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Laser-induced bound and metastable states in bound-continuum systems
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A monochromatic laser is shown to be capable of inducing a bound state and multiple metastable
states not originally present in the field-free spectrum of a bound-continuum system. For the bound
state to exist, the field intensity must be larger than a certain frequency-dependent critical value.
The widths of the metastable states are found to be in general proportional to renormalized field in-
tensities rather than the physical field intensity. The energies can be classified as being in the meta-
stable or unstable regimes, depending on whether the observed widths are smaller or larger than the
corresponding "bare" widths predicted by perturbation theory. The relation of the Fano or laser-
induced "autoionization" states to the scattering states is also demonstrated.

I. INTRODUCTION

Systems involving interactions between bound and con-
tinuum states present many interesting features in their
spectral properties. The classic example is that of config-
uration interaction in atomic autoionization, whose spec-
tra exhibit characteristic asymmetric peaks. Usually, the
bound-continuum coupling is considered to be completely
system dependent, so that the spectral structure is fixed
once the system is specified. The introduction of a laser,
however, changes the situation drastically: The radiative
bound-continuum coupling can readily be manipulated by
varying the laser characteristics so as to produce many
novel spectral features in a given system. Very interesting
studies of this situation have recently been carried out on
the processes of laser-induced autoionization and pho-
todetachment of electrons from negative ions. s " In the
former group of studies it is found that many details of
the radiative interaction, such as radiative decay of the
unperturbed continuum, phase fluctuation and relaxation
of the atomic system due to both atomic collisions and
laser-phase fluctuations, and even weak couplings between
the electron and photon continua, can lead to very distinc-
tive features in both the electron (autoionization) and pho-
ton (fluorescence) spectra. In the second group of studies,
results of particular importance are the possibility of pop-
ulation trapping (formation of bound states) due to the in-
terference between continuum-continuum transitions, '

and the nonexponential time-decay due to threshold ef-
fects when the laser is tuned near the continuum thresh-
old '

In most of these studies, the coupling mechanisms be-
tween the bound states and different continua are quite in-
volved. In addition to radiative bound-bound couplings,
there are both the field-free configuration interaction and
radiative bound-continuum couplings. In some cases,
continuum-continuum couplings, both of the electron-
electron and electron-photon types, are also treated.
Voile such coupling schemes may be typical in many sys-

tems, they are perhaps not the most suitable for studying
the effects due solely to the radiative bound-continuum
coupling.

In this paper, we make use of the simplest possible
model, discussed in Sec. II, to focus exclusively on this
coupling and present a systematic study of the spectral
problem associated with it. This case already brings into
focus several interesting basic features in the bound-
continuum spectrum which have largely been ignored pre-
viously. The generality of the model also makes it suit-
able for the investigation of a variety of other problems
involving charge-transfer in molecular systems, such as
gas-phase collisional ionization (Penning and associative)
and neutralization (negative-ion formation) of impact ions
in surface scattering.

An implicit assumption of many previous works is that
the spectral range is invariant with respect to the "rediag-
onalization" imposed by the bound-continuum coupling.
Thus, if the unperturbed spectrum consists of a discrete
state embedded in a continuum, the exact spectrum is as-
sumed to be just the continuum. In Sec. III this is found
to be untrue if the coupling strength is larger than a cer-
tain frequency-dependent critical value. When this condi-
tion is fulfilled, a true bound state appears whose energy
is lower than the threshold of the continuum. Its exact lo-
cation depends critically on both the field strength and
frequency of the laser. This fact makes the laser an ideal
tool for inducing a "tunable" bound state originally not
present in the field-free system.

The existence of a metastable state with energy centered
near the energy of the unperturbed discrete state and a
width directly proportional to the coupling strength is
another frequently-exploited implicit assumption. In
Secs. IV and V we show that when the coupling strength
is large and strongly energy dependent, this assumption
does not hold. Indeed, even when there is only one unper-
turbed discrete state, the laser may induce more than one
metastable state whose energy levels bear no simple rela-
tionship to the energy of the unperturbed discrete state
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[Eq. (37)]. This comes about because of the special prop-
erties of a principal-value Cauchy integral [Eq. (34)] usu-

ally taken to represent the line shift and conventionally
discarded. In the case of strong radiative coupling, this
quantity turns out to be of paramount importance. In
Sec. IV a specific model expression for the coupling [Eq.
(44)] is used in the calculation of this integral to demon-
strate explicitly its effect on the energies of the metastable
states (Figs. 3 and 4). Just as in the case of the bound
state, the laser-induced metastable states are also found to
be tunable by variation of the laser characteristics, but in
a more subtle way than first expected. The principal-
value integral also critically affects the widths of the
metastable states through the requireinent of coupling-
constant renormalization when the field strength is large.
Thus it is shown in Sec. V that the physically observed
widths are not directly proportional to the physical field
intensity but to a renormalized field intensity which may
be larger or smaller than the physical one, depending on
the energy of the metastable state. For a given physical
field strength and frequency, we show that the energy
range of the continuum may be divided into three re-
gimes: the metastable regime, where the renormalized in-
tensity is smaller than the physical one (line narrowing};
the unstable regime, where the renormalized intensity is
larger than the physical one (line broadening}; and the un-

physical regime, where the renormalized intensity is nega-
tive. These results point to the fact that in addition to the
energy levels, the lifetimes of the metastable states can
also be "tuned" by the laser.

