TTr 7 T' r 7
1
T 1 T TTTTTTT T TTTTT'

-10

-20'

-30 t-

-50

-60 J i, i il JiJilUIJ'"..(,L
JJlJlJ.iJ.J. i l L. .l. Ll J.JJJ-t . i.JJ JLjlllJJJ

1 I I I I I
l

I I I I I I I I I I I I I 'I I I I I I I I I0— I I I I
l

I I I I I I I 'I I
I

I I I I I I

-10—

-20—

-30—

-40—

-50-
-60:

(b)
f

(

small but nonzero 5. The slope becom ed' 1omes exce ingly steep
with decreasing 5—at —' Hz for th lt10 e resu ts ]ust given, this
slope is theoretically on the order of 10' [see E . (58)].
As can be seen, the data in Fig. 11 fit the theoreti 1 ( 1'd

) esults very well, especially below the shifted bifurca-
ion point. The slight upward offset of the last four

points is possibly a measurement error due to the close
proximity of the large —,

'
coo peak to the much smaller coi

peak being measured.

diff
Our inal result, Fig. 12, shows the spectruin f th

i erent cases of the bifurcation parameter. These cover
the range —,coo —205 to —,

'
co&+205, with 5 set to approxi-

mately 0.120 Hz, and —,
'

mo ——251 Hz. The three cases cor-
respond to the three cases studied theoretically in the A-
pendix: (a) =0pt ——, t..e unperturbed bifurcation point; (b)

y in e p-

lM =pi&, just before the shifted bifurcation ( 1

stabilit
ion as cose as

a i i y will allow); and (c) pi ——pi&+, just after the shift-
ifurcation point. These spectra measure the frequency

components of y(t), the Duffing variable of E . (62)
easured with a Hewlett Packard Model 3582A

Th
spectrum analyzer connected to th D ffe u ing simulator.

he agreement of these three cases 'th thwi eory is quite

l I i I I l l I I

600—
I I I I I I I I I I I I I I ~ I I I I I I I I I I I I I I I I I I I I

500

3
i' 500
o

a) 200

I0—

—-10—

~ -20
ni
rn -30—
C
O

~ -40:
ln

-50—

-SD[

(c)

249
I I I I I I I «»» 111» I I

250 251 252
frequency (Hz)

I I I I l I I I I I I

253

I I I I I I I I I I I I I II I I I I I I I I
l

I I I I I I I I I'
l

I I I I I I
l

I I I I I I

100

Q I l I l l I I I I I l I I i I I i I I I l I I Il I l

bifurcation parameter {rn V )

FIG. 11. Am litude op
'

de of the col spectral component of y{t)
from the simulator [response (co )] v b f

d, ). Theoretical curve (solid line) rescaled for best fit to data
points. Perturbation amplitude V =80 V
small, approximately 0.1 Hz.

m, detuning ver

FIG. 12. Spectra (spectral peaks near ~ /2) f hor t ree values
o i urcation parameter. Response given in dBV h' h

g&0 of the rms amplitude in volts. All at V =80 m'8

pp r a m„=n (~0/2)+m6„where coo ——2m)&502 H
and 5=2m 0. r n =X .12 Hz. Cases sho~n are for n =1

Zp

odd). (a) hV =0
r n= n mustbe

d,
——0, unperturbed bifurcation point. Only odd-m

peaks appear. (b) 5 Vd, ——63.2 mV just before the shifted bifur-
cation point of 63.4 mp
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good, although the experimental peaks show a slightly
greater fall-off rate in amplitude, presumably because of
the nonzero detuning.

These three cases of the spectrum are probably the only
ones for which the complete spectrum may be expressed
in terms of standard functions as shown in the Appendix.
They help to illustrate the changes which occur in the
spectrum as p passes the old and new bifurcation points.
Below @=0, the peaks fall off rapidly with increasing n,
faster than any power law as n ~ 00. For IM &&0 only the
two central peaks (cot and too —

cubi) are significant. At
@=0 the peaks fall off less rapidly but still faster than
1/n (one can show that they fall off like n ~~). For
0&pi &@is the emerging square-wave character of xi(t)
results in an amplitude fall off that goes like 1/n (thus
power falls off like 1/n ) A.t pi ——@is+ there is a sudden
increase in the amplitude fall-off rate to 1/n, combined
with the sudden appearance of the even n peaks. For
p, i ~p, tent the peaks fall off very rapidly as in the p, &0
case. Finally, for p»&@is the central coo/2 peak is much
greater than all others.

VII. DISCUSSION AND CONCLUSIONS

We have detailed a variety of phenomena that occur
when dynamical systems near the onset of a period-
doubling bifurcation are subject to near-resonant perturba-
tions. Our results are based on an analysis of the first-
order nonlinear differential equation (2) governing the sca-
lar function x(t), which is related to the full uector
dynamical variable X(t) via Eq. (1). Regardless of the
precise evolution equations governing X, it is the first-
order equation (2) that captures the important behavior in
the vicinity of the bifurcation point.

