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Analysis of a delay-differential equation in optical bistability
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%'e study the stability boundaries for the steady and periodic solutions of the Ikeda delay-

differential equation. In the limit of an infinite delay the differential equation reduces to a non-

linear map. For this map there exist two classes of boundaries: one corresponding to subharmonic

cascades and the other either to domains of bistability for steady or periodic solutions or to the
emergence of stable periodic solutions from chaos. For a finite delay we show that each of the
above boundaries splits into an infinite sequence of secondary boundaries. The crossing of tke
secondary boundaries associated with the subharmonic sequence results in the progressive squaring
of the periodic solution. The crossing of a secondary boundary of the bistability sequence results in

the addition of a frequency in the transient oscillatory relaxation.

I. INTRODUCTION

The purpose of this paper is to study the stability
boundaries for the steady and periodic solutions of the
Ikeda delay-differential equation'

G 'dX(t) Idt = X(t)+a —bsin[X—(t —1)] (1.1)

and to compare them with corresponding boundaries of
the map obtained in the singular limit G~ 00,

X,=a —b slnX, , (1.2)

Equation (1.1} has appeared in the context of optical bi-
stability. It is by now clear that it provides only an ap-
proxitnate description of an all-optical bistable system.
More accurate descriptions require either more nonlineari-
ties and/or higher-dimensional systems of equations. 2

However, the sustained interest in Eq. (1.1} stems from
two causes. First, there exist a class of hybrid electroopti-
cal bistable devices, which constitute analog-circuit
modehng of Eq. (1.1). In this case t is a dimensionless
time and 6 is the dimensionless delay time, which can be
controlled either electronically or by varying the length
of a delay line. ' Recently, an all-optical analog circuit
was set up' that models Eq. (1.2}. The control parame-
ters a and b are proportional to the input voltage, whereas
X is the output voltage. Another line of research has
focused on acoustooptical devices with similar re-
sults. " ' Second, Eqs. (1.1) and (1.2) provide fairly sim-

ple examples of nonlinear equations that display rich bi-
furcation diagrams including domains of chaotic dynam-
ics.

The analysis of the map, Eq. (1.2), is straightforward.
Although it can be approximated locally by the logistic
map for some restricted domains of a and b, it has two
basic features that distinguish it from the logistic map: it
is a two-parameter, multiple-extremum map. In a recent
publication' we have shown that a useful global descrip-

tion of the map, Eq. (1.2), is provided by analyzing the
stability boundaries of the steady and period-n solutions
in the (a,b)-parameter plane. In particular, it was estab-
lished that besides the subharmonic cascade of period-
doubling bifurcations to chaos there is an infinite se-
quence of bistability domains involving steady, periodic,
and chaotic solutions.

The analysis of the reduction of Eq. (1.1) to the discrete
map is complicated because 6~00 is a singular limit.
This is best displayed in a calculation by Chow and
Mallet-Paret, ' who analytically constructed the first
periodic solution of Eq. (1.1) for large but finite 6 using
the techniques of singular perturbation theory. Results
for the solutions of Eq. (1.1) are also provided from an ex-
tensive numerical study by Gao et al. ' ' For finite 6
(including the domain 6 & 1), they show that the first in-
finite subharmonic sequence leading to chaos persists.
For the first periodic solution, they relate the transition
from a sinusoidal solution to a square-wave solution to an
increase in the number of unstable roots in the linear sta-
bility analysis. They also report several incommensurate
frequencies in the spectrum of the first periodic solution.
Finally it was noticed that as 6 decreases the period of
the first periodic solution increases. However, a drawback
of these numerical analyses is that very few points in the
(a,b)-parameter space have been investigated.

In this paper we show that we can again obtain a global
description of Eq. (1.1) by studying the stability
boundaries in the (a, b)-parameter plane. A distinct ad-
vantage of this procedure is that it relies only on a regular
perturbation expansion. This is obvious for the steady
solution for which we present a linear and a nonlinear sta-
bility analysis. %e also show that the relevant properties
of the other boundaries can still be derived by approxi-
mating the periodic solutions of Eq. (1.1) by the periodic
solutions of Eq. (1.2) even for values of G as low as 5.
For smaller values of 6 the general behavior of the boun-
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daries remains qualitatively correct but is quantitatively

inaccurate.
This paper is organized as follows. In Sec. II we review

the properties of the map, Eq. (1.2). We concentrate our

analysis on the boundaries of the steady solution and the

period-2 solutions. Section III is devoted to a study of the
delay-differential equation. In Sec. IIIA we present a
linear stability analysis of the steady solution and describe
the boundary striation process which differentiates the
map phase diagram from that of the delay-differential
equation. In Sec. III B we carry out a nonlinear stability
analysis, which is valid in a certain domain. In Sec. III C
we study the linear stability of the period-n solutions in
the limit of large G. We conclude the paper with a dis-
cussion of some general features of this study and com-
ment on the possibility of experimental tests of some of
the phenomena.

