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Intrinsic optical bistability in the scattering and absorption of light from Rayleigh-particle-sized
microparticles having an intensity-dependent refractive index is theoretically investigated. For par-
ticles near plasmon resonances optical switching also occurs by sweeping the frequency across the
resonance at fixed incident intensity above a certain threshold. Several orders of magnitudes of
reduction in the switching intensities are possible near sharp resonances, and an optical transistor
mode with a very sizable differential gain can be achieved.

Because of its potential applications as an optical
memory element, an optical transistor, and logical devices
for high-speed all-optical information processing, optical
bistability (OB) has generated a great deal of interest.! In
particular, intrinsic OB devices, because no resonators or
external feedback structures are involved, are capable of
extremely fast operations whose speeds are limited pri-
marily only by the intrinsic response time of the nonlinear
material and the transit time through the device. Materi-
als, such as polydiacetylene P.T.S., with fast response time
in the subpicosecond region and comparatively large non-
linear refractive index already exist. A decrease in the
transit time can be accomplished by reducing the size of
the OB element.

Our present study shows that submicron size particles
can exhibit OB in the scattering and absorption of light.
We consider spherical particles whose radius is small
compared with the wavelength of the incident light (Ray-
leigh particles), and whose refractive index depends on the
local electric field intensity. Near the plasmon resonance
of a particle, optical switching can also occur as the fre-
quency is swept across the resonance at fixed incident in-
tensity above a certain threshold. If the resonance is very
sharp one can find OB at intensities several orders of
magnitudes lower than for the nonresonance case, and a
differential gain or optical transistor mode with a gain of
about 1000 can also be achieved.

Consider a dielectric sphere embedded inside a trans-
parent host medium which has a linear dielectric constant
€,. For Rayleigh particles the electrostatic approximation
suffices. The electric field E, in the host medium far
away from the particle is supposed to be uniform. The
scalar potential ¢ for » >a must obey Laplace’s equation
and must also give an electric field equal to E, when
r— oo. Therefore ¢ must have the form
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&(r)=—E, r+4 , r>a. (1)

Inside the particle the dielectric function depends on
the local intensity, i.e.,

€s=€s( lEs |2) s (2)

where E; is the electric field within the sphere. Our basic
assumption is that E; is uniform throughout the particle
even in the nonlinear case, and thus € is a constant,
whose value will be determined self-consistently later.
Therefore the scalar potential inside also obeys Laplace’s
equation, and must have the form?

¢=—BE,r. @)

In Egs. (1) and (3) we expect that the constants 4 and B
are functions of the intensity, otherwise the calculation is
exactly the same as for the linear case.’

Continuity of ¢ and the normal component of D across
the surface of the sphere determines 4 and B

€ /€, —1
Aze:/e:l,—+-2‘13 and B=e,/ei+2 ) @

E; is then given by
Es=—i§h———. (5)

€ /€y +2

The intensity-dependent polarizability can then be written
as
3(e; /e —1) (Es/fh—l) [Esl
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The differential scattering cross section and the absorp-
tion cross section are given, respectively, by
4
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and
drwV

Oap= Ima ,

where V is the volume of the particle and 6 is the angle
between the scattering direction and the direction E, of
the polarization of the incident wave. All the formulas
look exactly as in the corresponding linear case except
that do/dQ is no longer intensity independent, and E; is
no longer proportional to E, because €, now depends on
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| E; | %, whose value must be determined self-consistently
from Eq. (5).

To analyze the self-consistency condition we shall now
specialize to the case where

€
— =¢+a|E 2. (8)
€n

The effects of damping will be incorporated by consider-
ing a complex €y =€y+i€y), while a is taken to be real.
Equation (5) then gives
9aE;2
aEs2= 2"2 2 ? (9)
(p +aE: ) + €9
where p=¢€y+2. From Eq. (9) it is clear that optical bi-
stability is possible only if p and a have opposite signs.
Defining x = —aE?/p,y=—9aE}/p* and y=e€,/p, Eq.
(9) reduces to

y=x[(1—x)+7?]. (10)

The places where jumps in x occur are given by the condi-
tion dy /dx =0, which gives

X2 1—v%/2

—2il 32 11
FE5(1=3y9) i, (11)

X1

for ¥2 << 1. The corresponding values of y are then given
by y,=y(x,)=y? and y,=y(x,)=++7y*/2. The
amounts of jump in x and y, and y, are roughly equal
and quite sizable and are given by 1+ O(y?. Unfor-
tunately the critical intensity y, =+ for the onset of OB
is rather high. However, once the internal intensity is
switched to its upper state where x > 1, it remains so until
y is reduced below the value y, =72 Therefore the hold-
ing intensity can be comparatively quite low (Fig. 1).

