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Instabilities and routes to chaos in passive all-optical resonators containing a molecular gas
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Dispersive optical bistability and instabilities leading to period doubling, higher harmonics, and

chaos in an all-optical passive quantum system are discussed theoretically and experimentally.

These phenomena have been observed for a wide range of operating conditions in ring and Fabry-

Perot resonators containing ammonia molecular gas as the nonlinear medium. Laser input intensity,

gas pressure, and cavity tuning are the main control parameters in observation of these effects. The

experimental results are well modeled by our generalization of standard two-level system theory to
include standing-wave, reservoir, and transverse effects.

I. INTRODUCTION

Nonlinear optical resonators display a wide range of
phenomena of fundamental interest. In passive resona-

tors, optical bistability' (OB) and related phenomena have
attracted much attention. We are concerned in this paper
with an outgrowth of optical bistability, which has wide

interest in its own right, namely, instabilities and chaos in
the output of a (passive) nonlinear resonator. This class
of phenomena, currently undergoing intense cross-
disciplinary investigation 2 is illustrated in a particularly
interesting manner in optics, since simple behavior
characteristics of low-dimensional systems can be ob-

tained, ' while there is the interesting possibility of a
quantum description of the phenomena, particularly when
the nonlinearity arises from the saturation of two-level
atoms.

Ikeda first described an instability with period 2',
where ttt is the cavity round-trip time, in a ring resonator
containing a two-level medium, with a period-doubling
cascade leading to chaotic output with a continuous wave

input. Since then, similar phenomena, including all the
"universal" routes to chaos, have been predicted in a wide
class of passive optical systems with feedback. ' Experi-
mental evidence, however, was slow in arriving, and
remains patchy. The first demonstration was in a hybrid
system with electronic feedback, ' which provided an enor-
mous stimulus despite its only quasioptical nature. Only
in 1984 did the first all-optical demonstration of the Ikeda
instability appear in the literature, employing glass fiber
as both waveguide and nonlinear medium.

The main reason for the Ikeda instability being much
harder to observe than optical bistability itself is the re-
quirement that the response time of the nonlinear medi-

um, ~, be short enough to allow 2t~ osciBation, i.e., a
"good," or at least fairly good, cavity is required, in order
that the medium bandwidth is able to cover two or more
adjacent longitudinal cavity modes. There is no such re-
quirement for bistability, e.g., r) 10 tR is typical for
InSb, in which bistability is observable at very low
powers because of the resonant nature of the nonlinearity.
A nonresonant nonlinearity, on the other hand, will be
fast enough for the Ikeda instability, but will require high

powers, and there will be no discrimination against com-

peting nonlinear processes —both problems in the fiber ex-

periment, where picosecond pulse excitation was neces-

sary to avoid stimulated Brillouin scattering.
Ideally then, one seeks a medium with a nonlinearity

resonantly enhanced sufficiently to outweigh competing
processes and reduce power requirements, but with a
response time of a few nanoseconds to allow compact
resonator design.

Considerations such as these point to gases as optimal
media, and we were led to look at molecular gases where
there are many absorption lines near to resonance with

CO2 laser lines, while the response time is readily adjust-
able by pressure variation to obtain the best
resonance —response-time trade-off. In particular, am-
monia has well-documented coincidences with CO2 laser
lines, s and energy levels sufficiently widely spaced to ap-
proximate reasonably closely to an ideal two-level system.
We recently reported 2tst oscillation in a ring resonator
containing NHs gas, and subsequently observed bifurca-
tions and chaos in a compact Fabry-Perot resonator, again
containing ammonia. '

The purpose of this paper is to collate and expand our
theoretical models and experimental observations of OB
and instabilities leading to chaos in ring and Fabry-Perot
optical resonators. We first review in Sec. II the theoreti-
cal picture for the OB and instabilities in ring and Fabry-
Perot resonators. In Sec. III we describe the nonlinear ab-
sorption characteristics of ammonia and molecular
energy-level schemes. We then describe in Sec. IV the ex-
perimental arrangement and experimental results in com-
parison with the theoretical predictions. Finally, in Sec.
V, we summarize our experimental and theoretical results
and discuss possible future developments.

II. THEORY OF INSTABILITIES
IN PASSIVE NONLINEAR RESONATORS

In this section we develop and explore the theory of
dynmmca1 instabilities and chaos in passive nonlinear
resonators in both ring and Fabry-Perot configurations.
We discuss the physical basis of the instabilities on the
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one hand, and development of models adequate to
describe the experimental results presented later, on the
other.