II. THE DISCRETE MAP

The bifurcation structure of the discrete map, Eq. (1.2),
which is obtained from the delay-differential equation in
the limit G oo, is easily determined from a linear stabil-
ity analysis of the periodic solutions. Although only
subharmonic and tangent bifurcations are possible for the
one-dimensional map, the geometry of their boundaries in
the two-parameter (a,b) plane is complex. ' This one-
dimensional map model for the optical bistable device
displays the rich variety of phenomena which are exhibit-
ed by multiextremum maps governed by two bifurcation
parameters.

Since the main purpose of this paper is to contrast the
behavior of the delay-differential equation (1.1) with the
map (1.2), we briefly summarize some of the main
features of the bifurcation diagram of the discrete-time
map. For our purpose it is sufficient to focus on the bi-
furcations of the steady state and simple periodic solu-
tions for which analytical results are possible. The fixed
points, i.e., the steady solutions X, =X of the map, are
solutions of X=a bsinX. They—become unstable when
the slope of the map passes through +1, bcosX=+—1.
The lower sign corresponds to a subharmonic bifurcation
leading to a period-2 orbit. The boundaries in the (a,b)
plane corresponding to this type of bifurcation will be
denoted by )'t& (h„ for bifurcation to period n) and are
given by

a =+arccos(1/b)+5 sin[+arccos(1/b)]+2nk,

X» ——a —b sinX2, L2 ——a —b sinX» . (2.3)

a =0+5 tana/tan5, 5 =5/coscr cos5 . (2 5)

These h„and t„(n =1,2) boundaries are shown in Fig.
1. The main features of such a diagram have been dis-
cussed earlier. ' Broadly speaking, as noted above, the
subharmonic boundaries, corresponding to a map slope of
—1, signal the appearance of a period-doubled orbit.
Tangent bifurcations, where the map slope is + 1, charac-
terize two different kinds of orbit-bifurcation process.
First, due to the fact that the map possesses two extrema
(in the parameter range of interest), coexistence of orbits
of the same and different periods is possible. The birth
of a second orbit of the same period can occur through
the tangent mechanism and is signaled by the cusps of the
tangent boundaries; the number of such cusps in the (a,b)
plane doubles as the period of the orbit doubles. ' Bista-
bility can also arise from the crossing of remote boundary
lines. Second, orbits of higher period may also arise by
tangent bifurcations out of chaos. Boundaries corre-
sponding to this mechanism are denoted t'. The t2
boundaries are shown in the right-hand portion of Fig. l.

5

A linear stability analysis of this solution indicates that it
loses its stability when 6 cos(X&)cos(Xi)=+1, with the
upper and lower signs giving t2 and hz boundaries,
respectively. A useful parametric representation of these
boundaries is obtained by introducing two auxiliary pa-
rameters through X» ——o.—6 and X2 ——o.+6. Then we
easily find

o =2n k +p, arccos[)u2sin5/(1 e—sin25/52) '~2],

k =0, 1,2, . . . (2.4)

where p, i
——pz ——1 and a=+1 for t2 and e= —1 for h2.

In terms of the auxiliary parameters the physical parame-
ters a and b are given by

k=0, 1,2, . . . . (2.1)

The upper sign in the slope equation corresponds to
tangent bifurcation boundaries t, (t„ in general for higher
periodic solutions), which specify the range of optical bi-
stability for the steady-state solutions. The equations for
the t» boundaries are

a =+arccos( —I/O)+b sin[+arccos( —I/O)]+2vrk,

k =0, 1,2, . . . . (2.2)

Beyond the h» boundary we have period-2 solutions of the
map,

0
0

FIG. 1. Harmonic (h„) and tangent {t„)boundaries for n =1
and 2 in the {a,b)-parameter plane.
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Figure 2 displays an enlargement of such a region wh

o e t2 boundaries and the t2 boundary are shown.
egion w eie

From this figure one sees that when the t2 boundary is
crossed from left to right, a new period-2 b is born out
o chaos. When the cusp-shaped tq boundary is crossed, a
second coexisting period-2 orbit is born. The t2

oundaries shown as dotted lines are extensions of the pre-
viously discussed t2 boundaries. In order to make this
structure clear, along the vertical line show F' 2

we have computed all roots, stable and unstable, of
t e period-2 solution (2.3). They are sho F' . 3.

e onset of bistability is clearly evident from the appear-
ance of the sigmoidal regions labeled by c and d in the
figure. Once such an orbit is born, its bifurcation history
in the parameter plane is analogous to that for steady
so utions described above. The entire phase diagram is

w ich are a generalization of those for a single-extremum,
one-parameter map.