In Sec. VI we apply the foregoing results to a derivation
of an expression for the dissociation or recombination
spectrum [Eq. (68)). It is shown exactly how the reso-
nance peaks of the metastable states appear and how they
are infiuenced by the nonresonant background. Of special
interest is the fact that in the case where a true bound
state is present, an extra term [the first term inside the
large parentheses in Eq. (68)] is added into the non-
resonant background which is especially important near
the dissociation threshold [Fig. 4(b)].

In considering the bound and metastable states we have
found it ne:essary to introduce the scattering states,
which are continuum eigenstates of the total Hamiltonian
of our model. Not only are these states extremely impor-
tant within the structure of the theory, as shown in Sec.
IV, but they are useful in the direct calculation of the S
matrix from which information on both bound and meta-
stable states can be drawn. They are also the basic in-
gredients out of which eigenstates satisfying various boun-
dary conditions can be constructed. In particular, the
Fano states, which lead to the asymmetric profiles men-
tioned at the beginning of this section, are just standing-
wave combinations of the outgoing and incoming scatter-
ing states. This is demonstrated in Sec. VII.

forms it has become the prototype model of many bound-
continuum problems in diverse fields of physics. ' In the
present work we adapt it to the radiative coupling case
and provide a derivational and interpretive framework
which is unique to that coupling.

We consider the simplest model capable of describing
the laser-induced bound state and metastable states. Fig.
1 depicts schematically the energy spectrum of the model.
The single discrete state, of energy e~, is completely out-
side the continuum band; and the energy gap 5, separat-
ing e~ and the continuum (dissociation} threshold p, is
taken to be sufficiently large such that there can be no
field-free bound-continuum interaction. A radiative
bound-continuum interaction, however, can be induced by
a laser with frequency co & b, (fi set equal to 1). We can
thus write the Hamiltonian as

H =Hp+H',

where

Ho eqcqc—q—+ g ac~, +acacia„,

H'= g (a„+a„)(V,„chic,+ V,' c~c, ) . (3)

and n is any positive integer or zero. In this representa-

c~ (cq), c, (c, ), and a (a ) are the destruction (creation)
operators for the discrete state, the continuum state of en-

ergy e, and the photon state of frequency co, respectively;
and V,„ is the radiative bound-continuum coupling
strength for energy e. In addition to the simplifying ap-
proximation of a single-mode field, the spin of the photon
(leading to polarization effects) has also been neglected.

The eigenstates [ ~
n~, n„n &I of Ho form a complete

set. Since nq+n, is a constant of motion, we choose to
work in the sector of the entire Hilbert space in which
n&+ n, = 1, with the completeness relation

(4)
n

where

II. THE MODEL

Our analytical work on the metastable states is based on
the Lee model of unstable particles. ' ' Although this
model was originally introduced to treat the problem of
the renormalizability of field theories, ' in several variant

FIG. l. Schematic energy-level diagram for a model bound-
continuum system interacting with an external radiation field.
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&e„ iH id„,&=0 (7)

for all n Ea.ch irreducible subspace can then be labeled

by a fixed n and has a completeness relation of the form

tion all matrix elements of the form &d„~ H
~
e„+i & are

nonvanishing. Thus the entire sector of the Hilbert space
spanned by [ ~

1„&,
~
e„& I is in principle required for the

description of the radiative interaction. This sector, how-

ever, separates still further into an infinity of subspaces,
each invariant under H, if the rotating-wave approxima-
tion (RWA) is made. The RWA simply states that all an-

tiresonant processes are forbidden. With respect to the

energy spectrum of Fig. 1, this means that

3+8
A «+8+co~ t '+e

Using our model,
~ d„+i & would be the discrete state cor-

responding to the molecular-field complex A «+8
+(n+ 1)co and

~
e„& the electronic continuum state with

energy e+n~ above the ionization threshold correspond-
ing to the ion-complex 2+8 or (AB) . In the second
case,

~
d„+i & may be the field-dressed valence state of the

impact ion, and
~
e„& the corresponding field-dressed

electronic band-state of the metallic surface. In the
present work, however, our model has not been adapted
for the treatment of the detailed dynamics of the nuclear
motion in these processes.

I".+i&&d«+iI+ Q I~. &&e. I
=1 .

From now we shall assume the validity of the RWA and
work exclusively in the subspace where n =N is fixed and

nz+n, = l. N will be taken to the number of photons in
the external field and gives a measure of the latter's inten-

sity.
As pointed out in the Introduction, two examples to

which this model can be applied, are the problems of gas-
phase collisional-ionization and charge transfer in ion-
surface scattering. In the first case, typical processes are
of the type

III. THE BOUND STATE

H
i
E(N)&=E

i
E(N)& .

It follows from Eq. (8) that
~

E (N}& can be expanded as

I
«» & =PF.

I
dN+i &+ QXE, I

ex & (10)

It is then straightforward to apply Eqs. (1), (2), (3), and
(10}to Eq. (9}and obtain

We proceed to solve the eigenvalue problem for H in
the subspace specified following Eq. (8). Let

~

E(N) & be
an eigenstate of H:

EI3g
~
d/pi &+ AXE,E

~

E/ & =Px [tg+(N+ 1)co]
~ d„+i &+V'N+1 y V,'~

~
eg &

+ QXE,[(e+Na))
~

eN &+v N+1V, ~d~+, &] .

