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Spectrum of transmitted light in optical bistability:
Effects of phase fluctuations of the driving laser
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Time-dependent correlation functions and the spectrum of the transmitted light are calculated for
absorptive optical bistability taking into account phase fluctuations of the driving laser. These fluc-
tuations are modeled by an extended phase-diffusion model which introduces non-Markovian ef-
fects. The spectrum is obtained as a superposition of Lorentzians. It shows qualitative differences
with respect to the usual calculation in which phase fluctuations of the driving laser are neglected.

I. INTRODUCTION

Optical bistability' can be considered a prototype of
many nonequilibrium phenomena. Models of optically
bistable devices are good candidates to demonstrate gen-
eral properties and problems associated with the descrip-
tion of systems driven away from equilibrium. One such
question is the role played by fiuctuations in the behavior
of a nonequilibrium system. A stochastic theory of opti-
cal bistability taking into account fluctuations associated
with the spontaneous-emission process (quantum noise}
was developed some years ago. ' However, in practical
situations, quantum and thermal noise are not the dom-
inant types of noise. Parametric or external sources of
noise, such as fluctuations in the laser driving the optical-
ly bistable device, are likely to be the major causes of
noise in the system. This point of view is clearly dis-
cussed in a recent paper by Lugiato and Horowickz in
which the possible different sources of parametric noise
are analyzed. In this sense, models of optical bistability
are also of great interest for the study of the effect of
external noise in nonequilibrium systems. Partial aspects
of the parametric noise problem in optical bistability have
been addressed by several authors.

In this paper we wish to discuss the effect of the phase
fiuctuations of the driving laser on the spectrum of the
transmitted light. Our calculations are carried out in the
good-cavity limit for absorptive optical bistability. The
spectrum of the transmitted light when only quantum
noise is considered was discussed in detail by Bonifacio
and Lugiato. ' In the same way as in that classical
analysis, we do not consider here tunneling effects that
occur for long times in the bistable domain. We calculate
the correlation functions of the transmitted light in the
cooperative branch and in the one-atom branch but for
times smaller than the escape time from one branch to the
other. However, we have to go beyond the hnear analysis
to find ainplitude fluctuations of the transmitted light in-
duced by the phase fluctuations of the driving laser. Our
calculations are based on a phenomenological model
which neglects all possible sources of noise except those
associated with a finite phase linewidth of the driving
laser. These phase fluctuations are taken to be the dom-
inant ones. ' They are modeled by an extended phase-

diffusion model' ' in which a random frequency is
modeled by a Gaussian noise with a finite correlation
time. As a consequence we address the problem of calcu-
lating correlation functions of a non-Markovian process
driven by colored noise. ' ' The stationary distribution
in amplitude and phase of our stochastic model is not
known. We calculate the correlation functions by a per-
turbative expansion in a small parameter which measures
the strength of fluctuations. The problem of calculating
time-dependent correlation functions of the transmitted
light in the presence of a fluctuating driving laser has also
been studied by Willis, ' who precisely considered a fi-
nite phase linewidth of the driving laser. Other studies
which take into account phase fluctuations of the driving
laser such as those of Refs. 3 and 7 do not address this
problem. ' Our work has two important differences with
respect to that of Willis. ' First, our analysis is not a
linear theory. Second, we allow for a nonwhite frequency
noise. This considerably complicates the dynamical prob-
lem.

It follows from our calculations that the spectrum of
the transmitted light shows important qualitative differ-
ences with respect to the spectrum of an ideal situation in
which only quantum or thermal noise is considered. The
spectrum is dominated by phase fluctuations and the
correlation time of the frequency fluctuations of the driv-
ing laser plays an important role in those phase fluctua-
tions. Amplitude fluctuations appear only as a second-
order effect, but they also show qualitative differences
with respect to an ideal situation.

The stochastic model used in our calculations is
presented and discussed in Sec. II. Section III contains
the perturbative calculations of the correlation functions
and spectrum. A short discussion and summary of results
are given in Sec. IV. Some mathematical details are given
in the Appendix.

II. A MODEL WITH FINITE PHASE LINEWIDTH
IN THE DRIVING LASER

Our starting point is the Maxwell-Bloch equations for
optical bistability in the rotating-wave approximation and
in the mean-field limit as first proposed by Bonifacio and
Lugiato. %e also take the good-cavity limit in which
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the cavity damping constant ~ is much smaller than the
decay constant for the polarization y„and population
difference y~~, so that these two variables follow instan-
taneously the evolution of the elix:tric field. In this limit
the equation for the normalized transmitted field E be-

comes '

I (I+id, )E+ -E+
1+ IE I' (2.1)

E+=r exp(+-iP), E +=r exp-(+i/), (2.2)

Eq. (2.1) can be written as a set of coupled equations for r
and P:

where E is the normalized incident field and
I = gE—/xyi(1+6, ). g is the coupling constant pro-
portional to the dipole moment; N the number of atoms
in the sample; h=(co —v)/yi, where co is the frequency of
the driving laser; v the frequency of the two-level atoms in
the cavity; and 5=(too co)/x—, where coo is the cavity fre-
quency. Equation (2.1) is written in a dimensionless time
measured in units of a.

