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Optical-double-resonance spectra and intensity-intensity correlations
under intense fields with finite bandwidths: Some analytical results
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A formalism is presented to treat the effects of finite-bandwidth excitations on the fluorescent
spectra and second-order intensity-correlation functions in optical double resonance. It is assumed
that the bandwidth arises from the phase and/or amplitude fluctuations in the fields driving a
three-level atom. Under the conditions that one or both these fields are intense, secular approxima-
tion and the theory of multiplicative stochastic processes are invoked to derive a Markovian master
equation for the atomic-density operator averaged over both phase and amplitude ensembles. The
quantum regression theorem is used to derive analytical expressions for the fluorescent spectra and
the second-order intensity-correlation functions.

I. INTRODUCTION

The spectrum of the fluorescent radiation from a
three-level atom undergoing stepwise transitions (optical
double resonance) between the levels is known to exhibit
many interesting characteristics depending upon the de-
tuning from the atomic-transition frequencies and the
strength of the two laser fields driving the atom. ' 6 It is
known, for example, that when the atom is driven on reso-
nance by strong fields, the spectrum of the radiation emit-
ted by the upper as well as the lower transition is a Stark
quintuplet. ' If, however, the driving fields are detuned
from the atomic-transition frequencies, the spectrum ex-
hibits as many as seven Lorentzian peaks. 'i If, on the
other hand, the lower transition is driven by a strong field
whereas the upper transition is probed by a weak field,
then the spectrum from the lower transition is found to be
the Stark triplet which is characteristic of a strongly
driven two-level system. The upper spectrum, in this
case, is the so called Autler-Townes doublet.

The driving fields in the above studies are assumed to
have zero bandwidth. A more realistic study should con-
sider the effects of finite bandwidth of the driving laser
fields. This bandwidth may arise, say, due to phas~
and/or amplitude fluctuations in the lasers. The effect of
excitation bandwidths due to phase fluctuations on the
Autler-Townes doublet has been studied theoretically by
Agarwal and Narayana. They have shown that the
asymmetry in the Autler-Townes doublet could switch
due to the phase fluctuations. Some numerical results on
the effects of the phase fluctuations on the fluorescent
spectrum in the presence of two inteuse driving fj.elds has
been reported recently by D*Souza et al. They have
shown that with an increase in the bandwidths of phase
fluctuations, the central peak and the remote sidebands in

the fluorescent spectrum begin to disappear and the Stark
quintuplet tends to reduce to a Stark doublet.

These studies, however, have not taken into account the
effects due to fluctuations in the amplitude of the driving
laser fields which are known to play a significant role in
many situations. In the present paper, we consider the ef-
fects of both phase and amplitude fluctuations in the laser
fields driving a three-level atom with stepwise excitation.
We assume that the phase fluctuations follow a Wiener-
Levy process ' whereas the amplitude fluctuations are
described by a nonwhite Gaussian process. ' ' Following
the treatment of Ref. 8, we derive an exact master equa-
tion for the atomic-density operator averaged over the dis-
tribution of phase fluctuations. Next, assuming one or
both the fields driving the atom to be intense, we invoke
the secular approximation to derive the master equation
for the atomic-density operator averaged over nonwhite
Gaussian amplitude fluctuations as well. We obtain an
exact steady-state solution of the master equation derived
in the high-field limit. We derive further analytic expres-
sions for the spectrum of the fluorescent radiation from
the upper as well as lower transitions which show explicit-
ly the laser-bandwidth effects. If amplitude fluctuations
are ignored, the analytic results are found to be in agree-
ment with the numerical work of Ref. 8. We also obtain
analytic expressions for the intensity-intensity correlation
functions displaying the effects of driving-field fluctua-
tions.

In Sec. II we present the basic formulation of the prob-
lem leading to the derivation of the master equation in the
high-field limit and its steady-state solution. Section III
is devoted to the derivation and discussion of the analyti-
cal expressions for the fluorescent spectra and the
intensity-intensity correlation functions. Finally, a sum-
mary of the results is outlined in Sec. IV.
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II. FORMULATION OF THE PROBLEM

A. Master equation

EJ(t) =[EJ '+EJ~ "(t)]exp[—i'(t)],

P, (O)=p, p (j=1,2)
(2.3)

71(A 11p+PA 11 2A 21pA 12 )

72(A 22p+PA22 2A 32pA 23 ) ~ (2.1)

The master equation (2.1) involves the usual rotating-wave
and Markov approximations and is written in the frame
rotating with respect to the laser frequencies. Further,
2yj are the Einstein A coefficients of the excited levels
while di and 12 are transition matrix elements corre-
sponding, respectively, to the transitions 1 to 2 and 2 to 3.
The operators A „= m)(n