%e now address the question: To what extent is this
structure a faithful description of the delay-differential
equation?

X a

i i i i I I I l

1.4 3 4.6

FIG. 3. Stabletable and unstable period-2 solutions of E . (2.3) for
b=5.2. The letters re ers refer to the crossing of boundaries indicated

s o q. . or

in Fig. 2.

III. THE DELAY-DIFFERENTIAL EQUATION

A. Linear stability analysis of the steady solutions

G+ Gb cosXe 'cosa'+ r =0,

66 cosX8 sinco —40=0 .
(3.2)

The steady solutions of the delay-differential equation
1.1) are independent of G and are

'
b

=a — sinX. A linear stability analysis yields the
characteristic equation (r+6)2+co =(Gbe 'cosX) (3.3)

holds:
Furthermore, the following relati bet'on ween r and u

1+be "cosX+A, /6 =0 .

Letting A, =r+ico, Eq. (3.1) yields

t2

(3.1)
When r yO (domain of instability) co

~
&Gb and the

right-hand side of Eq. (3.3) is bounded b (Gb) . H
all un stable roots he in a circle of radius Gb centered at
r = —6 and m=0 in the (r, co) plane. The portion of the
area of this circle which lies in the half-plane r ~ 0, A;, is
inite and, therefore, only a finite number f t f E .0 roos 0
. ) will contribute to the instability of the t d 1-

ion. t constant a and b, the area A;, and therefore the
number of roots of Eq. (3.1) that contribute to the insta-
bility, varies from zero when 6 =0 t

' f
1 6=. o in inity when
/6=0. Hence we expect the periodic solution just

rom a sine function at small 6 to a square wave at large
G. This is just the observed behavior of the solution. We
now turn to a more detailed study of the stead-e s ea y-state

At the stability boundary (r =0) we have

tallyho = —cd /6

I+(co/6) =(b cosX)

(3.4)

(3.&)

FIG. 2.2. Enlargement of Fig. 1 showing the tz and t
boundaries.

e tz an tz

A number of interesting features related to the boundary
structure can be deduced from the dispersion relation, Eq.

pon s to a unique t&(3.4). The root co =0 corresp d t
undary. This boundary is independent of 6 and is

identical to that given by Eq. (2.2) for the one-dimensional
map. However, in addition to m=0, th d'e ispersion rela-
tion has an infinite number of roots coj(6). They fall into
the following two distinct classes:
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(1) The odd roots coiJ+ i (j =0, 1,2, . . . ), which vary be-

tween (2j+ 1/2)n. when 6 =0 and (2j + 1)m when

G= co.
(2) The even roots cu2~ (j =1,2, . . . ), which vary be-

tween (2j —1/2)ir when 6=0 and 2mj when 6= 00.

When 6 0(1},roi is numerically indistinguishable from

Jco&.
We first analyze the set of odd roots. To each root

co2&+ &
there corresponds a boundary h ]~ ~hose equation in

the (a,b) plane is

a = +arccos(zz /Ii ) +2k'+ 6 sin [+arccos(zj /Ii) ],
k =0, 1,2, . . . (3 6)

with

The first odd root varies between m. when 6 = oo and n/2.
when 6=0. Thus, the periodic solution, just beyond the
first instability boundary bio, has a period which varies
between 2 when G = 00 and 4 when G =O. Furthermore,
in the limit G~ ~ all odd roots equal m, modulo 2m, and
all h, i boundaries collapse into a unique hi boundary in

this limit. On the basis of the linear stability analysis, one
expects that only the first boundary h io will be physically
relevant since beyond it the solution is periodic and the
next stability boundary will be determined from a stability
analysis of this periodic solution. Nevertheless, direct in-

tegration of the delay-differential equation has indicated
that the hii boundaries determine important features of
the solutions. When the first boundary h, o is crossed the
steady solution bifurcates to a periodic solution whose fre-
quency is cubi, this is just a Hopf bifurcation. Upon
further variation of a and/or h, a number of Iiij boun-
daries will be crossed before reaching hzo. Each time an

hij boundary is crossed the corresponding frequency

coze+ i appears in the power spectrum of the periodic solu-
tion with an 0(l) weight. This phenomenon is best seen
for small 6 where only a small number of frequencies ex-

ist and the distance between two consecutive h» is max-
imum. Figure 4 shows a sequence of hij (and hqj.

boundaries, see Sec. III C). The periodic solutions of the
delay-differential equation and their power spectra are
displayed in Fig. 5 for parameter values belonging to Fig.
4. These figures confirm the appearance of the appropri-
ate frequencies as the boundaries are crossed. We note
that because Eq. (3.6} derives from a linearized theory the
)'i ij boundaries determined from this equation are only ap-
proximate.