Introducing the amplitude and phase of the fields E,E
by

I r +r cosQ,
1+r

I 5 rQ= —5— i ——sinQ —P .
1+r

(2.6)

(2.7)

Phase fluctuations of the incident laser are now intro-

duced considering its frequency P(t) as a stochastic quan-
tity. %e set

P(t) =e'~'8(t), (2.8)

where e measures the strength of the fluctuations. In this
paper we will only consider the case of absorptive bistabil-
ity. However, the consideration of frequency fluctuations
implies that the parameters 5 and b, in (2.7) are not strict-
ly zero but rather fluctuating quantities around a mean
value zero. The fiuctuations of 5 simply add to those of

We consider them to be included in the value of e.
Fluctuations of b in (2.7) caused by frequency fluctua-
tions lead, in time measured in units of li, to terms pro-
portional to ~/yi. These terms are neglected in the
good-cavity limit considered here. In conclusion, our fi-
nal stochastic model for absorptive bistability is given by
(2.6) and

I r +r cos(P —P),1+r
(2.3)

Q = ——sinQ —e' 8(t),
r

(2.9)

r .P= —5— ——sin(P —P) .
r

(2 4)

Equations (2.3) and (2.4) give a deterministic description
of the system. The mean-field equation of state is given

by the stationary solution of (2.3) and (2.4). In the partic-
ular case of absorptive optical bistability in which
6=5=0, the equation of state becomes

rrr=r
}+r (2.5)

Bistability occurs for I ~8. In this domain of parame-
ters and for r &r&rM, (2.5) has three solutions for r
corresponding to two locally stable states and one unstable
state. The spinodal points r and rM are, respectively,
the terminal points of the one-atom and cooperative
branches.

Equations (2.3) and (2.4) are usually supplemented with
random terms modeling different sources of noise. Quan-
tum fluctuations and thermal noise are associated with
internal fluctuations of the system. Here, we concentrate
on the effect on the transmitted light of the fluctuations
present in the incident laser. The incident laser is ordi-
narily included in the theory as a constant parameter. In
this sense our analysis corresponds to a parametric or
external-noise problem in which that parameter is re-

placed by a stochastic process. Amplitude fluctuations of
a standard laser are very small except close to the spinodal
points, while phase fluctuations are usually the major
cause of a finite linewidth of the laser. We consider only
such phase fluctuations of the incident field E. To this
end we rewrite (2.3) and (2.4) in terms of a relative phase
variable Q=P —P:

where I = gN/~yi—. A complete definition of this
model requires that one specify the properties of the ran-
dom term 8(t)

A standard model of phase fluctuations is the phase-
diffusion model (PDM) in which the frequency 8(t) is
modeled by a Gaussian white noise so that 8(t) is a dif-
fusion (Wiener) process. Such a model neglects the finite
correlation time of the frequency fluctuations. To take
into account this effect we use an extended PDM (R.efs.
13 and 14) in which 8(t) is a Gaussian process of zero
mean and correlation

{8(t)8(t'))=r 'exp (2.10)

The correlation of the driving field is then given by

{E+(t+s)E (t))

=r exp{ —eI Is
I
+[exp( —s/r) —l]rI) . (2.11)

In the limit in which the correlation time ~~0, we re-
cover the ordinary PDM in which the spectrum of E is a
Lorentzian of half-width e. For e.«1 the spectrum as-
sociated with (2.11) is still a Lorentzian of half-width e
but with a frequency cutoff at r ' The PDM ha.s been
justified' as arising from spontaneous-emission fluctua-
tions. However, the main contribution to the linewidth of
a real laser seems to be due to the jitter of the resonator.
We take here (2.11) as an appropriate model for the phase
fluctuations of the driving laser. The value of the pa-
rameter e is the appropriate one for a real laser and it is
several orders of magnitude larger than the noise strength
associated with spontaneous-emission fluctuations. On
the other hand, we do not consider here the phase fiuctua-
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tions of the field E due to the jitter of the cavity pumped
by E