~
obey the usual commuta-

tion relations

%e consider a three-level atom interacting with two
monochromatic applied laser fields which are in reso-
nance with the atomic transition frequencies Qi and Q2.
The levels denoted by

~
I),

~
2), and

~
3) are unequally

spaced (E»E»E, ) with Q, =(E,—E2)/A' and
Q2 —(E2 E3 )/fi. In the optical double resonance, we
have the cascade configuration (Fig. 1), that is, the parity
of

~

2) is opposite to that of levels
~

I) and
~
3) so that

transitions from I) to
~

2) and ~2) to
~

3) are electric
dipole allowed, while the transition from

~

I) to
~

3) is
forbidden. The formulation developed in the following
will, however, be applicable to treating the other configu-
rations as well, with minor modifications. We start with
the master equation' for the reduced atomic-density
operator p given by

dpldt = —i(di/2)[E; (t)A, 2+E, (t)A2„p]
—1 (d2/2)[E2 (t)A23+E2(t)A32rP]

where the nonstochastic amplitude EJ
' and the phases

P~p are positive real numbers while the slowly varying
time-dependent quantities EJ(t) and PJ are treated as sto-
chastic variables. Now most of the theoretical treatments
of noisy laser-atom interactions model the statistics of the
fluctuations by means of suitable Gaussian distribu-
tions. ' This is inspired by the fact that Gaussian sto-
chastic processes are simple to handle analytically. Also,
in a realistic experimental situation, many different and
independent sources of noise contribute and the resultant
limiting distribution may indeed be Gaussian. %e as-
sume here an extension of the standard model used to
describe a single-mode noisy laser with small fluctua-
tions. ' However, since two fields are acting on the same
atom we may have to account for their mutual degree of
incoherence. " This cross-correlation also arises if the two
fields are different modes of the same laser or if the
second field is obtained from the first by splitting and fre-
quency conversion. More specifically, we assume that the
fluctuations in the phase and amplitude are statistically
uncorrelated, described by independent Gaussian distribu-
tions. The statistics of phase fluctuations are described by
the phase diffusion model in accordance with the well-

known I.angevin equations for the phases:

dpj /dt =p J(t), (2.4)

where 1u~(t) is a Gaussian white noise with the properties
(we use bold curly brackets to indicate an average)

{p,(t)] =0,
[A .Apq]=Amq&nt Atm&q—

We assume that the applied fields are described by

(2.2) (2.5)

Here y„represents any cross-correlations that may be
present between the lasers.

The amplitude fluctuations are assumed to be described
by a Gaussian process with the mean and correlations
given by' '

{E,'"(t)]=0,
(2.6)

e exp( —y, ~

t —t'
~

), j=k
J

{E, (t)Ek (t')]= '
2e» exp( —y„~ t —t'

~
), j~k

FKJ. 1. Schematic diagram of a three-level atom interacting
with two monochromatic fields.

where e&2 and y are the parameters accounting for the
cross-correlation between the lasers.

In order to obtain the atomic observables averaged over
phase and amplitude fluctuations, it is convenient to
derive a master equation for the density operator averaged
over the fluctuations. First we treat the phase fluctua-
tions.
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8. Phase-averaged density operator

%e introduce the transformation

W~(t) = exp[ —i (ppi+qp2)]

&«xp I
—1 [(01+42)A11+42A 22] j

&)o exp [1[(41+6)A»+AA22) j

in (2.1) and obtain the equation obeyed by Wi'~(t):

dW~(t)/dt =[Lp —i/i(p+L, )

i/—2(q+L2)+L3] W~(t),

(2.7)

(2.8)

where

LpW~(t)= —iai[A12+A21, W ]—ia2[A23+A32 W ]
—yi(A11 W + W A 1 1

—2A21 W A12)

y2(A22 W + W A 22 2A32 W
A 23) ~

The master equation (2.14) in the absence of amplitude
fluctuations has been solved numerically in Ref. 8 to ob-
tain the steady-state populations and the fluorescent spec-
tra.

C. High-field limit and amplitude fluctuations

We note in (2.14) that the operator L3 which contains
the fluctuations in the field amplitudes does not commute
with the remaining terms. Thus it is not immediately
possible to derive an equation for [ W~(t) j, z, the density
operator averaged over both phase and amplitude fluctua-
tions. However, considerable simplification results if we
assume the fields to be strong. Indeed, in this high-field
limit, the master equation for [ W~(t) j, ~ may be easily
derived from (2.14). For this purpose, it is convenient to
introduce in (2. 14) a set of new dressed operators B,J relat-
ed to the operators A;J as follows:

L, W~(t)=[A„, W~],

L2 W~(t) = [A 1 1 +A22, W~),

L3 W~(t) = i [d 1—E'1"(t)/2][A12+ A 21, W~]

—i [d2E2" (r)/2][A23+A32, W ],
aJ chEJ(0——)/2 (j =1,2) .