Multiplying by &dz+, ~

and &eIv
~

leads, respectively, to
the equations

EpE pE[e„+(N+—1)a)]++Xs,v'N+ lv,„(12)

XE~E=13Ev N + 1 Vg„+XEg(e'+ N~),

from which Pz and XE, can be eliminated to obtain

(N+1)
/
V, /'

E [Ed+(N+1)c—o]+ g =0 . (14)
e+Xm —E

I

equation has a real solution E=eh g p. Since

y(E) i f d P I «N

p(p) &~—& . (17)

Thus no bound state can exist if the coupling strength
falls below the critical value given by

is a monotonically increasing function of E for E &p, we
infer that there exists one and only one bound state for
Eq. (15) if

This is the eigenvalue equation for H.
Defining an energy scale such that ¹o=0 and convert-

ing the sum in the last equation to an integral, we have

E (eq+co)+g f d—e =0, (15)
e—F.

where g =—N+ 1 designates a dimensionless coupling
strength that is proportional to the intensity of the exter-
nal field, and p(e) is a density of states appropriate to the
continuum. The possible existence of a bound state can
now be inferred from Eq. (15}. Such a state exists if this

It is also clear that the position of the bound state, e~,
shifts down as g is increased and/or co is decreased, pro-
vided co & b. We are thus led to the following interesting
conclusions: As the intensity of the external field is in-
creased, the latter has the effect of "pulling down" the en-
ergy level of the induced bound state, while, with a tun-
able laser, the same result can be achieved by lowering the
field frequency. Hence, there exists the possibility of
"fine-tuning" the energy of the laser-induced bound state
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where

p(e) V,'„
I de+i & g —f 6' —Eb

(19)

by varying the field strength and frequency independently
or simultaneously.

An explicit expression for the bound state can be given
as follows:

y I
E+-(N) & &E'-(N)

I
=1, g (g,„, (30)

double-valuedness differentiates between the outgoing and
incoming scattering solutions. In Eq. (25),

I Ez )
represents the incident wave and Q,Xb, I

e&) the scat-
tered wave. Given the completeness relation of Eq. (8},
the following completeness relations hold for the scatter-
ing states:

Pb —— 1+g f dE
(e eb —)z (20)

g IE'-(&)&&E-'(N)I+ Ib~)&bb I
=1, g)g,„, . (31)

and eb &p. This result can be easily obtained from Eqs.
(10) and (13) and the normalization requirement

This will be proved in the Appendix.
Using Eqs. (25)—(27), the S matrix for the scattering

process
I eb )~ I Ez ) can be written down directly:

& b~ I bN & =I (21) S,,=5g, 2rri 5—(e' e)T—g,
Thus a system initially in the state

I db +&) has a proba-
bility

Pea= I &bN I&+i r& I'=Pb (22)

of being in the tunable bound state
I b~) at later times.

We also see that the probability of bound-state formation
from a continuum state

I eb ), Pb„ is given by

P,= I &b I e,t) I'= +bg'I V. I

'
(23)

(~ eb)'—

=5,, 1—

where

I p(e)= 2ng—'p(e)
I

V,

=5,, 2mi—5(e' e)&e—~ I

H'
I
e~)

g'I v..I

'
=5,, 2ni5(e—' e)—

h(e+iri)
i I'p(e)

e (ed+co)—+g P(e)+i I p(e) I2
(32)

(33)

IV. THE SCAl l'ERING AND METASTABLE STATES

H
I
E+-(N)) =E

I

E+(N)), p, &E& o-o (24)

I
E+(N)) =

I
E~-)+ QXb, I e~)+PE

I d~+)), (25)

where
I
E+(N) ) and

I
E (N) ) stand for the outgoing

and incoming states, respectively. The corresponding arn-
plitudes XE, and g can be determined unambiguously
from Eq. (24):

To deduce the existence of metastable states, we look at
the continuum-continuum transition specified by the
scattering process

I ez )~
I eIv ). For this purpose we in-

troduce the scattering states IE+-(N)) which are exact
continuum eigenstates of H:

(34)

with P denoting the principal value of the integral. Thus

S =e"""
where the scattering phase shift 5(e) is given by

fe (eq+ar)+g —P(e)]
cot 5(e)=-

Ipse

2

(35)

(36)

e (ed+co)+g P—(e)=0 . (37)

Since resonances occur at energies satisfying 5(e)=n'/2,
the observed energies of the metastable states must satisfy
approximately the equation'

gVb

h(E+iri) '

+ gPE VCR)JET- E —6+1g
where

(26)

(27)

This equation is to be compared with Eq. (15) whose solu-
tion (@=gab (p) for g &g,„, is a pole of the S matrix S«
on the real axis and corresponds to a laser-induced bound
state.