The two noise parameters left in our theory are e and r
We recall that (2.6) and (2.9) are equations for dimension-
less variables, so that if D is the linewidth of the driving
laser, the parameter e relates a decay rate of the driving
laser and the cavity lifetime:

(2.12)

5r = A,„5'r, t}—I = —A,p(r}, (2.13)

where 6r =r —rp, and the relaxation rates A,„and A,~,

dr I'(1 —rp')
1+

dr r=rp (1+pp2)2

A typical lower value of D for a usual laser is D —10 kHz
and «-10 —10 Hz ' so that e-10 —10 . The pa-
rameter ~ is given in terms of the correlation time in ordi-
nary units ip by i=«rp. An important point should be
noted in connection with (2.6), (2.9), and (2.10). Equa-
tions (2.6) and (2.9) are based on the adiabatic elimination
of the polarization and population difference variables.
The consistent consideration of a nonvanishing value of r
in (2.10) requires that the eliminated variables be faster
than the phase fluctuations. This condition is met when

y~~
',y, ' &«p which is usually satisfied.

A main difficulty of the model defined by (2.6), (2.9),
and (2.10) is that the stationary distribution cannot be
easily calculated because detailed balance is not satisfied.
A desirable possibility is to reduce the problem to a one-
variable model. In the domain of r for which bistability
occurs, the long-time dynamics is dominated by tunneling
effects. In this long-time scale a separation of time scales
is possibly feasible because the amplitude r undergoes an
activated process and therefore has a final slow evolution.
However, linearizing the deterministic limit of (2.6)—(2.9)
around a solution rp of the mean-field equation of state
(2.5),

III. CORRELATION FUNCTIONS
AND SPECTRUM OF TRANSMITTED LIGHT

A. Calculational scheme

r(t)=rp+e' ri(t)+eri(t)

+~'"r&(t)+mr&(r)+ (3.1)

Q( i}=Qp+6'"Q, (t)+EQ2(t)

+e'~'Q, (t)+e'Q, (t) + . (3.2)

r;(t) and Q;(t} satisfy stochastic differential equations ob-
tained by substituting (3.1) and (3.2) in (2.6) and (2.9) and
collecting terms of the same order in e. The point rp Qp
which we expand around is a stationary solution of the
deterministic limit of (2.6) and (2.9). The relative phase is
Qp ——0 which corresponds to a phase locking between the
transinitted and driving lasers in the limit of vanishing
linewidth of the driving laser. The amplitude r p is a solu-
tion of (2.5) which we take as a locally stable one. We
find to order e'

We wish to calculate the fluctuations of the transmitted
light around a stable or metastable state. These are given
by the locally stable solutions of (2.5). To this end we
have to confront two basic difficulties. The first one is
the nonlinearity of the equations and the second one is its
non-Markovian character due to the nonvanishing value
of the parameter ~. One may think that fluctuations
around a locally stable state are well described by a linear-
ized analysis. However, as shown below in a linear
analysis of our model, the equations for amplitude and
phase decouple and the amplitude becomes a nonfluctuat-
ing quantity. Nonlinearities are here taken into account
by a perturbative calculation to second order in the small
parameter e. The additional difficulty associated with
non-Markovian features is treated by following ideas al-
ready developed and applied in Refs. 15—18. Essentially,
this amounts again to an expansion in e and, when neces-
sary, in the parameter ~.

Our calculation is based on the expansion

(2.14)
pi= —A, ri

Qi ———A,pQi —8;
to order e

(3.3)

(3.4)

are of the same order of magnitude. As a consequence,
outside the domain of bistability and also inside it but in
the time domain in which tunneling processes are still
very rare, a separation of fast and slow variables is not
possible. %e are precisely interested in this time domain
in which metastable states can be considered stable. Our
aim is to calculate the fluctuations of the transmitted
light caused by the driving-laser phase fluctuations. Since
no reduction of the problem seems easy to achieve, our
strategy is based on the possibility of a perturbative ex-
pansion in the small parameter e. A perturbative calcula-
tion of the spectrum of the transmitted light is presented
in Sec. III.

2 ~ 2
12 = —A,pl'2 +E. j f )

— 0 )

2
'~

Qi ———A,pQ2+ r iQi,
7"

to order e ~

T3 = —k„r3 +2R ) I') f2+82' )
—f0)Q2,3

2 3

Qi ———ApQ3+ (riQ2+r2Qi) — riQi+ Qi ',

1 r

and to order e

(3.5}

(3.6)

(3.7)

(3.&)
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2 2
T4 = —k P'4+2817 17'3+8112+382r1r2+83r1

——(2QiQg+Q2 ——„Qi),

2
Q4 ———A.PQ4+ 0102

2

(3.9)

from (3.14) and (3.15). Terms of non-Markovian origin
appear in the hierarchies for the stationary moments and
for the correlation functions, through correlations of 8(s)
with the variables hr and 0 as seen explicitly below.
These terms can also be calculated perturbatively in the
noise parameters.