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

B„=I,A„+r,A„+i,r, (A „+A„),2 2

B22 ~ 22

B33 ~2A11+I 1A33 I 11 2(A13+A31),2 2

B12 ~1~12+I 2~32 B2]

B, =I,I' (A„—A ) I,A—, +I A, =B, ,
2 2

(2.17)

The next step is to obtain the master equation for

[ W~j, the transformed density operator averaged over
the distributions of the phases $1(t) and $2(t). Since

pJ(t) rep——resent 5-correlated Gaussian processes, the
theory of multiplicative stochastic processes' yields an
exact equation for the evolution of [ W~ j:

B23 I 2~21 I 1~23 B32 ~

where

I J
——a~/Q, Q=(a1+a2)'~ (2.18)

d [ W~~(t) j /dt

= [Lp y, , (p +L 1
)' —y, ,(—q +L2)'

—2y..(p+Li)(q+L2)+L3][ W~(t) j . (2.14)

Note that the transformation matrix is real and orthogo-
nal and the new operators satisfy the same commutation
relations as the old.

Next, we go over to the interaction representation by
defining

The density operator [ W~(t) j may be directly used to
compute the one-time expectation values of the atomic
operators averaged over the ensembles of the phase fiuc-
tuations. In particular, the phase-averaged expectation
value of the operator Akk connecting the diagonal states is
given by

[TrAkkP j TrAkk [ W j =
& Akk &pp

On the other hand, the phase-averaged expectation values
of the operators connecting the off-diagonal states are
given by

[ W~ j = exp[i Q(B,2 +B2, )t] [ W~ j

&(exp[ —i Q(B12+B21)t] (2.19)

d [ W j/dt = [Wp i [I",i), (t—)+ I 2g2(t)]W, j [ W

whereby the resulting master equation for [ W~(t) j splits
into two parts: one containing no oscillatory terms and
the other containing rapidly oscillating terms like
exp(+i Qt) and exp(+2i Qt) Making the s. ecular approxi-
mation, that is, neglecting the oscillatory terms and re-
verting back to the Schrodinger picture, we arrive at the
equation

[(A„&j=[T(A„)j=T (A„[W' j)=(A„&,
(2.16)

[(A23 & j = [Tr(A2310) j =Tr(A23[ W j)—(A23 &pi

where the operators Wp, W1 and the quantities gJ. have
the following meaning:
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Wo[ W~}= —in[8]2+82], [ W~j] —[(2c+g)/4][(8]]+822)[ W~}+[ W~j(8]]+822)]

+[(c+g)/4][(8„—8 )[W~}(B„—8 )]+[(c—g)/4][8, [W~}8, +8, [Wt t}B,]
+[(3c+g)/4][812 [ W~ }82]+821[ W }8]2] a (P~'V)[ W } b(P~1)[833& [ W

—(e/4)(8, 3 [ W~}+ [ W~}833—2832 [ W~}833)

+f(8]3[W }813+831[W }831 823{W }823 832[ W }832)
—(a+f)(823[ W }+[ W }832—8]2I W~}83]—823[ W }822)

(b—+f)(8]][ W~}+j W~}8]]—82] [ W~}8]2—822[ W }822),

W][ W~}=[8]2+82],[ W~}],
rtj(t) = [dJEJ'"(t)]/2 .

(2.21)

(2.22)

(2.23)

The various constants occurring in (2.21) have the follow-
ing definitions:

a(p~9)=p ye]+9 ye, +2pqycc ~

b(P, q)= (Py, , +Cy„)(21 2
—I ])

where

p =in[(a +f)l(b +f)],
D =Tr[exp( @833)]—

=2+exp( —]M) =(2a +b+3f)/(a +f) .

(2.33)

(2.34)

a =yiI 2 b =y2I t c =yiI i+yzI 2
2 2 2 2

g +4(~2 ~1)[y,, ~2 y ~1 y ( 2 ~1)]

f=I ]I'z(y.
, +y.,+2y-»

g =y, I ]+y, I 2
—2,y„I )I 2 .

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

&822&~=&8]] &~

& 833 &00
——(b +f)/(2a +b+3f),

so that

[&&»&}...=&» =I'&8 & +I'&8 &

(2.36)

(2.37)

The solution (2.32) is useful for obtaining the steady-state
populations in the three levels. First note that

& 8]]&oo ——Tr(B]]W ) =(a +f)/(2a +b+ 3f), (2 35)

Since the operator W] multiplying the stochastic func-
tions rt](t) and ri2(t) commutes with Wo, it is now possi-
ble to apply the theory of multiplicative stochastic pro-
cesses to obtain the following evolution equation for
[W~(t) j, p

d [ W~(t) j, ,/dt =[&0—rt2(t)&2]] [ W~(t) j, , (2.30)

where

rt2(t) = d ]e]I'][1—exp( y, ,
t)]/—4y, ,

+d 2~2r2[1 —exp( —y, t)]/4y, ,
+d]d2E]21 ]I 2[ 1 exp( y—t) ]I'4y—„ (2.31)