To study the roots of Eq. (37), we now choose a specific
form for p(e)

I V,„I
. The simplest choice for p(e) is the

free-electron energy density of states:

h (z) =z (ay+co)+P(z), —— (28)

and P(z), with z in general complex, is the Cauchy in-
tegral

p(E) =cxv~e @, , —
where a is a constant. If

f«}=
I v-I'— (38)

(39)
P(z}—=gz f de (29)

[cf. Eq. (16}]. This function has a square-root branch
structure with branch point at e=p and a discontinuity of
2img p(e) I V, I

across the branch cut (p, 0o). The

is then assumed to be an analytic function of e which is
real and single valued on the segment of the real axis
(p, 00), and has the property that

p(e)f(e)~0 as
I
e

I
~~,
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the principal-value integral in Eq. (34) can be evaluated
readily by contour integration, without as yet specifying
the form of f(e). Thus,

P(E)—=P I de
P 6 —E

= lima de
'i/e pf—(e)(e E—)

2.-o i' (e E)—+X
a

d (e p, )—'/ f(e)(e E)—= hm dE', E&p
o 2 c (e E)2+$2

where the contour C is illustrated in Fig. 2. It follows
from the residue theorem that

Res[ f(zp)](zo —p)'/
P(E) = gaia g E&p

go
D

(41)
FIG. 2. Integration contour for P(E) [Eq (40)] zo»d zo

are poles of f(e) [Eq. (39)].
where the sum is over the poles zp off(z), and Res[f(zo)]
denotes the residue off(z) at zp. According to Schwarz's
reflection principle, the poles of f(z), if they exist at all,
must exist in conjugate pairs. This guarantees that P(E)
as given by Eq. (41) is always real. We immediately note
that P(E) can be continued to the real values E &p by

P(E):f de — =P(E)/g, E &p . (42)
e—E

This integral can also be obtained using the contour C and
the residue theorem:

P(E)=nia (E —i4)'/2f(E)

continuum. Using Eq. (44) for f(e), Eqs. (41) and (43)
immediately iead to

P&(E), E&p
P(E)=

P)(E)+P((E), E&p,
(45a)

(451)

where

prr [(ep —p) +g ]' [(eo—E)cos8/2+gsin8/2]
P (E)=

«o —E)'+4'
Res[f (zp) J(zp —p, )'/2

+
gD 0 —E Egg .

(43)
p (E) Prr p E

(E—&p)'+ g'

(46)

(47)

It is clear from Eqs. (41) and (43) that P (E), as defined by
Eqs. (40) and {42),is continuous at E=@,.

To lend concreteness to our model, we now adopt a
specific form for f(e)

p

8—= tan '[g/(ep —p)], 0&8&m/2.

(48)

(49)

f(e)=
(e—ep) +g

(44)

where y, ep, and g are real constants, y has the dimensions
of energy, and eo &p may be taken to be an r0-dependent
quantity. This form of f(e) describes qualitatively the
general situation that

~
V,„~ peaks at some value eo(r0)

and is only significant over a certain range g within the

Using the forms in Eqs. (38) and (44) for p(e) and

~
V,„~ respectively, the integral

I=gdm-
(e eb )'—

in Eq. (20) can also be calculated using the contour C in
Fig. 2 and the residue theorem:

g pm 1 1 2(P eb)(eo eb)——
[{~o ~b)'+A &V eb 2 (~—o ~b)'+0'

[(e )2+$2]1/4

a(eo eb) +A—
~ I cos(8/2) [(eo eb ) g]—+2$( e—o eb )sin(8/—2) I

2mg2P&e —p
( —o) +g' (51)

with 8 defined by Eq. (49). Finally, Eq. (44) also implies
[cf Eq. (33)]

Figure 3 illustrates the graphical solution of Eq. (37)
using the result of Eq. {45). The following parameters
have been used: e~ ——1; p=2; co=5; eo ——a~+m+0. 5;
/=1. 5; g2P=1, 2, and 6. For g2P=1 and 2, g2P(p, )
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(E' E;) (e' —e-m —e (e' E)—l (53)
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(e' e)(e' E)— —(e' —E )l E,. )2 e' E—

l
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~( E)—=P I"d
(e —E;)'(e' )
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Next„we use the fact

E (—ee+co)+g P(E )=. 0

to obtain

(S6}

h (e+i g) = (e E—; }[1+g P'(E; )]+(e E—; ) g A +i I 0(e) /2

(e E;—)
+(e—E, )'g'A +i I"0(e)/2, (58)

where

1/Z;=—1+g P(E;)

defines the renormalization constant for the ith root of Eq. (37). Finally, Eq. (32) implies

i2mZ;g'p(e)
) V,S„—1—

(e E;)+(e——E;) Z~g A+imZ;g p(e)
~

V,„~

(59)

(60)

In this equation all factors of the "bare" coupling con-
stant g reappear as the renormalized coupling constant

gtt;(g, co)=Zing =g /[l+g P'(E;(ai,g ))], (61)

where P' is considered a function of co and g through its
dependence on E;. Thus the renormalization procedure
has been accomplished. In the neighborhood of e=E~, we
can drop the second-order factor (e E;) Z,g —A and re-
place I 0(e) by I o(E~ ). The quantity

I;(E; ) = I 0(E, )/[1+g P'(E, )] (62)

can then be interpreted as the physical width of the meta-
stable state at E;, provided

g P'(E )& —1. (63)

VI. DISSOCIATION AND RECGMBINATIDN

Laser-induced dissociation in our model is the process
~1~+i)~

~
eN), accompanied by the absorption of a

In addition, gii; can be interpreted as a renormalized field
intensity, which depends not only on the physical field in-
tensity, but also on the field frequency.