2
3+ (riQ3+rzQ2+r3Qi 6 r]Q'i)

3 4
z 3(r iQi+2rirzQi)+ riQi',

T T
(3.10)

I' rp(3 —rp)

(1+r')'
I [1+ro(ro —6)j

(1+rp)
I" rp[r (p10 ro) ——5]

(1+ rp)'

(3.11)

(3.12)

(3.13)

where A,„and A,~ are given in (2.14) and the constants R i,
R2, and Ri are defined as

B. First-order calculation

& Q (s)) = —2Ay& Q (s) ) —2e'~
& Q(s)8(s}},

ds
(3.18)

where we have calculated & Q(s)8(s) } through Novikov's
formulaz5

&Q(s)8(s)&= f dsi . '
&8(s)8(s&)}

58(s i )

To lowest order in e, (3.14) and (3.15) reduce to the
linear decoupled equations (3.3) and (3.4) for b,r =a'~ ri
and Q=e'/ Qi. Therefore, the phase fiuctuations of the
driving laser have no effect on the amplitude of the
transmitted light in this order of calculation. From Eq.
(3.4) for Q we have'

Introducing a new variable b, r =r —ro, the equations for
hr and Q to order e obtained from (3.3)—(3.10), or direct-

ly expanding (2.6)—(2.9), are

br'= A, br+—Ri,hr +R&br +R&br —Q + Q—
2 24

(3.14}

In the same way

& Q(s)Q(0) )
d

~1f2

l +7k/
(3.19)

2 3

Q= —A,pQ+ hrQ b,r Q—+ Q
1'

X4

+ 'ar3n — 'Srn3 —~'"e.

= —A~&Q(s)Q(0) }+ exp( —sir) . (3.20)1+7'.p
Equations (3.18) and (3.20) are solved as

&Q(s)Q(0))

Correlations in the transmitted light are given by the
steady-state correlation functions Ca„a,(s),C&n(s). These
are defined by

exp( —A,p )
Q

1 1 A,p

tky
exp( s /~), —(3.21)

1 —wA. g

Ca,a,(s) = lim & b,r(s)br(0) },
&O-+ —oc

Cnn(s)= lim &Q(s)Q(0)),

(3.16)

(3.17)

where to is the preparation time in which initial condi-
tions have been specified. It must be stressed that due to
the non-Markovian character of the problem these corre-
lation functions do not coincide with &b,r( }b,sr(0)) and

& Q(s)Q(0) ) defined with stationary initial conditions
specified at to=0." ' In the following we always as-
sume implicitly the limit to~ —ao. These correlation
functions satisfy a complicated hierarchy of coupled equa-
tions which is obtained from (3.14) and (3.15). The
hierarchy can be closed to a given order in e. The result-

ing set of closed equations is somewhat simpler to solve
using the auxiliary equations (3.3)—(3.10). The equations
for the correlation functions must be supplemented with

stationary moments which enter as initial conditions. The
stationary moments are also calculated closing to a given
order in e the hierarchy for the moments, which follows E'+—=E+-exp(+i e'~ 8) . (3.23)

(3.22)
A,p(1+~A,p)

where &Q ) is the stationary value of &Q (r)}. We note
that no approximation is made in obtaining the results
(3.21) and (3.22) from (3.4), so that within the lowest-
order expansion in e the effect of i&0 is contained in an
exact way. The most characteristic non-Markovian
dynamical effect comes from the existence of the term
proportional to exp( —s/r) in (3.20). ' ' This gives rise
to the second term in (3.21). It implies that even in a
linear analysis &Q(s)Q(0) ) does not relax through a sim-
ple exponential. The second term in (3.21) causes a slow
initial decay of the correlation function. In fact, it fol-
lows from (3.21) that the slope of &Q(s)Q(0)) as a func-
tion of s at s =0 is zero. In the limit of ~~0, (3.21)
reduces to the result of Vhllis. '

%'e next consider the spectrum of the transmitted light.
In order to eliminate the part of the field associated with
the driving laser we introduce a slowly varying component
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The correlation function of E' i-s given by

(E'+(s)E' (0)) =ro(exp{i[Q(s) —Q(0)]] )

where in the last step we have used Kubo's formula and
the Gaussian property of (Q). Substituting (3.21) and
(3.22) in (3.24) we find

=r ii exp [ ——,( [Q(s ) —Q(0) ] ) I, (3.24)