The above analysis shows that there are two distinct se-

quences of h boundaries. There is the principal sequence

h;o (i = 1,2, . . . ) corresponding to bifurcations where the
solution doubles its period; this is the only sequence of h

boundaries which remains in the G~ao limit (discrete
map). For finite 6 there is a secondary sequence h,j
(j &0), whose relevance has been checked only for the re-

gion of the parameter plane lying between h
&

and h2. A1-

though this secondary sequence is infinite, only a finite
number of boundaries are contained between these two
curves. The crossing of a secondary boundary results in a

2.6

FIG. 4. Striation process of the parameter plane for 6=10.
For clarity, only the secondary boundaries of the first two se-

quences are shown.

"squaring" of the shape of the periodic solution without
significant change of its period. As 6 increases the dis-

tance between two consecutive secondary boundaries de-

creases and in the limit G~ co all secondary boundaries
coalesce into a single principal boundary. Hence, the first
periodic solution has an infinite number of frequencies
and may be a square wave.

The even roots cozj of the dispersion relation also yield a
set of boundaries, which we label h,"j. The equations
determining them are

a =+arccos(z~/b)+2kir+b sin[+arccos(z /g)],
k =0, 1,2, . . . (3./)

where

z =[1+(~ /6)2]1/2

These boundaries lie within the t] cusp-shaped boundaries
and are tangent to them for large b. They do not have a
cusp shape but are similar in form to the harmonic
boundaries. %e have investigated the role of these
boundaries by integration of the delay-differential equa-
tion. The crossing of an h,"J boundary has the same effect
as the crossing of a secondary h;J boundary, but only on
the transient evolution towards the steady state. Crossing
of such a boundary introduces an additional even root of
Eq. (3.4) in the oscillatory relaxation to the steady state.
Again, the boundaries derive from a linear theory and are
thus only approximate; the frequency associated with a
particular h,z may appear slightly before the value
predicted by Eq. (3.7).
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B. Nonhnear stability analysis of the steady solutions X(t)=X+A sin(cot)+eR(t), A =O(1) (3.8)

The linear stability analysis of the steady solutions of
the delay-differential equation rests on the assumption
that there exists a marginally stable solution of the form
X(t)=X+esin(cot), with

~

e
~

&&1. In the limit of sinall
6 we expect the solutions to be nearly sinusoidal in char-
acter and we may instead seek the solutions of the form

X=a —bJo(A )sinX,

AUG 'since=A cosco+2bJ~(A)cosX,

tanto = —co/G,

(3.9a)

(3.9b)

(3.10)

where R(t) contains oscillations at all harmonics neo
Substitution of Eq. (3.8) into Eq. (1.1) and neglecting har-
monic terms leads to

LJ I I I LJ

100 t 1'1
0
0

2.1

X(t) P(f)

10

where the J„(A) are Bessel functions of integer order and
the third equation is again the dispersion relation Eq.
(3.4). Even if we retain the second harmonic contribution
in Eq. (3.8) with an O(1) weight, we still recover the same
dispersion relation. The new feature brought in by this
nonlinear stability analysis is that the coupled equations
(3.9) simultaneously determine the mean value X and the
amplitude A of the oscillations. We have verified that
these results provide a good fit to the numerically deter-
mined solutions of the delay-differential equation; they
are indistinguishable for small G. The boundary equa-
tion, which was given by Eq. (3.5}in the linearized theory,
now becomes

b cosX=+[1+(co/G) ]'~ A/2Ji(A) . (3.11)

This result justifies the fact that in the comparison of the
linearized theory with the numerical simulations the
secondary frequencies were given quite accurately but that
the location of the boundaries was only approximate.