Next let us consider what happens at a frequency near
the particle’s plasmon resonance where the dielectric func-
tion can be written as

@
1____.._.__

2
1
owri/n | TEIBE T (12)

€ =€,

where €, is the high-frequency dielectric constant, w, is
the plasmon frequency, and 7 is the electron relaxation
time. Again we assume a to be real and frequency in-
dependent. Using Eq. (12) in Eq. (9) we find

9aEfw*/(€, +2€;)
aESZ—: h 2 zh 2 - (13)
ot — =% o
€, +2€;, +aE}? T

In the linear limit the resonance frequency is given by
wo=w,[€,/(€,+2€;,)]"/? if the resonance is sufficiently
sharp. At w=w the intensity inside the particle reaches a

maximum value given by
9EH wor)?

(B pax = .
(€, +2€4)

In the nonlinear case with >0 Eq. (13) predicts that
the plasmon frequency is lowered as the intensity inside
the particle is increased. Therefore if we start at low-
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incident intensity with @ detuned from @, toward lower
frequency by an amount slightly larger than the linewidth
then we expect that as the incident intensity is increased
the intensity inside the particle will also increase. Howev-
er, because of the nonlinearity this internal intensity will
shift the effective resonance frequency toward w and
therefore allow the internal intensity to increase further.
It is clear that the scattering cross section as well as the
optical absorption will exhibit OB with the incident inten-
sity as the control parameter. Optical switching and hys-
teresis will also occur at a fixed but sufficiently large in-
cident intensity as the frequency is swept across wy,.

Under most circumstances encountered experimentally
it is not necessary to analyze Eq. (13) fully, as we will
show below. Highly accurate results can be derived readi-
ly from a simplified form of Eq. (13).

First note that under most situations we have
|a| E? <<€, +2€, and so the first term in the denomina-
tor of Eq. (13) can be written as

co(z)aE,2

. 14
€ +2¢; (14

wz—w(2)+
Next we are mainly interested in frequencies close to w, so
that the above quantity can be approximated by
2 12
wyaE;
2wo(0 — —_—. 15
olw—wg)+ €. 126, (15)
Inserting this result back to Eq. (13) we find that although
there are a fair number of physical parameters they can
all be grouped to form three dimensionless parameters:
the reduced incident intensity

_ 9aE} 3
y= (€, +2€p)* (o) 1o
the reduced intensity inside the particle
aE}
xzm(wor) , (17

and the reduced frequency detuning
S=(o—wy)T . (18)

In terms of these three parameters, we obtain from Eqgs.
(15) and (13) the result*

x=—-2L (19)
(28+x)2+1

Note that x and y have the same sign as that of a and the
form of Eq. (19) implies that we can confine our discus-
sions to the self-focusing case (@ > 0). The self-defocusing
case can be obtained simply by changing the signs of x, y,
and 8.

When the incident intensity is fixed the behavior of the
internal intensity as a function of the detuning is shown in
Fig. 2. To find the critical incident intensity for the onset
of optical hysteresis and OB, we calculate from Eq. (19)
0x /38 |  —const and set it equal to infinity. This gives the
result

482+ 8x85+3x2+1=0. (20)
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FIG. 1. Reduced electric field intensity inside a spherical
Rayleigh size particle as a function of the incident intensity.

Solving x in terms of 7 yields

——‘?iémy—s)m . 1)

X =

At y =y, this equation must have a double root. This
means that

V3
Be=——. (22)
Putting this value in Eq. (21) implies
x, = —‘% : (23)

Using Egs. (22) and (23), Eq. (19) gives the critical in-
cident intensity
8v3

Ye= 9 - (24)

In terms of the original parameters we have

8V73 (€,+26,)"
81  (Veqw,7)’

For sharp plasmon resonances where w,7>>1 the critical
intensity can be several orders of magnitudes lower than
for the nonresonant case discussed earlier where
r HeEo+2)?
(aE;, )c = 243 . (26)

The curves in Fig. 2 can be easily computed by solving
for 6 from Eq. (19) and plotting it versus x for each fixed
value of y. For y <<y, the curve is symmetrical and
Lorentzian in shape. As y increases the peak shifts to-
ward lower frequencies and becomes asymmetrical. At
y =y. the curve has a vertical tangent. For y >y, the
curve bends over itself and develops a hysteresis loop.