Fabry-Perot resonators give effects qualitatively similar
to those in ring resonators, but are more complicated to
analyze (though simpler and better for experiments). Our
first work in this field" established the existence of insta-
bilities in Fabry-Perot resonators containing a Kerr medi-
um of zero response time. We subsequently elaborated
this model to include finite response times, in the course
of which we were able to extract an accurate Feigenbaum
cascade, ' and this led to the present analysis of saturable
media, spurred by the successful experiments described
below. We will only occasionally consider the role of
transverse effects in these phenomena; the reader is re-
ferred to Ref. 13 for a much fuller discussion of trans-
verse effects, in ring resonators containing saturable
media.

fi 1+5
~P T& T2

Substituting (2.5) into (2.4) gives, for the positive-
frequency component,

n~
z [E+exp( i cut)—]— 2 2 [E+exp( icp—t)]
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&oP T2
n ( b —i)[E+exp( i cot) ]—, (2.7)
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where nb is the background refractive index of the medi-
um. In the case where the sample is in a Fabry-Perot cav-
ity, E+ can be expressed as a sum of forward and back-
ward fields with envelopes EF(x, t) and Eti(x, t), respec-
tively:

E+(x, t) =EF(x,t)exp(i nb k px)

+Eii(x, t)exP( inb—kpx), kp =cP/c . (2.8)
A. The basic model (Ref. 14)

Let us assume that we have a system of two-level atoms
of transition frequency cpp and dipole moment p irradiated
by a field of frequency cp. Using the density-matrix for-
malism and splitting the field and polarization into their
positive and negative frequency parts,

E =E+exp( icpt)+E —exp(icpt),

P =N, p[P+e px( icpt)+P e—xp(icpt)],
(2.1)

with E+=E ', P+=P *, and N, the number density
of atoms, we obtain in the rotating-wave approximation,
and assuming homogeneous broadening,

+i b, P ++i—+E n, -- (2.2)

" = —"+ 2i&(E P+ —E+P )-, —-Bn n+1
dt Ti fi

(2.3)

where n is the population inversion, T& is the longitudinal
relaxation time, T2 is the transverse relaxation time, and
h=cp —cop. Equations (2.2) and (2.3) used in conjunction
with Maxwell's wave equation (in the plane-wave approxi-
mation)

Upon substituting Eq. (2.8) in (2.7), and making the slow-
ly varying envelope approximation, we obtain

REF nb dEF
exp(ikx) +

c)x c c)t
r

c3Ett nb c3Ea
+exp( ikx) —— +

Bx c Bt
r

&o ]+i5=+ nE+(x, t), k =nbkp (2.9)
1+6

where ao ——~X,P T2/eonqcA is the on-resonance absorP-
tion coefficient.

For bidirectional propagation, n will be a rapidly vary-
ing function of z, due to the spatial modulation of I in
(2.6). In order to obtain true slowly varying amplitude
equations for the evolution of EF and Ett, it is then neces-
sary to solve (2.6), so as to find the Fourier components of
the right-hand side of (2.9) which are phase matched to
one or the other of the terms on the left. Before involving
ourselves in such complexities, let us first consider ring
cavities, and thus set Eti=0 in (2.9). Let us then define,
for a medium length I.,

a'E 1 a'E 1 a'P
c)x c Bt @pc dt

(2.4) L nbXD(t)= ——J dx n x, t+
o C

(2.10)

in the slowly varying envelope approximation constitute
the Maxwell-Bloch equations. In the limit T2&&T& we
can eliminate P+ adiabatically (i.e.-, c)P-+/c)t=O) from Eq.
(2.2), so that

which means that D(t) is (minus) the inversion averaged
along the light cone starting from x =0 at time t. Some
manipulation then enables (2.6) to be written in averaged
form as

+ .I T2 + 1+idE.—=+i E-n
~+g 2

(2.5)
—OLD(, t)

T,D(t)=[1—D(t)] —
~
E(t)

~

'
aI. (2.11)

Bn ITi —— (n +1)+n-
at I,

where I, is the saturation intensity, given by

(2.6)

where A=6, T2, substituting Eq. (2.5) in (2.3) and defining
the "intensity" I=E+E, we obtain

where e(t)=EF(O, t)/I, ' and cc=ccp/(1+6 ). This an-
satz for the population enables an explicit integration of
(2.9) along the light cone; the ring-cavity boundary condi-
tions can then be applied to obtain the following relation
between e at times separated by one cavity round-trip time