I, I„ t. g I,

C. Linear stability analysis of the square-wave solution

In the limit G~ oo the striation of the parameter plane
by the secondary boundaries becomes dense near the b„
and t„bound ari esand the solutions of Eq. (1.1) approach
the square-wave solutions of the map. The period-n solu-
tions of the delay-differential equation may be approxi-
mated by

100 111 0 10
Xk =Q —6 S1QXk ), k =1,2, 3, . . . , n (3.12)

2.5

in the large-G limit with X~+„——Xk. A linear stability
analysis of Eq. (3.12) leads to the dispersion relations

X(t) tan(co+Le/n)= —co/G, L =0, 1,2, . . . , n —1

apd to the boundary equation

(3.13)

( b)" g cosX—=a[1+(co/G) ]"i . (3.14)

-0.9
)00 1

0
10

FRs. 5. Periodic solutions and their power spectra for a=1,
6=10. (a) b=1.2; initial data, X(t)=1.2 for 0&tel. (1)
b=1.7; initial data, X(t)=0.2 for 0&t &1. (c) b=1.85; initial
data, X(t)=0.2 for 0&t & 1.

There are n dispersion relations, each possessing an in-
finite number of solutions. Let cok„(k =0, 1,2, . . .) be the
roots of Eq. (3.13) with a)k„~(k L/n}mwhen G—~ ao. .
For a given cok„ the boundary equation is given by Eq.
(3.14) and will be either an Ii boundary if e= —1 or a t (or
h') boundary if @=+1,with e=( —1)""+ . Hence the
analysis of Sec. III A can be repeated here.

In view of the analysis of Ghow and Mallet-paret, a few
comments can be made about the above perturbation cal-
culation around the square-wave solution. Their calcula-
tion considers the construction of the boundary layer con-
necting the two branches of the nearly-square-wave
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X(t).

manner in which the bistability disappears for small G is
also evident from a comparison of the two figures.

IV. DISCUSSION

3
100

9

X(t) .

(a)

106
3
100

9

106

100 )00 306

FIG. 6. Bistability for periodic solutions with a=2m and
b=2.45. (a) 6=10; initial data, X(t)=4.815 for 0&t &1. (b)
6=10; initial data, X(t)=3.780 for 0&t&. (c) 6=5; initial
data, X(t)=4 815 .for Og t &. (d) G =5; initial data,
X(t)=3.870 for 0&t &1.

106

periodic solution by singular perturbation techniques for a
delay-differential equation with a polynomial nonlineari-
ty. Because of the existence of such a boundary layer, a
perturbation calculation of the bifurcation boundaries
from the square wave, such as the one we have carried
out, is not completely accurate. It assumes that the pres-
ence of a thin boundary layer does not significantly affect
the boundary location. Explicit numerical calculations
for large G confirm that these boundaries constitute a
gaod estiinate of the true bifurcation boundaries.

On the basis of the foregoing results we expect the dif-
ferential equation results to be modeled quite accurately
for large G. One feature of the results which is interest-
ing to examine is the character of the bistable states in the
cusp regions. Figure 6 shows examples of coexisting solu-
tions in the period-2 cusp for two values of G. These
solutions were calculated for parameter values in the
center of the cusp and are therefore mirror images of each
other. This mirror-image symmetry of the coexisting
solutions should make them easy to identify in experi-
ments. We also nate that the main features of the bista-
bility persist even to rather small 6 values where the solu-
tions no longer have a square wave character. The

The optical bistable device provides an example of a
physical system capable of rich dynamical behavior. It
can serve as a testing ground for results in nonlinear-
dynamical-systems theory. As noted earlier, the delay-
differential equation that models such a device in certain
situations can be reduced to a discrete-time map model in
the G~ ao limit. We have already shown that the map-
model description of this device shows a much richer
structure than the single-extremum one-parameter maps.
One of the most noteworthy features is the presence of a
hierarchy of bistabilities, which has not yet been observed
experimentally. The map model is a member of a class of
discrete dynamical systems predicted to display this and
other behaviors, but the reduction of the differential equa-
tion to the map involves a singular limit. The results of
the present study have shown that much of the structure
survives for large but finite G.

The bifurcation boundaries for the differential equation
can be approximately computed for large G and confirm
the predictions of the map model. The analysis of the dif-
ferential equation has also provided additional results,
which are outside the scope of the map model. These in-
clude the secondary harmonic boundaries and the struc-
ture of the solutions and boundaries for small G, where
the solutions are harmonic in character.

The above results suggest a number of experimental
tests. Since the cusp bistabilities have been shown to exist
for large G, and they have the typically characteristic
form shown in Fig. 6, it should not be difficult to search
for the low members of the cusp hierarchy since one can
determine their location in the parameter plane. These
bistabilities should be distinguished from the bistabilities
arising from the crossing of remote boundary lines shown
in Fig. 1. The other main feature which is susceptible to
test is the modification of the power spectra as the secon-
dary harmonic boundaries are crossed. Since the frequen-
cies and the approximate location of the boundaries are
known it should be possible to test this feature of the
theory.
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