( E'+(s)E' (0) ) = roexp —( Q ) 1— 1
[exp( —A.p) —~A~exp( —s /~) ]

1 —vA, p
(3.25)

Consistent with our calculation to first order in e and
given that (Q ) is of order e, we can expand the exponen-
tial in (3.25) to order e. Recalling, in addition, that due to
the Gaussian property of Q, (E'+) =roe-xp( —(Q )/2),
and defining 5E'+=E'+ —(-E' +- ), we f-inally obtain

(5E'+(s)5E' (0) )

ro(Q')
[exp( —A,p) —~A,~exp( —s/r)] . (3.26)

1 —rA, p

The spectrum associated with (3.26) is

C. Second-order calculation

A calculation of correlation functions to order e intro-
duces a dynamical coupling of amplitude and phase ab-
sent in the linear approximation. To this order in e, non-
linear couplings give rise to amplitude fluctuations in-
duced by the driving-laser frequency fluctuations.

Equations for (hr(s)b, r(0)) and (Q(s)Q(0)) to order
e can be obtained from (3.14) and (3.15):

(br(s)hr(0) ) +A,„(hr(s)hr(0))

=R)(hr (s)b,r(0))

roe2

m'(I —r A,p) co +A,p

1

co +(1/r)

S(co)=—Re J ds exp( icos)(5E—'+(s)5E' (0) )

(3.27)

+R2(br (s)br(0)) ——(Q (s)br(0)),
2

(Q( }Q(0))+A&(Q( )Q(0))

(3.28)

(br(s)Q(s)Q(0) )— (hr (s)Q(s)Q(0))
T

+ ( Q (s)Q(0) ) +e exp( s /~) . —
6

(3.29)

The last term has been obtained using Novikov's formu-
la and an expansion in z:

(8(s)Q(0) ) = e'~'exp( ——s /v. )

+0(rexp( s/~)) . — (3.30)

We are now considering ~ as an additional small parame-
ter, and we neglect possible terms of order e and e but of
order higher than the leading one in ~. For example,
terms of order ~exp( —s/~) in (3.30) are neglected. They
would contribute to order 2 to the correlation functions.
The last term on the right-hand side (rhs) of (3.29) is a
characteristic non-Markovian term which vanishes for
v=0 but becomes important at finite r and early times.
Such early-time contribution in (3.29) modifies the long-
time behavior of the correlation function through the
solution of (3.28} and (3.29) from s =0 onwards.

In order to solve Eqs. (3.28) and (3.29) we close the
hierarchy of equations obtaining the nonlinear correlation
functions on the rhs of (3.28) and (3.29) to order e . This
is done in the Appendix, where these correlation functions
are calculated using the auxiliary variables r; and 0;.
Substituting these correlation functions in (3.28) and
(3.29), the final results obtained for (b,r (s)b,r (0) ) and
(Q(s)Q(0)) are

It consists in the superposition of two Lorentzians of
linewidths A,~ and r ' The s.econd Lorentzian is a novel
feature of the spectrum which appears due to the finite
correlation time of the frequency fluctuations. The
weight of the two Lorentzians is the same but with oppo-
site sign. The common weight depends on ~ through a
factor (1—v A,~) '. In the transmitting state A,~- 1 and in
the cooperative branch A,~ && 1. Therefore, for small
values of r the two linewidths can become comparable in
the cooperative branch, while in the transmitting state the
second Lorentzian has a large linewidth. The opposite
happens when r & 1 (we recall that there is here no restric-
tion to small r), namely, the two linewidths become com-
parable in the transmitting state. When the two
linewidths are comparable, the common weight of the two
Lorentzians becomes larger. In the limiting case A&a= 1, ,

in which the two relevant time scales coincide, the two
Lorentzians collapse to a single one with a weight
rii(Q ). In situations with A~~&&1 the relative effect of
the second Lorentzian will be more important on the tails
of S(co). This modification of the tails of S(co) is associ-
ated with the slow initial decay of the correlation func-
tion.

In this first-order calculation, amplitude fluctuations do
not appear. The spectrum is dominated by phase fluctua-
tions. In our model, amplitude fluctuations are a second-
order effect. However, it is necessary to consider such
fluctuations to account for the line-narrowing effect ab-
sent in (3.27). This is done next, calculating the
amplitude-fluctuations spectrum to order e .
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(hr(s)hr(0) & =((hr'& —(b,r &')exp( —A,„s)+&hr &

( ( hr Q ) —( b,r ) ( Q ) )[exp( —A,,s) —exp( —2A,p)],
2(A,, —2Ap)