It is interesting to note that, provided g P'(E; ) &0, the
renormalized field intensity is always less than the physi-
cal intensity. Thus values of e for which P'(e) & 0 may be
considered as the metastable regime: If an unstable state
has energy E; within this regime, its physical width is al-
ways smaller than its bare width. In this sense, a laser, in
addition to creating a metastable state, may actually
enhance the stability of that state. This may be observed
through line narrowing in the spectrum as g P' is in-
creased. For —1 &g P' & 0, I; is still positive but
g~ &g . The range of e satisfying this inequality may be
called the unstable regime, as I; can become extremely
large when g P'& —1. In this regime a laser destabilizes
an unstable state that it creates, thus causing line broaden-
ing as g P'~ —1. Finally for g P' & —1, the roots of Eq.
(37) do not correspond to any physically observed states at
all, since I; is negative. Hence we may label the range of
e satisfying this condition the unphysical regime. %ith
respect to Fig. 3, for example, the first roots &p are in
the metastable regime.

photon. The reverse process is that of recombination,

~
et' )~

~
dN+i },accompanied by stimulated emission of

a photon. By the principle of microreversibility, the prob-
abilities for these processes are identical. The second pro-
cess is to be distinguished from the related process

~
ez)~

~ btt), which is' also recombination but does not
involve the emission or absorption of photons, and for
which the final state

~ b'av ) only exists when the laser is
kept on. The probability for this last process has been
given by Eq. (23).

The metastable states play a crucial role in dissociation
(and recombination), and their properties for field-free
processes, such as electron-molecule scattering, have been
dealt with exhaustively using the analytic properties of the
associated S matrices. ' In perturbation theory,

~
d~+i)

goes over into the metastable state with the approximate
energy e =ee+t0 gP, and we—can think of this state as
the one which decays into ~e~), with a lifetime 1/I o.
Hence P,~, the dissociation probability, is expected to
peak only at e=e . As seen in the last section, this treat-
ment fails when renormalization becomes important.
Multiple metastable states may arise whose energies are
quite distinct from e . Furthermore, the lifetimes of
these states may also differ significantly from 1/I o. In
this case, the dissociation profile of P,d would be expected
to exhibit multiple peaks with quite different strengths
and widths. VVhen g &g,„„abound state also appears
which may or may not be accompanied by metastable
states. This situation further complicates the structure of
P,d. Vixen there are no metastable states, one would only
have a nonresonant background due to both the bound
and scattering states. %%en the bound state exists togeth-
er with one or more rnetastable states, resonance peaks su-
perimposed on the nonresonant background would result.
All these features of P,d make it a most sensitive probe
into the effects of a laser on a bound-continuum system.
Since the question of whether the bound state or metasta-
ble states exist depends on the field intensity and frequen-
cy, another way of viewing the situation is that by varying
the laser characteristics one can induce vastly different
kinds of dissociation spectra.

%'e shall now derive an expression for

P, (t)=
( ( ~d (t)) [',
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where
I dz+, (t) & denotes the time-evolved state which at

t =0 is given by
I dz+, &. This is most easily done by ex-

panding Id&+i& in items of the complete set of eigen-
states of K, I I

E (X)&, I bjv & ] [cf. Eq. (31)]. In doing so,

we assume the general case where a bound state is present.
The reason for using the incoming states will become ap-
parent below. Using Eqs. (19), (25)—(27), and (31), we
have

I d~+, (i) & = pe-"'IE-(~) & «-(~)
I d~+i &+. '

lb..&&b~ I d~+i &

= y (pE ) 'e '~-'
I
E (x)&+pbe "b'

I b/ &,

where pE and pt, are given by Eqs. (26) and (20), respectively. Expanding IE (E)& and
I

bN & again in terms of

t I dN+i &
I

eN &] using Eqs. (25) and (19), Eq. (65) yields
—l Eb t

,(r) & =(p;)"-'"- (66)
e '"IPz I'

EOl E e —i r)—

The lastterm represents the overlap between the scattered-wave part of
I
E (N) & and

I e~ &. It thus vanishes as t~ m,
since in the distant future the scattered part of an incoming scattering state vanishes. The mathematical statement of
this fact is

l CiPt

lim =O .
taco co+I'g (67)

This ~uation also impli~ that the interference te~ due to the remaining two te~s vanish, since e is greater than p and
never equals eb. Thus we finally have

T

5 1P,u=g'I v. I'
(e—Eb) ['E' —(eg+rp)+g P(E)] +I''p(e)/42+ 2 2 2 (68)

04—

g f8=2

(a)

0.3—

For the specific form of the V,„in Eq. (44), the integral I
in Eq. (20) for pb is given by Eq. (50). The first term in

Eq. (68) represents the effects of the bound state and van-

ishes if g &g,„,. It contributes only to the nonresonant
background since e is never equal to eb and is most prom-

inent near the dissociation threshold e=p. The second
term is studied in detail in the last section. When meta-
stable states exist it leads to resonance peaks. In the ab-
sence of metastable states it also contributes to the non-
resonant background.

Figures 4(a) and 4(b) illustrate the profile P,d for the
form of V, given by Eq. (44) and the parameters used in
Fig. 3. The narrow resonance peaks in Fig. 4(a) (e-3.3
and 4.3) are quite closely approximated by the solutions of
Eq. (37) in the metastable regime (cf. Fig. 3) and stand in
contrast to the broad ones in the unstable regime (e-8
and 9). It should be noted that in the latter regime, the
resonance peaks are much less well approximated by the
solutions to Eq. (37). In fact, for the case g p= 1, no real

0.2 (b)

0.2

0.1

3 4 5 6 7 8 9 10 11
0, I I I I ! I ! I I !