The maximum internal intensity is exactly the same as
in the linear case. The locus of points where jumps occur
is given by the dotted curve. The behavior here is qualita-
tively similar to that of the bistable hysteresis in the cy-
clotron motion of a single electron.>®

Next we keep the frequency fixed and study the

(aEF).=

(25)
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FIG. 2. Reduced internal intensity vs the detuning away
from the plasmon resonance frequency for various values of the
incident intensity.

behavior of the internal intensity as the incident intensity
is varied. The results are shown in Fig. 3. The curves are
obtained from Eq. (19) by plotting y as a function of x for
different values of 8. The locus of points where jumps
occur can be located for 8 <8, by calculating x from Eq.
(21) and inserting the values into Eq. (19) for the corre-
sponding values of y. The results are given by the dotted
curve in Fig. 3. Note that the more y is above y., the
more the mistuning can be and still obtain OB, and the
more robust is the hysteresis loop. By tuning the frequen-
cy such that §=458, the hysteresis loop disappears and the
curve becomes single-valued with a vertical tangent at y,.
Therefore near the critical intensity differential gain is
possible. Note that the gain here can be extremely large.

To obtain a feeling for the order of magnitude of the ef-
fects discussed here we shall consider some specific exam-
ples. For the nonresonant case, Eq. (26) implies that
(@E?)™ ranges from 0.5 to about 60 for €} equal to 2—16.
Although the third-order nonlinearities in semiconductors
are fairly high, unfortunately they also have a rather large
dielectric constant and therefore a corresponding larger
threshold for OB. Let us consider a self-defocusing ma-
terial, InSb, where a value of n,=—6x10"2 cm*kW—!
is inferred from experiment’ performed just below the
band gap at 5 K. The threshold intensity is found to be
about 100 kW/cm?,

For the resonant case, let us consider a heavily doped
n-type InSb with electron concentration 2% 10'8/cm? so
that the plasmon frequency lies within the range of the
CO, laser. With €, =15.7 and 7=8X 10~!3 sec we find
from Eq. (25) (aE;?;E2>< 10~3. Even around the 10.6-
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FIG. 3. Reduced internal intensity vs the reduced incident in-
tensity for various values of the detuning. At the frequency
where §=24,, an optical transistor made with a very sizable dif-
ferential gain can be achieved.

pum range, n, as high as 1072 cm?>kW ™! can be obtained
experimentally under suitable conditions.® The critical in-
tensity is found to be only about 2 kW/cm? and a dif-
ferential gain of about 1000 can be achieved.

The idea of lowering the threshold for the onset of OB
near a sharp resonance is exemplified by the recent work
on the nonlinear cyclotron resonance of an electron in a
Penning trap.>® Although the nonlinearity, which arises
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from relativistic mass enhancements, is very weak for
electron kinetic energy of only a few electron volts, OB
can in fact be observed because of the extreme narrowness
of the resonances. Resonance enhancements of elec-
tromagnetic intensities, and thus a reduction of incident
power for OB in planar waveguide structures based on ex-
citations of surface plasmons’ and guided waves,'® have
been discussed. The latter approach has in fact been
demonstrated experimentally.'!2

Even though our analysis here cannot be applied out-
side the Rayleigh particle size regime, it should be men-
tioned that there are very sharp “van der Hulst” reso-
nances'>'* for spherical particles whose sizes are large
compared with the wavelength of the incident radiation.
A change in the size parameter (defined as the particle cir-
cumference divided by the optical wavelength inside the
particle) by a part in 10°—10° can be readily detected.!® It
should be of interest to look for the kind of OB discussed
here in these systems.

Note added. After submitting this article, the author
noted a very recent experimental work in which a several
order-of-magnitude enhancement in the optical phase-
conjugated reflectivity from silver and gold colloids was
reported.!® These materials are known to have very
strong resonances in the optical region. The nonlinearity
involved in this experiment is basically the same as that
required here for optical bistability. This is the first time
that the optical Kerr coefficient has been measured for
metals. Using their measured value for silver at the reso-
nance frequency we estimate the critical intensity for
switching in this system to be about 10 MW/cm? which
should not be difficult to achieve experimentally.
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F49620-85-C-0078. The author wishes to thank Steve Ar-
nold for helpful discussions.
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