(Q(s)Q(0) ) = (Q') I exp( A—p)+rA~[exp( —Ap) —exp( s—/r)] I

—((Q br) —3(Q )(br))+ Iexp( —Ap) —exp[ —(I,„+A~)s])
re'& Q')

Ap r kp
L

(3.31)

+A,p(Q ) (3A,p
—A,, }

2k.
(5A,

&
—A,„) s exp( —A,p) . (3.32)

(~ )2 Er 1

4A,, A,p

(3.33)

(3.34)

In these equations, stationary moments enter through the
initial conditions at s =0 needed to solve (3.28} and (3.29).
Stationary moments can also be calculated closing to or-
der e the corresponding hierarchy which follows from
(3.14}and (3.15). This is also done in the Appendix again
using the auxiliary variables r;,Q; Fro.m that calculation
we find

ce

S,(co}=—Re f ds exp( —icos)(Sr(s)5r(0))

(3.37)
er 1 1

1',y(4Ay —Az) 67 +A, z co +4k,y

where 5r =r —(r ) . To the order of approximation of our
calculation, S„(co) in (3.37) turns out to be independent of
r. An explicit representation of (3.37) is shown in Figs. 1

and 2 for the two branches of the hysteresis cycle. These
figures parallel the analogous ones in Ref. 12 for the spec-
trum calculated when considering only quantum noise.
We note, however, that (3.37) is the spectrum only of the
amplitude fluctuations. The spectrum (3.37) is the super-
position of two Lorentzians. As mentioned in connection
with the correlation function, the existence of the second
Lorentzian for amplitude fluctuations is a novel feature

(3.36) ~o's(w)
2—

The correlation function for the amplitude is a superpo-
sition of two exponentials with decays rates A,„and 2k~.
In our perturbative treatment these decay rates do not de-
pend on the noise parameters. The presence of the second
exponential is an important qualitative difference from
the case in which only quantum fluctuations around the
locally stable states is considered. ' In this last case only
the decay rate A,„appears in the lowest-order contribution
to the amplitude correlation function. In this sense the
existence of a second decay rate can be considered as a
nonlinear effect due to the coupling of amplitude and
phase fluctuations. The phase correlation function con-
tains in addition to the exponentials in (3.21) a new decay
rate A,„+k~ and a characteristic term proportional to
s exp( —Xp). These new terms are associated with non-
linear effects. The weights of the different terms in (3.31)
and (3.32) are proportional to e . In this order of approxi-
mation the value of r only affects the amplitude correla-
tion function through the stationary moments (b,r ) and
(hr). The phase correlation function depends on r also
through exponential terms, as already found out in the
linear calculation.

We now consider the spectrum of the amplitude fluc-
tuations. Using (3.31), (3.33), (3.34), and (3.36) we find

-15
l

w

&o s(w) s(w)

O.

FIG. 1. SpectrUm $(co) of the transmitted light for I =40.
S(co) is given in units of e /rr. Points (a)—(d) correspond to the
cooperative branch of the hysteresis cycle. Point (d) is the ter-
minal point of the cooperative branch. (a) r =4.06, (b)
r =14.193, (c) r =20.589, (d) r =21.026.
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FIG. 2. Spectrum S(~) of the transmitted light for I 2=40.
S(ar) is given in units of e /m. Points (a)—(d) correspond to the
one-atom branch. Point (d) is the terminal point of the one-
atom branch. (a) r =21.995, (b) r =31.33, (c) r =13.39, (d)
r =12.48.

IV. SUMMARY AND DISCUSSION

In this paper we have calculated the spectrum of the
transmitted light in the good-cavity limit of absorptive
optical bistability taking into account phase fluctuations
of the driving laser modeled by an extended phase-
diffusion model. As a main qualitative difference from
earlier calculations we find new Lorentzians in the spec-
trum which do not appear when only quantum noise is
considered' or when white-noise fluctuations for the in-
cident phase are assumed. Being more precise, our first-
order calculation, which coincides with a linear analysis,
leads to a phase correlation function which contains two

that comes out of our calculation. The weights of the two
Lorentzians in (3.37} are the same, and therefore S,(ro)
has a single maximum at m =0. In the qumtum-noise
calculation' the complete spectrum also has two
Lorentzians associated, respectively, with amplitude and
phase. In this case the two Lorentzians have weights of
different sign in the cooperative branch, giving rise to a
spectrum with the shape of a doublet. Figures 1 and 2
show that S„(c0}exhibits line narrowing and growth of the
value at co=0 when r comes close to the spinodal or turn-
ing points. At these points A,„~O and from (3.37) we see
that S(co=0)-A, Also, an effective linewidth co de-
fined by S(co)=S(co=0)/2 is proportional to A,, for
A,, ~g 1. The characteristic phenomenon of line narrowing
discussed in the case of quantum noise' is here modified
for the amplitude fiuctuations by the presence of the
second Lorentzian in (3.37).