2 3 4 5 6 7 8 9 10 11 12 13
E'

FIG. 4. The bound continuum profiles aP,& [Eq. (68), a defined in Eq. (38)] for the coupling strengths g'P=1, 2 (a) and g'P=6
(b), corresponding to the g P(e) in Fig. 3.
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solution exists at all in this regime, and the broad reso-
nance occurs near the minimum of e —(@~+co)+g P(e)
rather than at its zero (cf. Fig. 3). We also note the slight
line narrowing in the metastable regime as the coupling
constant g P is increasel.

Figure 4(b) illustrates clearly the threshold effect (for
e)p) due to the laser-induced bound state at ez ——1.4.
This effect is totally absent in Fig. 4(a), which is for cases
where no laser-induced bound state exists. Also, no nar-
row resonance peaks are present in the metastable regime,
corresponding to the absence of a solution here to Eq. (37)
(cf. Fig. 3}. The broad resonance (at e-11.3), however,
persists in the unstable regime, along with the non-
resonant background due to the first term in Eq. (68).
This corresponds to the solution of Eq. (37) at e-11 (Fig.
3). The other solution at e-6.9 clearly lies in the unphys-
ical regime (g P'~ —1) and does not manifest itself as
any resonance peak.

VII. PANO STATES

The laser-induced radiative coupling furnishes the
equivalent of a "configuration interaction" between the

l

discrete state
~
d~+i) and the continuum states

~
e~).

As we have seen in the previous sections, this interaction
is responsible for the formation of scattering states, a
bound state when g &g,„„and metastable states when
suitable conditions on g and co are fulfilled. Under cer-
tain boundary conditions, stationary-wave eigenstates of
H, as opposed to scattering states, are also important.
These many manifest themselves as asymmetric peaks in
absorption spectra, and in atomic and molecular physics
they occur most commonly as autoionizing levels. ' We
shall now demonstrate that these so-called Fano states,

~
EF(N}), are related to the scattering states introduced in

Eq. (25) by

~

EF(N))= . [ ~

E+(N)) —~E (N))], (69)

where 5(E}is the scattering phase shift of Eq. (35).
We first note that, due to Eq. (24), ~E~(N)) is an

eigenstate of H; and Eq. (69) implies that it is also a
standing-wave state. Both

~

E+(N)) and
~

E (N)) can
be expanded in terms of ~d~+i) and ~ez) using Eq.
(25). Thus, from Eqs. (26) and (27)

~

E'(N)) —~E (N)&=gV-,.
h (E+i ri) h (E i ri)—

QO 1
+g de p(e) V,'„

h (E +i ri)(E @+ir—i)
1

h (E i ri)(E e—iri)——

Now it follows directly from Eqs. (28) and (36) that

1 1 2i[ —I 0(E)/2]
h(E+iri) h(E i') [E—(ed+co)+g—'P(E)]'+I 0(E)/4

Zi sin5(E)

j [E (ed+co)+g P—(E)]'+I 0(E)/4j ' '

and

(70)

(71)

1

h (E+i ri)(E a+i ri)— 1

h (E i ri)(E e —i ri)— —
—2l

t[E—(e +co)+g P(E)] +I' (E)/4]'

X sin5(E)P
1 +m. cos5(E)5(E—e)

e—E (72)

where 5(E e) is the Dirac delta —function. These equations substituted in Eq. (70) lead to the following form for
i
EF(N)):

g~E p(e) V,'„
~

EF(N)}=—cos5(E) ~EN)+ sin5(E) ~d~+&)+P f de
~
e~)I o(E)/2 + a E e— (73)

which is exactly the form given in Eq. (19) of Fano's paper. ' The term in large parentheses has been called, by Fano, the
modified discrete state. The orthonormality property of

~

EF(N) } is also easily verified:

( EF(N)
~
Ep(N) ) = [25(E'—E)—i,E'+(N)

~

E (N) ) —(E' (N)
~

E+(N) ) ]
1

4 sin 5(E)

—2m(zl 2is(zi)
4sin 5(E)

=5(E'—E) . (74)
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s(E}=&E (N}
I
E+(X}& . (7S)

VIII. SUMMARY AND DISCUSSION

Throughout the present work, the emphasis has been on
the controllable nature of the radiative bound-continuum
coupling and hence of the spectral structure. By varying
both the frequency and the intensity of the laser, an
unusual range of laser-induced effects can be achieved.
The frequency mainly determines the position of the un-

perturbed discrete state while the intensity determines the
coupling strength. First, we have seen that a point eigen-
value of the total Hamiltonian corresponding to a true
bound state appears when the intensity is raised beyond a
certain frequency-dependent critical value. Moreover, the
energy of this bound state can be "tuned" by increasing
the intensity further. Not only is the appearance of a new
bound state of interest in itself, its presence also affects
the nonresonant contribution to the dissociation spectrum,
especially near the dissociation threshold. Through an ex-
amination of the continuum eigenstates (scattering states)
and the S matrix, the structure of the metastable states is
then revealed. Rather unexpectedly, it is found that even
a monochromatic laser may induce more than one meta-
stable state, with distinct energies not directly related to
the energy of the unperturbed discrete state and the laser
frequency. Moreover, the widths of the metastable states
are found to be proportional to a renormalized intensity
which may be larger or smaller than the physical field in-
tensity. This interesting fact makes possible the broaden-
ing or narrowing, as well as a wide choice of the centers
of the resonance peaks in the laser-induced dissociation
spectrum as the laser characteristics are varied. The same
conclusion also applies to the profiles generated by the
Fano states, which are shown to be just coherent superpo-
sitions of the outgoing and incoming scattering states.