[ W~}, ~=0 (p, q&0),

[ W~}, ~=D 'exp( —@833),

(2.32a)

(2.32b)

The master equation (2.30) has two important properties.
First, the equation describes a Markov process even
though the evolution operator contains time-dependent
coefficients. This property arises from the fact that the
operators rt (t)W] and Wo commute for all t The Mar-.
kovian character of (2.30) in turn implies that the quan-
tum regression theorem is applicable and it is possible to
obtain two-time correlation functions from the one-time
expectation values of the atomic operators. The second
property of (2.30) is that it admits the steady-state solu-
tion

and similarly

+l,r,(&8„& +&8„& )

= (a I ]+b I 2+f) l(2a +b +3f)

(2.38)

& O & =Tr(OW ) .

The equations for &8J &~ are as follows:

d&8» &~ldt = iQQ~ —y&8» &—~+(a+f)&833&pq

—[(3c +g) /4+2rt'(t)]X~,

(3.1)

[ &&22&}, p
—&822&0]]——(a+f)l(2a+b+3f),

[&833&j, ~=(aI 2+bI ]+f)/(2a+b+3f)
It is clear that the steady-state populations are affected by
the phase fluctuations alone. The fiuctuations in the field
amplitudes have no effect on them at least in the high-
field limit.

III. FLUORESCENT SPECTRA
AND INTENSITY CORRELATIONS

A. One-time atomic operator averages

It is straightforward to obtain the equations for the evo-
lution of one-time atomic expectation values averaged
over the ensembles of the phase and amplitude Auctua-
tions. For an atomic operator, we define the average as
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=(Bii) +(822)

& =(Bi2& +(82i&

y(p q)=a(p q)+b+f+[(5c+3g)/4)

(3.11)

(3.12)

(3.13)

y(p, q) = a (p, q) +a + [(b +c +3f)/2]+ [(e +g) /4],
(3.14)

d(822)~ldt =iQQ~ —y(822)~+(a+f)(833)~
—[(3c+g)/4+2rt (t))X~, (3.3)

d (833 )~ /dt = —[2(a +f) +a (p, q) ](833 )pq

+(b +f)X~+, (3.4)

d(8„&~Idt = i Q—X~ —y(Big)~

+ [(c—g)/4] (82i )~ —2' (t)g~, (3.5)

d (Bpi )~/dt = iQX~ —y(82i )~
+ [(c—g)/4) (8» &~+2rt'(t)g~,

d (8» )~/dt = i Q(82' )~ [y+—b (p, q) —ri (t)] (Bi3 )~
+f&8» &„, (3.7)

d(83i )~/dt = iQ—(832)~
—[y —b (p, q) —ri'(t)] (8» )~~

+f&8„&„, (3.8)

d(823 & Idt iQ&813 )pq ly+b (P q) I (t)l(823 )pq

(3.9)

d(83$)~ldt = iQ(—83i)~ —[y b(p, q) ——rt (t)](832)pq
—f(823) (3.10)

where we have used the notation

y2(p q) y(P q}+b (P q}

y~(p q) =T(p q) —b(p q) .
(3.15)

Next, in addition to X~ and Q~ defined in (3.11) and
(3.12) we need to introduce two pairs of new quantities

y„'- =&8„)„+&8„)„,
g„-' =&8„)„+&8„)„.

(3.16)

(3.17)

It is easy to see that the nine equations (3.2)—(3.10) split
into a single equation for P~+ and four pairs of coupled
equations:

dP~ Idt = yo(p q—)W~

dX~+ Idt = —yX~++2(a +f)(Bp3 )~,
d(83')~Idt = (b+f}X~

—[2(a+f}+a(Pq)]&833&

dX~ Idt = [y i(p, q—)+4' (t)]X~ 2i Q—P~,
dg~ldt = 2i QX—~ [y,(p, q)+—4' (t)]g~,
d0~/« = [tQ y2(p, q) —n(t)]4~—fP~—
dQ~ Idt = [iQ—y3(p, q) —rt(t))g fP~, —

d4~/« = [iQ+y (p—»q)+n«)]4 fs'—
dg~ldt = [iQ+y3(p, q—)+rt(t)](~ fP~ . —

(3.18)

(3.19a)

(3.191)

(3.20a)

(3.201)

(3.21a)

(3.2 lb)

(3.22a)

(3.22b)

For the computation of the fiuorescent spectra we need
the Laplace transform of the above variables. Taking the
Laplace transform and solving the resulting pairs of
simultaneous algebraic equations we obtain