.10
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~

g aLe(t)=e;(t)+Re(t —ttt )e' exp — (1 i—h)D(t —ttt )
2

(2.12)

Here, e; (t) is the scaled incident field (transmitted into the
cavity), R is the mund-trip amplitude loss (by transmis-
sion and any absorption outside the nonlinear medium),
and 8 is the cavity tuning in the absence of the medium
(a~0}. In the latter case, we see that constant input field
leads to a constant forward field

E]

1 —Ze" (2.13)

showing the usual resonance behavior as 8 is varied, e.g. ,
by fine-tuning a cavity mirror. Equations (2.11) and
(2.12), supplemented and slightly modified to account for
reservoir effects, will be used to analyze experiments on
ammonia gas in the following sections.

The effect of the nonlinear medium on the resonator
response is best approached by considering first the
dispersiue limit aL «1,

~

6
~

&&1, I &&I„I
~

b,
~

-I,. If
we also assume Ti « tti, then (2.11) gives, approximately,

D(t)=, =1—
i
e(t) i'

1+ ~e(t) ~'

so that (2.12) becomes

;~ i'6 ~e(t —tz) ~2

e( t) =e;(t)+Re(t —tit )e' e (2.14)

where G =aLEI2, and 8' includes the linear phase shift
due to the gas. In this limit, the original system of dif-
ferential equations and boundary conditions is reduced to
a nonlinear mapping of the cavity field at intervals of tie,
the round-trip time, as first obtained by Ikeda. He
showed that the fixed points of (2.14) are, in general,
multiple-valued functions of the input field, giving optical
multistability, More significant here, however, was his
demonstration that the Ikeda map can show period-
doubling cascades leading to chaos, in which e(t) wanders
on a strange attractor (of fractional dimension) in its com-
plex phase plane.

means that the pump is off resonance, lying exactly half-
way between two modes: the beat note between the pump
and the resonant sidebands (which will be self-excited if
the nonlinearity is strong enough} then has period 2tR,
identifying this as the Ikeda instability.

The nice thing about this system is that the preceding
double resonance can be guaranteed: the refractive-index
change induced by the strong pump beam actually moves
the comb of longitudinal modes with respect to the pump
frequency, and this "transphasing" of the mode spectrum
alternately gives rise to bistable and Ikeda-type double res-
onances as the pump parameter e; is increased. ' This is
illustrated in Fig. 1.

The entire period-doubling cascade can be given a simi-
lar interpretation. As each new period 2"tz bursts into os-
cillation the effective free spectral range of the cavity is
halved because the generalized condition for resonance
must be constructive interference after 2" trips (since only
after 2"tR do the cavity's optical properties repeat them-
selves). At the 2"tie threshold these small-signal modes
are degenerate with the oscillating frequency spectrum,
but as e; is increased, they "transphase" in frequency to
halfway between the oscillating frequencies. If the gain
there becomes large enough, these new modes burst into
oscillation; if not, "transphasing" continues (Fig. 1) to a
renewed coincidence with the oscillating frequencies, at
which point an inverse period-doubling cascade ensues,
leading eventually to a steady-state response. Figure 2 il-
lustrates this process, showing the small-signal gain spec-
trum as e; is increased through the 2' threshold, and the
ensuing doubling of the spectrum followed by "transphas-

B. Physical interpretation of the Ikeda instability

The material nonlinearity responsible for nonlinear re-
fraction, and thus bistability, can also generate sidebands
on the pump frequency. Physically, two photons with fre-
quency co are scattered to form a pair of photons at
co+6,to, so the process is termed four-wave mixing. An
additional input signal, the probe, detuned from the pump
by Ace will thus experience gain or loss according to the
combined effect of the nonlinearity and the mode struc-
ture of the cavity. Clearly, it is most advantageous if both
co+km and cu —dim are cavity resonant, i.e., if 25~ is a
multiple of the cavity's free spectral range. An euen mul-
tiple (including zero) means that the pump is itself
resonant, and this double resonance lies behind optical bi-
stability and the sideband instabilities analyzed by Lugiato
and co-workers. ' An odd multiple, on the other hand,
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FIG. 1. Gain spectrum for a ring resonator, 8 =0.58,
80——2.3, showing "transphasing" of the cavity resonances as the
input intensity is increased, together with locking at the Ikeda
2tq resonance position C,

'8 is the amplitude feedback factor of
the cavity, and 80 the mistuning).
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case, however, for a highly saturated medium, such as we
deal with in the experiments described below, so we first
take the limit T i ~0 in (2.6), so that

2 1T

'R

n (1+I/I, ) = 1 .