That the behavior of even high-dimensional systems
may be deduced from a study of a much lower-
dimensional equation is a familiar notion in the field of
bifurcation theory. ' ' This reduction of dimension fol-
lows rigorously near the onset of a bifurcation by an ap-
plication of the center manifold theorem. Although we
have not performed a mathematically rigorous reduction
via the center manifold theorem to obtain our "normal
form" Eq. (2), we have seen nevertheless that the reduced
equation allows us to understand in great detail the effect
of near-resonant perturbations. Moreover, our analysis
goes far beyond the linearized theory previously
developed, ' which works well provided the perturbation
is sufficiently small. In this paper, we have demonstrated
that one can understand a host of phenomena that arise
when the perturbations are somewhat larger by including
a nonlinear term in the normal form.

Of all our results, perhaps the most interesting is that
near-resonant perturbations always ' suppress the onset of
subharmonic oscillations —in this sense, one may say that
the modulations serve to stabilize the dynamical system.
This behavior has been verified in our analog simulations
of the Duffing equation for a variety of parameter values
and also in observations of the forced magnetic oscillator.
%e eIDphasize that the generality of this result does not
depend on the perturbation being purely sinusoidal; how-
ever, one crucial property of the perturbation is that its

time-average is zero. To see why this last condition is
necessary, consider again the Duffing equation (62): if the
perturbation had a nonzero time average, this constant
offset could be absorbed into the parameter A. By simply
changing the sign of this offset, one could either push the
system out of, or drive it into, the period-doubled regime.
(An entirely analogous conclusion was reached in the
work on parametric forcing of a one-dimensional oscilla-
tor near the onset of a fixed-point pitchfork bifurcation,
mentioned in the Introduction. )

The idea that near-resonant perturbations suppress the
onset of subharmonic oscillations might strike some peo-
ple as counter-intuitive. After all, if the unperturbed sys-
tem is close to the period-doubling bifurcation point, one
expects the system to be "soft" to modulations at the inci-
pient frequency. However, one must remember that our
analysis considers specifically the case where the unper-
turbed system is externally driven (i.e., nonautonomous):
for example, in our simulations of the Duffing equation,
Eq. (62), the driving terms Bcos(coot) and Ec so( oc, t)
represent inputs from two distinct signal generators. On
the other hand, if the unperturbed system were auto-
nomous, then a large enough perturbation can cause fre-
qttency locking (also called entrainment) wherein the un-

perturbed oscillation frequency shifts to twice the pertur-
bation frequency. We expect that frequency locking
should occur more readily —that is, for decreasing pertur-
bation amplitude e—as either the detuning 5 decreases, or
as the bifurcation parameter p tends toward ps. While
the occurrence of frequency locking is bound to be an im-
portant ingredient in understanding the behavior of auto-
nomous systems subject to near-resonant perturbations, in
the case analyzed in the present paper this additional
complication is not present.

As mentioned in the Introduction, an important
motivation for this work has been a recently proposed
small-signal amplification theory for systems near the on-
set of simple (periodic) dynamical instabilities. The
present paper represents an improvement of the earlier
theory insofar as it includes the presence of nonlinear
terms in the equation governing the response to the near-
resonant perturbation. We have found that there are two
major corrections to the linearized theory. First, the am-
plitude of the response x is not simply proportional to the
strength of the input perturbation or signal (see Fig. 5).
When operating below the original bifurcation point, the
ratio of the output (at the signal frequency) to the input
decreases as the input grows larger. This ratio is some-
times called the "gain, " and one says here that "the gain
saturates" as a function of the input signal strength.
When operating above the original bifurcation point, the
response can (for small detuning) exhibit a nearly discon-
tinuous change at a critical signal level. This switchlike
transition may have practical app/ications; for example,
such a system could be used as a sensitive signal detector
with an adjustable response threshold, or as an amplifier
for digital signals. The second major improvement over
the results of the linearized theory is the generation of a
symmetrical set of evenly spaced peaks in the power spec-
trum as the bifurcation point is approached. In contrast,
the linearized theory predicts only pairs of lines centered
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abollt Cdo/2, 3~0/2 ~

We would like to close by discussing briefly these two
nonlinear effects in the context of a specific application,
namely, the superconducting Josephson-junction para-
metric amplifiers. These devices were proposed originally
as good candidates for low-dissipation small-signal ampli-
fiers operating in the frequency range of —10—100 6Hz.
While good signal gain has been achieved, the
development of parametric amplifiers as practical devices
has been thwarted by the appearance of a large amount of
broadband noise. ' Moreover, the output noise level

Gz increases more rapidly than the signal gain Gs, so
that the noise temperature T =G~/Gs is an increasing
function of Gs. (Typically, one expects an amplifier to
have a noise temperature that is independent of Gs. )

Although a variety of explanations have been forward-
ed, the origin of this noise rise is still an open issue. (For
a nice review, see Ref. 28.) We suggest the following
scenario leading to a gain-dependent noise rise in
paramps.