Q~(s) =g~(0)/(s +y),
[s +a (p, q)+2(a +f)]X~(0)+2(a +f) (833(0))~X~(s)=

[s +a (p, q)][s +a (p,q)+2a +b +3f)
[s +a (p,q)+ b +f](833(0))~+(b +f)X~(0)

833(s) qq
——

[s+a(p, q)l[s+a(p q)+2a+b+3f]
I fs +P+ l+y i(p, q)].g~(0) 2i QX~(0—) j Ai

Fi (s +P+ A. }
w(s) =

I [s +P+A+y i(p, q), ]X~(0) 2i Qg~(—0) I D iX~(s)=
{kj F, (s +P+A, )

I [s +P/4+ A +y3(p, q) i Q]P~(0) —fg~(0) I b 2—
F2(s +p/4+ A. )

I [s +P/4+A. +yi(p, q) i Q]g~(0) f/~(0—)I52—
pq(s) =

Fz(s +P/4+ A, )

I [s +f3/4+X+ y3(p, q)+i Q)P~(0) fg~(0) I 62—
~(s) =

F3(s +p/4+iI)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30}
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-+ I [s+P/4+~+y2(p, q)+iQ]S~(0) f0~(0)}~2
~(s) =

F3(s +P/4+1, )
(3.31)

where f(s) denotes the Laplace transform of f(t}, I k J

implies summation over k, ,k2, k3 ranging from 0 to 00,
and the other notations used are as follows:

The definitions (3.11) and (3.12), and (3.16} and (3.17),
then allow us to obtain the Laplace transform averages
(8,1(s)) of the atomic operators.

yo(p q) =y(p, q)+c+g,

y i(p q) =y+(3c+g)»
~=~(ki k2 k3) k ly +k2y +k3y

B. Fluorescent spectra in the steady state
(3.32)

The steady-state fiuorescent spectrum for emission
from the upper excited level

l
1) is defined as

(3.33)

Gi(oi}=ReI exp[ i'(Q—3 Q—i)r]( IAi2(r)&2i ], p)„drk)6 (k,k,k )=exp(5) g ( —5J) 'Ikj!,
=R [[(a„(}a„(0))„],, l. ..„„,,]. (3.41)(3.34}

2(k I +k2+ k3 )

b2(k, &k2&k3) =b i(ki, k2&k3)/2
Now from Eqs. (2.16), (3.12), and (3.17) it follows that the
phase- and amplitude-averaged expectation value of
A i2(s) is given by

P.=d e I /y, (.j=1,2),
(3.35)

P3=did2ei21 il 2/y
2

5J =P/ly, (J' = 1,2), 53 ——P3/y~,

P=Pi+P2+P3, 5=5i+52+53 .

t &~„(.)&],=(~„(.))„
=l, (8„(s))„+l,(8„(s))„
= (1 /2)[iTI+o(s)+f o(s)]

+(12/2)[bio(»+bio(s)] .

(3.36)

(3.37)

The functions Fi(s), F2(s), and F3(s) are defined as
(3.42)

Fi(s)=[s+yi(p, q)] +4Q

F2(s) = [s +y2(p, q) —i Q][s +y3(p, q) —i Q] —f',
(3.38)

The right-hand side (rhs} of (342) is next expressed in

terms of (8;J(0}) io using Eqs. (3.23)—(3.31) and the quan-

tum regression theorem is app1ied to obtain

[(Ai2(s)A2i(0)) J, p. The analytical expression for the

upper spectrum then reads as

(3.39)
F3(»=[s+y2(p q)+iQ][s+y3(p»q)+iQ] —f'

(3.40)
I

yo(1 o}

yo(1,0)+(Qi —Q i )
8ii ooGi(oi) =

f+(1,0)y (1,0)

y (1,0) +(Q3 —Q2 —Q)'

(3.43)

G2(co) =Re exp[ i (co —Q2)r]—
0

where (8ii )oo and (833 )oo are defined in Eqs. (2.23) and
(2.37), respectively, and the other notation is as follows:

x & [~„(.)~„]...&„d.

=Re[[&~23(»~32(0)& 1 p I, (n, )]=.«»q) =[f'+b'(p q)]'",

f (p, q) =f(p, q)+b (p, q)-,

y (p»q) =y(p»q)+f(p, -q)+P/4+~.

(3.44)

(3.47)

lt is clear «om Eqs (2.16), (3.12), and (3.16) th t

(3.46)
[ & ~23(s}& ]»mp= & ~23(s) &oi

The steady-state averages (8» )Qo and (833)QQ are given
by (2.35) and (2.3'7), respectively.