%riting

I=
I EF I

'+
I
E~

I
'+EFEae" +c.c.

=(I,+6+6 )I, ,

(2.15)

(2.16)

where 6 describes the spatial grating in the standing-wave
field, we seek to solve (2.15) by the ansatz

n=np+ g (niG~+c c ),. .
j=l

which, on insertion into (2.15), gives, for the spatially uni-
form (dc) term,

R

FIG. 2. Gain spectrum for a ring resonator shovnng the
creation of new "modes" at a bifurcation (steady state ~2t~ os-
cillation). The bifurcation point is marked by the dotted line.
The four peaks at the back indicate the approach to the
2 t~ ~4' bifurcation.

(1+Io)no+
)
6 ['(n, +n', )=1

and for the term -e'2J~,

(1+Io)nq+nj i+ ~6
~ nj+i 0. ——

This equation has solutions in which

(2.17)

(2.18)

Pl)+�

)

—(1+Io)+[(1+Io)'—416
I

')'"
2

ing" to the verge of 4trt oscillation. It should be noted
that the noise spectrum of the system should be very simi-
lar to Fig. 2, because of the filtering action of the cavity
on any broadband noise source.

Considering now finite Ti, perturbation theory readily
leads to the conclusion that the gain spectrum of four-
wave mixing becomes Lorentzian, with half-width
—T i ', and the associated dispersion means that the free
spectral range becomes a function of frequency. The
former is usually the more important: clearly if tz && Ti
then there will be no significant gain in the Ikeda situa-
tion, where the modes straddle the pump frequency; this
is the physical origin of the requirement rz & Ti usually
quoted for Ikeda instability.

Another effect of finite T, is to raise the degeneracy by
which all symmetrically placed pairs of sideband modes
reach threshold simultaneously. On the one hand, the
raising of the QB degeneracy permits self-pulsing at
period tz, as described by Lugiato et al. ,

' while on the
other, the Ikeda degeneracy splits to yield pulsing at
2 t~ /3, 2 tR /5, etc. These high-frequency instabilities
have been extensively studied in hybrid systems we
have observed the 2'/3 oscillation in an all-optical sys-
tem based on ammonia gas (see below).

for all j& 0 . (2.19)

In order that the degree of spatial modulation decrease
with j, the lower sign must be chosen. Furthermore, all

n~ are real.
Use of (2.19) in (2.17) enables n p to be calculated:

"=[(1+I.)'-416 I'f'", (2.20)

nilnp ——

and

& nE+)F npEF[1+(n i/n——p)Es/I, ],

&nE+) =nQEii[1+(ni/no)EF'/I, ] .

(2.22a)

(2.22b)

The population-grating term n~ thus gives rise to non-
linear nonreei proeity: th'e absorption coefficient and re-
fractive index experienced by the forward-and backward-
traveling waves are unequal.

For weak fields, we find

which reduces to the previous expression in the case of
unidirectionality ( 6 =0). n i can be obtained from (2.19):

—(1+Ip)+[(1+Io) 4~ 6
~

]'—
(2.21)

2/6
f

The terms on the right-hand side of (2.9) phase matched
to the forward and backward fields can now be found:

C. Fabry-Perot resonators

%e now resume discussion of the case where E~ is
nonzero in (2.8}, appropriate to Fabry-Perot resonators.
For finite T&, progress can only be xnade in the dispersive
limit, where the spatial modulation of n in (2.6), induced
by that implicit in I, is small, so that only Fourier com-
ponents of low order need be considered. This is not the

~o=l —Io ~i = —~o

and thus we obtain from (2.22),

& nE+&F EF[1—( IEF I'+2 IEa I')/I, 1,
&
«+ &a =Em[1 —(2

I E~ I

'+
I
Ea

I
')/Is 3

and we see that the mutual nonlinear effect is double the
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self-effect.
Instabilities in Fabry-Perot resonators with saturable

two-level media, which require the full equations (2.9) and
(2.22), have received little, if any, study, but we present
below results of computations based on these equations
showing period doubling and chaos.