exponentials. The spectrum is a superposition of two
Lorentzians, both associated with phase fiuctuations. The
first Lorentzian has the linewidth of the usual one. ' This
first Lorentzian is the only one which appears with an or-
dinary phase-diffusion model for the incident laser. The
second Lorentzian appears as a consequence of the
characteristic non-Markovian effect due to the finite
correlation time of the frequency fluctuations of the driv-
ing laser. The linewidth of this second Lorentzian can in
many cases be comparable to the linewidth of the first
one. When the inverse relaxation rate A,

&
is large in com-

parison with the correlation time of the incident phase
fluctuations, the effect of the second Lorentzian is most
noticeable in the tails of the spectrum. In the first-order
calculation the amplitude of the transmitted laser does not
fiuctuate. Amplitude fluctuations due to incident phase
noise only appear in the second-order calculation due to
nonlinear couplings between amplitude and phase. The
spectrum of amplitude fluctuations in this approximation
is also a superposition of two Lorentzians. The existence
of two Lorentzians (none of them associated now with
non-Markovian properties) is an interesting difference
from the case in which phase fluctuations of the incident
laser are neglected. ' In the latter case the lowest-order
contribution to the spectrum contains a single Lorentzian.
The amplitude spectrum exhibits the well-known
phenomenon of line narrowing at the extremes of the hys-
teresis cycle' but with modifications due to the superpo-
sition of two Lorentzians.

Our calculation is based on a perturbative expansion in
the parameter e defined as the ratio of the linewidth of
the driving laser to the cavity lifetime. This calculation
scheme permits us to include nonlinearities and non-
Markovian effects without reducing the problem to an ap-
proximate single-variable model. Limitations of the
method are the ordinary ones in this sort of perturbative
analysis. A more serious limitation of our results for a
direct comparison with possible experiments is that we
have neglected other noise sources. The question of which
are the real sources of noise and their order of magnitude
is an important but not well understood problem.
Parametric noise sources are discussed in Ref. 3. Along
with this reference, our strategy here is to study separately
the effect of a given noise source, in this case phase fiuc-
tuations of the incident laser, and to look for its signature
or characteristic consequences. At present this seems to
be the only feasible way of obtaining explicit results. It is
generally accepted that phase fluctuations of the incident
laser, beside being unavoidable, dominate over amplitude
fluctuations and quantum or thermal noise. ' ' In
fact, quantum noise is only of practical relevance in mini-
aturized devices. Probably the more important effect
neglected in our calculations is the phase fluctuations of
the transmitted field due to the jitter of the cavity. In
some circumstances this could be comparable to the fluc-
tuations calculated here. In addition, unforeseen effects
due to the combination of noise sources might appear. Fi-
nally, we mention that although we have only dealt here
with absorptive bistability, there is no problem, in princi-
ple, in using the same method to consider dispersive bista-
bility. However, the algebra becomes considerably more
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complicated due to the additional terms to be kept in (2.9).
We hope to report results for dispersive bistability in sub-

sequent work.

APPENDIX

1. Stationary moments

The stationary moments which appear in the calcula-
tion of the stationary-state correlation functions in Sec.
III C can be expressed in terms of the stationary moments
of the auxiliary variables r; and Q;. We obtain to order e

(hr )'=e'(r, )'+2m'(r, r, ),
(5r )=2p ~ (rirz)+e (rz)+2@ (r, ri),
(brQ )=e (riQi)+s (r2Qi)+E (r]QiQi),
(Q') =e(Q', )+2@' '(Q, Q, )

+~'(Q', )+22(Q,Q, ) .

(A 1)

(A2)

(A3)

(A4)

To calculate the moments on the rhs of (Al) —(A4) we

I
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consider a generic set of variables q;, i =1,2, . . . , n, obey-
ing the stochastic differential equations

j;=u;(q(s))+g;8(s), (A5)

+ y (&Jf{q(s))gJ8(s)) . (A6)

The last term on the rhs of (A6) can be calculated using
Novikov's formula:

&a f(q(s))g 8(s) &

s 5q (s)= g f ds~ a.a,f(qt*)) . r, )58(si) q ()=q

X &8(s)8(si)& (A7)

Substituting (2.10) in (A7) and by successive partial in-
tegrations, (A6) becomes to first order in q'

where u;(q(s)) are general functions of the variables q;,
and g; are a set of constants independent of q;. The equa-
tion for a moment (f(q(s))), where f(q(s)) is a general
function of q; and q=(q;, q2, . . . , q„), is obtained from
(A5) as

d
d$

(f(q(s)) ) = y (&Jf(q(s) juJ(q(s)) )

(f(q(sj)) = g (QJf(q(s))uJ(q(s)) &+ g [(~ &Jf{q(s))g gJ &
—r&~ BJf{q(sj)M (q(s))gJ)],

ds j m, j

where

5q (s)

58(si)

59~(s)

S) =S

(A9)

=~ (q(s))= g —B~u (q(s))g~ .