The steady-state spectrum for emission from the 1ower
excited level

l
2) is similarly defined as

= (1 2/2)[go+i(s)+/oi(s)]

—(I'i/2)[p Q+i(s)+$ Qi(s)] ~ (3.48)

(8 ) ~ ~ (k) f (1,0)y+(1,0)
4f(1,0) (k} y+(1 0) +(Qi —Q —Q)

p2 yi(1,0)+P+A,+ &8ii &oog ~i«) , +(Q -Q)
4 [y i(1,0)+P+ A, ] + (Qi —Qi —2Q )
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+
and a 1 in the regression theorem we obtain i i3 3i I gampi, A (s)A }(3.44) the solutions for poi(s) and oi s an app yinnsertcng in

f m thelevel ~2) isand hence the fluorescent spectrum for emission from t e

p2 yo(0, 1)

p2 f+(0, 1)y+(0, 1) f (1,0)y-(1,0)
,0) ( —Q —Q)' y (1,0)'+( —Q, —Q)'4f(0 1) (k) y (1 +

p2 yi(0 1)+0+~
(3.49)B &

~ ~ (k)
Ikj f$ s

in s. (2.36) while the other quantities have the meaning given in Eqs.iven in E s. 3.44)—(3.46).where (Biz)oo is defined in Eqs. . w i e e o
hat complicated and it may be worthwhile to dis-The expression ( . ) an3.43) and (3.49) for the fluorescent spectra are somew a comp

'

We irst consider the case w en uc ua ionh fl tuations are absent so that the parameters a (p, q),cuss at first some special cases. We
I, and related to the amplitude fluctuations

0

b(p, q), e, f, and g, rela o pted to the hase fluctuations and the quantities, , an y re a
k =k =k =0 alone survive in the sums on the rhs of Eqs.all zero. Consequently, the terms corresponding to i

—— i —3 — a olleare zero.
(3.43) and (3.49). Thus, the spectra, in absence of fluctuations,

'
ptions have the simple form

+— +(Q —Q)
2(2a+b) '

yo+(r0 —Q;)i 2 y +(a) Q; ——2Q)

, +(Q~ —Q)
y~+(co —Q; —Q)

(3.50)

where i =1,2 and

(3.51)A;=al';, Bi ——bi'i, Bg ——Ai,

yo ——b+c, y= b+3jc,2y=a+(b+c)/2 . (3.52

It is clear from these expressions that, in general, the spec-
tra are symmetric and have five peaks. The peaks corre-
spond to the central Lorentzian of width yo at the excita-
tion frequency and two pairs of side bands located at
co=Q;+Q and oi=Q;+2Q (i =1,2) with widths y and y,
respec jveectively. Although the positions (as measured rom
the respective excitation frequency) and the widths o e
peaks are the same for both upper and lower spectra, the

1

heights of the peaks differ for the two spectra. For exam-
ple, consider the extreme cases a»&ai and a, &&az. In
the former case, the lower spectrum Gq(co) shows two
prominent peaks at co=Q2+a& and the three smaller ones
at co=02 and co=02+2a] are considerably suppressed;
the upper spectrum Gi(o~) shows all five peaks at co=Q„
oi=Qi+ai, and co=Qi+2ai [Fig. 2(a)]. In the latter case,
the upper spectrum shows five weak peaks as before but
the lower spectruin shows prominent peaks at co=Qz and
co =Qz+2ai while the peaks at co =Qz+az are suppressed
[Fig. 2(b)]. These analytical results are in agreement with
the dressed-atom treatment of Cohen-Tannoudji and ey-
naud and also with the numerical results of Whitley and

a,o-

8.0.

64 u, =M O(, =5

"gl = I QP = 356- UPPER

81=5 0(i)=50
lq=3

C9

4.0-
0

3.2-

4.8-3-

2.4-
LONER 2.4.

0.8-

-80.0 -40.0 40.0 80.G -80,0 -40.0

/) /

i

40.0 80.0

FIG. 2. Optical-double-resonance emission spectra in absence of Au
~ ~

ence of fluctuations: (a) al &~a&, (b) aq ~&a&.
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Stroud. ' Thus, in absence of fluctuations, the present
dressed operator formalism is found to be equivalent to
other approaches and is expected to yield correct results
even when fluctuations are considered.

Next, me ignore the amplitude fluctuations but retain
l

the phase fluctuations. Since the parameters P, k, , y per-
taining to amplitude fluctuations are all zero, the sums on
the rhs of Eqs. (3.43) and (3.49) reduce to a single term
corresponding to k~ ——k2 ——k3 ——O. The analytical expres-
sions for the spectra take the form

G;(Q) = Fi
(y, ) +(co—Q;)

7l
, +(Q -Q)

y;+(co —Q; —2Q)2

+ + 2 2+ 2 2 +(Q~ —Q)
(y,+)'+(~—Q —Q)' (y ) +(co—Q —Q)

(3.53)

with the following notation:

F; =(r,'/2)(8„) (i =1,2),
G~l (~2/4f1)f1 y1 &&33 ~00

62 —(1 2/4f2)f 2 y2 (~11 ~00

( ~11 ~00 (~22 ~00 (& +f)/(&& +b +3f»