The second equality follows from the definition of the S
matrix:

%bile the results derived in this paper are quite general,
we must stress the specific limitations of our model.
First, the only laser characteristics considered are the field
intensity and frequency. Other factors such as pulse dura-
tion, bandwidth, polarization and coherence properties
have been ignored. The rotating-wave approximation has
also been used to delimit the size of the Hilbert space re-
quired for the treatment of radiative couplings. Finally,
the field-free spectrum is assumed to be such that no
field-free bound-continuum coupling is present. We ex-

pect that removal of one or more of the above restrictions
would lead to very interesting physics in individual cir-
cumstances, but would generally leave the basic con-
clusions reached here substantially unchanged.

One interesting direction for futher investigations is the
adaptation of the present model to the semiclassical treat-
ment of collision problems involving atoms or ions. Ex-
amples are Penning or associative ionization' and atom
and/or ion surface scattering. The nuclear dynamics
can be described by including explicit time dependences
on the bound-continuum coupling V, and the energy lev-

els e~ and )u.
' This dynamics, of significance only within

the duration of a collision period, has to be incorporated
into the time development of the laser-induced bound,
metastable or Fano states, and it is consequently expected
to yield interesting structure in the wing regions of the
dissociation or recombination profiles.

APPENDIX: PROOF OF THE COMPLETENESS
RELATIONS (30) AND (31)

The proof given below follows closely that presented by
Glaser and Kallen' for a similar relation in the Lee
model. We include it here for two reasons: first, for ease
of reference and completeness; and second, to highlight
the usefulness of the function-theoretic method in the
demonstration of completeness relations. We begin by
calculating the quantity on the left-hand side of Eq. (30).
Making use of the expansion Eq. (25), we have

2 I
&-'(»&&&'(»

I

= g I &x &&~iv I+ I "x+i &&dN+i I I &z I

'+ g g(&z, )'&i*,
I
~~ &&~~ I

E

+I E I
dN + 1 & & &~

I
+ (13'' }"

I &iv & & d~ + i I

+Ps' y (+gg) I dw+$&&eN I
+(g) y +sp I

e'/ &&dN+i
I

+ 2 I &z. I ex & &~v
I
+(&s.}'

I
&x & & e~ I ]

r

=
I "~+i&&dr+i I 2 I&z I'+ 2 I&~&&~~ I+ ldll+i& g Pk+ +13.'(+.'z}" &&NI

E E

+ g l&~& (Pz}*++(P, }'&.z &dx+il

(Al)
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The sums may be converted to integrals by taking the continuum limit. Thus, using Eqs. (26), (28), (29), (33), and (34),
we can write

v«)
I
~z I' oo I p(E)/2

I
PF".

I

'=g' dE
z &

I

E (e—q~ )~g P(E)+iI p(E)I2
I

~ & [E (e—q+co)+g P(E)] +I p(E)I4

00 1 1 1=—Im dE dE
m v h(E i—g) 2n i c' h(E) '

(A2)

where C is the contour shown in Fig. 2 minus the large circle. The last integral can easily be evaluated by considering
the contour C itself (Fig. 2) and using the residue theorem. We have, evidently,

fc 'h(E) Jc h(E) Jc~ h(E)
where Cz denotes the large circle with the radius R ~ 00. Since from Eqs. (28) and (29)

lim h (E)=E,
iEi co

it follows that

(A3)

dE' -2c„h(E)
(A5)

Now from the results of Sec. III, we see that when g ~g,„, there is a first-order zero of h (E) at Eb =@i, &Ju correspond-
ing to the laser-induced bound state. On the other hand, it is readily seen [by looking at the imaginary part of h (E) for
complex E] that there can be no complex roots of h (E) on the first sheet [see the remark following Eq. (29)]. These
facts and the residue theorem, together with Eqs. (A2), (A3), and (A5), imply that

X I
&i*

I

'=
g &gent

1
g

(A6)

where h'(e& ) denotes the derivative of h (E) evaluated at Ei, . '

We now consider the terms in Eq. (Al) involving X;s. Using Eqs. (26) and (27), we have, recalling the derivation of
Eq. (A2),

+ 2p
yP+(~+ )g f d P I ~c I ~Et' g +cd f d I 1 1

E E+IYJ
—77 P h (6l 7J ) e E+i'g' — —

gvs
2&l

, d6
1

h (e)(e E~iri)—
de'

1

c h (E)(e—Epili)

g~a
h (E+ )

~ g &gcrit

g~a g~a
h (E+ig) h'(ei, )(E —eb)

' (A7)

The last equality has again been obtained by the residue theorem, and we note that E &p. Recalling the definition of Pg
given by Eq. (26), Eq. (A7) yields

P~+ g p;(x;, )'=
g &gent

g~z
h g( )(E )

& g gcllt

(A8)