(hr (sjbr(0)) =e (ri(s)r, (0))

+e [2(ri(s)rz(s)r, (0))

+ & r i(s)ri(0) &],

(hr (s)hr(0))=e (ri(s)r, (0)),

(Q (s)hr(0))=e r (Qi(s)r, (0))

+e [2(Qi(s)Qi(s)ri(0))

+ &Q', (.).,(0))],

(A10)

(Al 1)

(A12)

From Eq. (A8) and taking into account that for the sta-
tionary moments (d/ds)( f(q) ) =0, we obtain a closed set
of algebraic equations. Specializing (A5) to the set of
equations (3.3)—(3.10), we obtain algebraic equations for
the moments appearing on the rhs of (Al) —(A4). The
solution of these equations leads to (3.33)—(3.36).

(Q (s)Q(0)) =e (Q, (s)Q,(0)),
(hr (s)Q(s)Q(0)) =e (r i(s)Qi(s)Qi(0)),

&hr(s)Q(s)Q(0)) =e ~ (r, (s)Q, (s)Qi(0))

+e [(ri(s)Qi(s)Qi(0))

(A13)

(A14)

2. Stationary correlation functions

The stationary correlation functions which appear on
the rhs of the equations (3.28) and (3.29) for
(br(s)br(0}) and (Q(s)Q(0)) can also be expressed in
terms of the stationary correlation functions of the auxili-
ary variables r; and Q;. We obtain to order e

+ (ri(s)Qq(s)Qi(0) )

+(r2(s)Qi(s)Qi(0))] .
(A15)

To calculate the stationary-state correlation functions on
the rhs of (A10)—(A15) we consider again the generic set
of stochastic differential equations (A5). We have
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(f(q(s))f'(q(0))) = g (r);f(q(s))U;(q(s))f'(q(0)))+ g (t);f(q(s))g;9(s)f'(q(0))),
i

(A16)

"h« f(q)»d f'(q) a«gen«» «n«i»s « the variables q, . The last term in (A16) is again calculated using
Novikov's formula: 5

(&;f(q(s))g;&(s)f'(q(0)) )

s 5q (s)= g I ds& B~t) f(q(s)) . g f'(q(0)) (&(s)&(s&))
5&(s() q (s)=q

5q (0)
+ g I dsi ~if(q(s))a~mf'(q(0)) . (e(s)t)(si)) .

Nl 5L9(st ) q (0)=q'
(A17)

The last term in (A17) is zero in the Markovian case. This is due to the presence of a 5 correlation function for
(8(s)8(st)) in this case and to the fact that s& g0&s. This term is the most characteristic of the non-Markovian
dynamics. It introduces important differences in the behavior of the correlation functions and the spectrum. Substitut-
ing (A17) in (A16) and by successive partial integration, we obtain to first order in ~

d (f(q(s))f'(q(0))) = g (8;f(q(s))U;(q(s))f'(q(0)))

+ g [(t) t),f(q(s))g g f'(q(0))) —r(t) t),f(q(s))M (q(s))g f'(q(0)))
i) Nt

+exp( —s/r)(t);f(q(s))g;& f'(q(0))g )], (A18)

where we have neglected a term proportional to r exp( —sir) because it introduces contributions of order r for the corre-
lation function.

Then, specializing (A18) to the set of equations (3.3)—(3.10), we obtain a closed set of equations for the stationary
correlation functions on the rhs of (A10)—(A15). The final solution is

(Q (s)br(0))=((Q br) —(Q )(br))exp( —2Ap)+(Q )(br),
(Q (s)Q(0)) =((Q )+3er(Q ))exp( —Ap) —3er(Q )exp( —s/ )r,

(A19)

(A20)

(br(s)Q(s)Q(0)) = ((Q br) —3(Q )(br))+or (Q )+(br) exp[ —(A,, +A~)s]
2A p

+ 3(Q )(br) er (Q—) exp( —Ap) er(hr—)exp( s/r) . —
2k.

(A21)
h

The functions (A10), (Al 1), and (A14) vanish in order e . Substituting (A19)—(A21) in (3.28) and (3.29) we obtain a
closed set of equations whose solutions are given by (3.31) and (3.32).
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