( +33 )00= (b +f) /( 2' +b +3f)

(3.54)

(3.55)

(3.56)

(3.57)

f (f2+ b 2
)

1 /2f + f
b1 b(1,0——), b2 b(0,——1),
y-;= a +(b+c+3f)/2+ (e+g)/4

+(f2+ b 2)1/2
l

y; =b+c+f +g+y, ,

y; =(3c +g)/2+ b +f +y,,

(3.58)

(3.59)

(3.60)

(3.61)

7.2-

0(',
(

= 0('2 = 20
3)'( = I

34

0-

F

-40.0-80.0 40.0O 80.0
(&-~()

FI~. 3. Fffect of phase fluctuations on the fluorescent, spectra for the upper transition: curves A —C correspond to y, =0 and'2

y, =0, 1,2, respectively. Curve D represents y, =0, y, =2, while Eis for y, =y, =3. In all these curves y„=0.
1 1 2 I 2
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trum (3.53) inof the analytical spectru
fluctuations is t a epr

f oitio oft+0 arises rom a sup'd bands at co=A;
I the absence ofL rentzians of un q

os - =0) the mayor eoss-correlations ( y~ =
1 k as well as the re-

cros-
ress the centra pea astuations is to suppress

ot ideba d s
'

ig.
several values of y, ,y,are shown for sev

ex ects that the Starkare increased one expects

with

widths y, ,y, , ar

Stark dou e s
'

d bl ts in agreement witquin
f R f 8. 0 th othmerical results o e .the completely numerica

set of the bandwt t p'dth arameters y, andhand, for a fixed se
'

n bandwidth y„re-e in the cross-correlation any, , an increase in

sidebands with ansion of the near st esu its in the suppres
'

central pea ank d the remote side-enhancement of the c
A —E in Fig. 4 wherebands. This is clea .

' '
ar from the curves
are shown or severaral values of y„athe upper spectra are ra

for ag enseto p
to the expressionsy,

uo es ps ectra from t e uppe
hexcitation levels whic. .'

h contain t e e

fl ctuations. The analytical spectrahase and amplitude uctuations. s ectrap '
h a central peak at co =are symmetric with a

=Q. +20. The contribu-
idth of each of these

=0 +0 and co=

i fi it
tive height and wi

a su erposition osl
oca 'd b d center withocated at the si e anber of Lorentzians loca

the parameters de ending on
). I i Io I

h t hase fluctuations af-
ll h id b d hil

h idb d dhamplitude fluctuation I si
'

ns affect only t e si
no effect what soever on the centra pea s.

t ation parameters, an '-in-
d 'dh h h

f am litude uctua ion
e

a ht d i th dt
the hase ban wi

seffect of decreasing the heights an inc

b d idth r t, ,y„
ral and side peaks.
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O(, =0(p =20
'2I, =I

= Qc = Ice=0.5

32
I

-80.0 -40.0 40.0 80.0

FIG. 5. Effect of amplitude fluctuations on the fluorescent spectra for the upper transition: curves A —D correspond to
y, =y, =y =0.5, and (e„ez,e,z) are (0.5,0.5,0.5), (1,1,1), (2,2,2), and (3,3,3) while E is for y, =y, =y =3 and e~ ——e2 ——e~2 ——0.5.

In all these curves the phase parameters are y, =y, =y =O. 5.
1 2

in Fig. 5. Further, it is seen from the analytical expres-
sion and curves A —D of Fig. 5 that given a set of phase
parameters y, and y„and amplitude bandwidth parame-

ters y, and y an increase in any of the amplitude pa-

rameters P; does not influence the central peak but leads
to a reduction of height and a broadening of the side
peaks.

C. Intensity-intensity correlation function

The nature of the fluorescent light emitted from the ex-
cited levels

I
1) and l2) may be understood from the

second-order intensity correlation functions. We define
these correlations in the steady state as follows:

gpss'(r)

= I (A (2& )2(r)A2((r)A2) ) ), p/ I I (A,232, ) j,
=(~»~»(r)"» &no~ I

(~» &on I' (3.62)

g22 «)= I &~23~23(r)~32(r)~32 & lamp~ I I (~23~32 & jump l

=(a„a„( )w„) yl(w„) (3.63)

and
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(3.65)

( )w )j.
(3.64)

(2)(r) [ ( g i~+ 23( r 332 & 21 ~~P

n the hotons emitted at time t =0 and at time
f h mb bili ofdtion level. On the other hand, g, 2