Note that the (+) cases lead to the same result.
Next we calculate the last term in Eq. (Al). Proceeding as in Eq. (A7) and using the residue theorem yet another time,

we have
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g (Xg,) 'XgE ——

where

i

gV, VE„ 1 1de' Im
h (e' i—rI) (e' —a+i rI)(e' —E+i rj}

2
g V, VE„ 1

dz
2iri c h (z)(z e—+i g )(z E—+i rI)

—g V, VE~+—(e', E), g &g,„,
+ 1

VaiiVErd 8 (eiE)+
( )(E )hi( )

i g &ggfj$

(A9)

H +(s E}-= 1 + 1

h(e+ig)(e E+i—rI) h(E+irI)(E @+i—rj)
'

Thus, recalling the definition of XE, [Eq. (27)], we have

g &gcrit

x E+(x,) «+ g (x~+,) ~x~+E -,z V,„V,"„
g &gcrit ~

h'(es )(e eb )(E—es )—
Combining Eqs. (A6), (A8), and (A10) in Eq. (A 1), we arrive at the result

(A10}

(A 1 1)

X IE'(&}&&E'(&}I= IdN+1&&dN+i I+ g IEx&&E~ I

g &gcrit

provided Eq. (8) holds. This is the result of Eq. (30). For the case g &g,„„wehave

(A12)

X IE'(»&&E'(»
I

= Q I
EN &&E& I+ 1 Id%+1&&dN +li+ I d%+1&

E h'(e )b+ +' +
E h'(eb)(E —ei, )

y4' g'~. VE
+ g IEx& „, &"a+i I

—gg IE~&
hh Eb E —Eb h Eb 6 Eb Eb

Now, from Eqs. (28) and (29), Pb as defined by Eq. (20) is actually given by

A=lh'(e»l '"
Hence, Eq. (19) for the bound state can be written, on reverting from the integral to the sum,

T

1 g~s
fh'«»l'" E E—'b

This immediately yields

1 gVE g~E
I

bx&&bN
I

=
h,h' eb ~ E—&b E—eb

(A13)

(A14)

(A15)

+ g& IE~&
6—Es E —Es'

On adding this equation to Eq. (A13), we obtain

g IE-'(»&&E'-(» I+ I
b~&&b~

I
= g I E~&&Ex I+ I de+i &&d~+i I

(A16)

g &gent ~

provided Eq. (8) holds. This is the result of Eq. (31).

(A17)



33 LASER-INDUCED BOUND AND METASTABLE STATES IN. . . 2503

ACKNO%'LEDGMENTS

This research was supported in part by the U. S. Air Force Office of Scientific Research (AFOSC), United States
Department of the Air Force, under Contract No. F49620-86-C-009, and the National Science Foundation under Grants
No. CHE-8Q-22874 and No. CHE-85-19053.

'U. Fano, Phys. Rev. 124, 1866 (1961).
P. Lambropoulos and P. Zoller, Phys. Rev. A 24, 379 (1981).

3K. Rzaiewski and J. H. Eberly, Phys. Rev. Lett. 47, 408
(1981}.

4K. Rzazewski and J. H. Eberly, Phys. Rev. A 27, 2026 (1983}.
5J. W. Haus, M. Lewenstein, and K. Rzazewski, Phys. Rev. A

28, 2269 (1983).
S. L. Haan and J. Cooper, Phys. Rev. A 28, 3349 (1983).
G. S. Agarwal, S. L. Haan, and J. Cooper, Phys. Rev. A 29,

2552 {1984);A 29, 2565 {1984).
~Z. Bialynicka-Birula, Phys. Rev. A 28, 836 (1983).
Z. Bialynicka-Birula, J. Phys. B 16, 4351 (1983).

' Z. Zakrzewski, K. Rzaiewski, and M. Lewenstein, J. Phys. B
17, 729 {1984).

I S. E. Kumekov and V. I. Perel', Zh. Eksp. Teor. Fiz. 81, 1693
(1981) [Sov. Phys. —JETP 54, 899 (1981)].

'2V. Glaser and G. Killen, Nucl. Phys. 2, 706 (1956).
' H. Araki, Y. Munakata, and M. Kawaguchi, Prog. Theor.

Phys. 17, 419 (1957).
' T. D. Lee, Phys. Rev. 95, 1329 (1954).

' A. P. Grecos, in Aduances in Chemical Physics, edited by S. A.
Rice (Wiley, New York, 1978), Vol. XXXVIII, pp. 143—171.

' The energies and widths of the metastable states can also be
found by analytically continuing the S matrix into the second
{unphysical) sheet of the energy and locating the complex
poles there. (It can be quite readily shown that, for our
model, the S matrix does not have poles in the first sheet ex-

cept on the real axis. ) For this procedure, see, for example,
Ref. 13 and E. C. G. Sudarshan, C. B. Chiu, and V. Gorini,
Phys. Rev. D 18, 2914 (1978).

7This form of the bound-continuum coupling has been used
fruitfully in previous work on laser-induced continuum-
continuum transitions involving intermediate bound states.
See, for example, Eq. (16) of Ref. 8.
See„ for example, %. Domcke, J. Phys. B 14, 4889 {1981).
See, for example, R. J. Bieniek, Phys. Rev. A 18, 392 (1978);
K. S. Lam and T. T. George, ibid. 29, 492 (1984).
R. Brako and D. M. Newns, Vacuum 32, 39 {1982).

2 A. Blandin, A. Nourtier, and D. %. Hone, J. Phys. {Paris) 37,
369 {1976).