First of all, the existence of a large gain factor Gs is
due to the presence of a dynamical instability nearby in
parameter space: ' the closer the bifurcation, the greater
the gain. In the linearized theory developed in Ref. 2, the
output at the signal frequency coi is proportional to both
the input level e and the reciprocal of the bifurcation pa-
rameter p '. The analogous theory applied to noisy in-

puts yields a similar scaling for the output level of the
broadband spectrum. ' Consequently, the broadband
noise Gz and the signal gain Gs scale identically, so that
the linearized theory predicts a noise temperature T
which is independent of Gs. However, the results of this
paper suggest two effects that would enhance the broad-
band output relative to the signal frequency output as the
bifurcation point is approached. First, the output at pi
grows more slowly than the first power of e—that is, the
amplifier can saturate. (The idea that saturation is behind
the observed noise rise has been forwarded previously by
Feldman within the framework of a different theory of
parametric amplifier. i

) Second, the power contained in
the closely spaced lines of the spectrum (see Fig. 12)
would presumably get smeared out in the presence of
some input noise, and this would lead to the broadband
noise level G~ increasing more rapidly than that predicted
by the linearized theory (for which the spectrum has only
the two central peaks). Together, these two effects imply
a noise temperature T that increases as the bifurcation
point is approached and hence as G~ increases.

Of course the above scenario gives only a qualitative ex-
planation of the noise rise, and must be developed in
much greater detail before we can decide whether it is the
correct one. Armed with a true theoretical understanding
of the noise rise, we can hope to establish the conditions
under which the superconducting parametric amplifiers'
performance is optimized.
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APPENDIX: DERIVATION
OF THE COMPLETE SPECTRUM

FOR THREE SPECIAL CASES

The emergence of higher harmonics in the reduced vari-
able x(t) corresponds to the rise of the spectrum of the
dynamical variable X(t)—the closely spaced set of peaks
discussed in Sec. III E. Examples of the spectrum corre-
sponding to the cases discussed here are given in Sec. VI.

In the quasistatic limit (5/e ), there are three special
values of pi (=p/e ~

) for which all Fourier components
of x (t) can be derived. They are (1) the unperturbed bi-
furcation point, p~

——0; (2) just before the shifted bifurca-
tion point, pi ——pili, and (3) just after the shifted bifur-
cation point, p~ ——pi++. The results are derived for the
rescaled variable x, (t, ) as determined by Eq. (39). For
x2(t2) divide the results by p, i . For x(t) multiply by
~1/3

1. p~
——0

Here Eq. (39) reduces to

xi(t)=cos'i (5iti)

and therefore

(A 1)

2
—ll31( 4

)

c„= I ( —', +(n —1)/2)1 ( —', (n+1)/2—)

0 n even .

n odd (A2a)

(A2b)

The expression for c
&

can be simplified to

c i ——a I ( —, ) =0.579 797 6
8 3n.

=0.441 659 7a,

where I ( —,)=2.6789385 and a=4'~ 27'~ /2m.

=1.3127692 and the other cases can be obtained by a re-

c„= cos' P cos(nP)dP .
2m'

This integral can be evaluated (use 3.631-9 from Ref. 19)
and one obtains
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cursion relation:

(3n —7)c = —c„2 n odd.
(1+3n)

1 I 7Thus c3————,c~ c5= loc~, c7= —110c~, etc.

(A4}

1 —27' "nI.2p=a —,n odd
9n —1

P —P=O, n even.

(A9a)

2- pi=@&a—

Since p&a
——3/4', the equation becomes

xi —(3/4'i )xi ——cos(5t) . (A5)

This cubic is easily solved by standard techniques yielding

(1+27. )
~

[c„ i
=a, n odd (A9c)

9n 1—
~

From the expression for
~
c„~ one can see that asymptoti-

cally the ainplitudes fall off like 1/n as expected for a
function with a square-wave character.

4'ricos((()/3) 0&((1&m.xi(t)= ~

—4'/icos(P/3 —sr/3), m & ((1 & 2tr
(A6)

where $=5t (mod 2m).
Define P as

P 41/3cos 3 ~
—l1jf

2m'
(A7)

This is one piece of the integral for c„,covering the inter-
val from the positive jump in x (P) at (() =0 to the negative
one at P =n. P is easily evaluated:

3. p&=pi+

xi+(t)= .

where P =5t (mod 2ir), and

Here there are two solutions for x&(t}. The governing
equation is the same as the previous case, i.e., Eq. (A5),
but now we assume that the transitions do not occur [we
can do this because p&z is the boundary between the
square-wave and continuous types of behavior for xi(t)].
There are two stable solutions for x i (t) x&+ —and xi

4' cos(P/3), 0 & P & m

(A10)4'r cos(—P/3+tr/3), tr & P & 2m.

a 1 —27'~'ni
n odd

9n —1

a —1+3'~'n)'
n even.

9n —1

(A8a}

(A8b)

xi (t)= —xi+(t+tr/5) . (A 1 1)

( —1)"
c„+——P+P'= —u

9n —1
(A12)

The Fourier coefficients can be expressed in terms of the
integral P used in the previous case. %e now use the
symmetry x, (t) =xi((2tr/5) —t) to obtain

From the symmetry xi(t) = —x i(t tr/5) we o—btain c„:
1c„=—( —1)"c„+=a

9n —1
(A13)
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