=0 d oh hoo
rom e

u er excitation level at time I: =hoton emitted from the upper exci a

( r) )oo and ( A 22 ( r) )oo and

p o u erexc~a

he ex ectation values
ob-

f t' ns one first obtams the e p
m

'
. The expectation values

he correlation unc ion
A (w) Ooan 22' oo(;i f h

evaluated after taking the mverse. The latter can be eva ua e aquent y emp r t e ex ec~y g "p

do 1 io fanalytical results for the second-order corre a
'

—l [—(2 +b+3f) ]2[I'(a +f)+I,'(b +f)]

Ar co—s 2Qr),pI —[P+) (oo)] ]g~ p( —~
2[1 (a +f)+I 2(b +f)]

1.20-

0.90-

~ 0.75-

0.60-

0.45-

0.30-

0 0.20 0.40 0.60 0.80 (00

rves A —D corre-rrelation function orf the upper transition: curvefluctuations on the intensity-intensity corr
) are (0,0), (0.5,0.5), (1,1), an, , rspond to y =0 and {y,, y, ) are



33 OPTICAL-DOUBLE-RESONANCE SPECTRA AND INTENSITY-. . .

T

(2) I 2(b+f)
g22 = &+ 2(a+f)

—I'i exp[ —(2a +b +3f)r]

I 2(2a+b+3f)
2(a+f) expI —[P+yi(0,0)]r}g 6, exp( —kr)cos(20'),

gi2(&)= l+ b+f
2(a+f) exp[ —(2a +b +3f)r]

2a+b+3f+ exp t
—[p+y~(0, 0)]r J g b,

~ exp( —lr)cos(2Qr) .
2 a+ IkI

(3.66)

(3.67)

It is interesting to note here that first two correlation
functions vanish at v=0 and increase towards unity for

lonII times r. The second-order correlation function

gI2 (~), however, does not vanish at r=0, which implies
that there is a finite probability for simultaneous emission
of two photons of frequency Qi and frequency Qz. It is

clear from these expressions that in the absence of fluc-
tuations both g'i, '(r) and gzz'(r) show the expected oscil-
lations through bunching and antibunching cycles decay-
ing to their steady-state value of unity. The phase and/or
amplitude fluctuations tend to reduce the amplitudes of

these fluctuations without changing the qualitative nature
of these curves. This is indicated in Figs. 6 and 7 where
gIi'(r) is plotted versus r for soine representative set of
fluctuation parameters. We might mention here that the
effects of cross-correlations y„on the behavior of gIi'(r)
and gzz'(r) cannot be distinguished from those of the
self-correlations y, ,

and y, , In order to look for the

cross-correlation effects one has to rely mainly on the
behavior of the fluorescent spectra. Also as is seen from
curves A Eof Fig—. 7 the intensity-intensity correlations
are relatively less sensitive to the variation in the band-

0.90

0.75-

0.60
0(,(=0(p= 20

0.45
'III'c(= ~c~= ~cc=0 5

0.30-

0 0.20 0.40 0.60 0.80 I.OO

FIQ. 7. Effect of amplitude fluctuations on the intensity-intensity correlation function for the upper transition: other data as in

Fig. 5.
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width parameters y, , , y... and y„as compared to the in-

tensity parameters ei, ez, etz of the amplitude fluctuations.

IV. SUMMARY AND CONCLUSION

In this paper we have made a systematic study of the
effects due to finite-bandwidth excitations on the optical
double resonance. For this purpose, we assumed that fin-
ite bandwidth arises from phase andjor amplitude fluc-
tuations. The phases follow the usual diffusion model
while the amplitude fluctuations are described by colored
Gaussian noise. Under these assumptions and when one
or both of the driving fields are intense, we have derived
an appropriate Markovian master equation for the
atomic-density operator averaged over the both phase and
amplitude ensembles. This master equation is further
used to derive analytical expressions for the fluorescent
spix:tra as well as second-order intensity correlation func-
tions. These analytical results exhibit explicitly the effects
due to phase and amplitude fluctuations. We found that
the emission spectra are considerably affected by fluctua-
tions in the exciting fields. In particular, the main effect
of the phase diffusion on the spectra (which represent
Stark quintuplets) is a decrease in the intensity and

broadening of both the central and side peaks. On the
other hand, the amplitude fluctuations affect only the

sidebands. Cross-correlations between the lasers have sig-
nifican effect on the spectra. In particular, cross-
correlations in phases tend to suppress the near sidebands
but increase their intensity and reduce the width of the
central peaks as well as the remote sidebands. The effect
of fluctuations on the second-order intensity correlation
functions is less significant. Fluctuations tend to reduce
the amplitudes of the bunching and antibunching oscilla-
tions but do not change the basic character of these func-
tions.

We have not considered the detuning effects in the
present paper. However, with some modifications, our
formalism is applicable to this case also. It is then possi-
ble to study analytically the excitation bandwidth effects
not only on the fluorescent spectra but also on the
Autler-Townes doublet. We hope to report the details of
these interesting aspects in a subsequent paper.
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