III. NONLINEAR ABSORPTION
CHARACTERISTICS OF AMMONIA

Many molecular gases have near-resonant vibrational-
rotational (V-R) transitions with the CO2 laser in the
9—10-pm spectral region providing a range of frequency
offsets well documented from photochemistry studies. 's

Of these, ammonia is selected here as a particularly at-
tractive candidate for investigation since it typifies a
discrete level system in which excited-state pumping is in
general precluded by significant anharmonicity, inversion
splitting, and large rotational constant. '9 As such, several
of the V-R transitions of the vz fundamental band act as
two-level systems when pumped by COz laser radiation.
As fundamentally the simplest of nonlinear schemes,
which can be furthermore fully quantized, the two-level
medium merits special attention.

Nonlinear refraction in near-resonantly excited media,
which is the fundamental mechanism responsible for the
instability phenomena considered here, arises from
intensity-dependent saturation of anomalous dispersion.

The laser-induced energy transfer processes which give
rise to this may be understood from investigation of the
accompanying effect of saturated absorption. Using this
approach we find our data for NHi are well modeled us-
ing a simplified energy-level scheme describing the mole-
cule. This theory is subsequently applied to nonlinear op-
tical resonators in the interpretation of the instabilities ob-
served in these systems; viz. , both ring and Fabry-Perot
cavities containing NH3 gas.

Since the generation of resonant nonlinearity depends
on partial saturation of the optically pumped transition,
molecules with low saturation intensity are ideal. Howev-
er, the counteracting requirement of fast medium response
time for generation of instabilities implies high saturation
intensities. To meet these conditions for NHi, and indeed
for most polyatomic molecules, we are restricted to sa-
turation effects arising from rotational relaxation rather
than from vibrational-translational relaxation, which is
relatively slow. Relatively high-power pump signals are
therefore required necessitating the use of pulsed rather
than cw laser systems.

In our experiments a transversely excited atmospheric
(TEA) CO2 laser operated on a single transverse and long-
itudinal mode was used, providing step-tunable (step inter-
val-2 cm ') smooth pulses full width at half maximum
(FWHM) —100 ns and peak power -1 MW. Mode con-
trol was achieved by injection lockingi of the TEA laser
using the signal from a frequency-stabilized cw CO& laser.
Alternatively, a cw CO& gain section was incorporated
within the cavity of the TEA system; the so-called hybrid
system. '

Ammonia absorption measurements were taken over an
extended pressure range using short cell lengths of 10—20
cm to minimize self-focusing effects, so ensuring an essen-
tially constant beam cross section throughout the medi-
um. The TEA CO& laser input and transmitted signals
were sampled by KBr beam splitters and monitored by
photon drag detectors and a Tektronix 7104 oscilloscope,
total response time &1 ns. Typical input and output
pulse shapes are shown in Fig. 3 for a fixed input intensi-
ty of -3 MW/cm2. Data here are for the aR (1,1) transi-
tion which lies 1.23 6Hz below the 10R(14) COq laser
pump line2 and is representative of that obtained for oth-
er optically pumped transitions. Effects of saturation,
clearly evident at low pressure, diminish with increased
pressure resulting in a progressively weaker, narrower,
and apparently delayed transmitted signal. Additional
measurements of small-signal absorption, using a low-
power cw CO2 input signal are shown in Fig. 4. The good
pressure-squared dependence of the absorption coefficient

CV
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FIG. 3. COq laser pulse transmission through NH3 for vari-
ous pressures: input pulse (solid line); transmitted pulse, (a) ex-
perimental (dashed lines), (1) computed (dotted lines).

FIG. 4. Small-signal absorption coefficient (a) as a function
of the NH3 pressure: experimental (dotted line); and theoretical
(solid line).
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confirm that the system acts on an off-resonantly
pumped, homogeneously broadened two-level system,
yielding a value for a for 0.025 cm ' at 10 Torr.

kR

W iL

kv

k,

K,

K, aR(&, 1j

FIG. 5. {a) Energy levels and transitions for pumping and
lasing processes. {b) Kinetic model scheme representative of the
energy-level scheme in {a). Radiative coupling is represented by
continuous lines and collisional relaxation {both rotational and
vibrational) by wavy lines.

A. Molecular energy-level scheme

Population redistribution in optically pumped molecu-
lar systems is determined by the interplay between such
factors as the puinp intensity, pump-pulse duration, and
the various molecular relaxation processes responsible for
redistributing the excited population among the
vibrational-rotational energy states of the molecule.

Of these, rotational inelastic collisions involve the
smallest energy change [(rotational level spacing)
-10 )&(vibrational level spacing)j and cansequently ro-
tational relaxation is usually the fastest of these processes
(-10 —10 ' atm s). This is, therefore, the dominant
pressure-dependent contribution to line broadening. Fol-
lowing excitation of a particular vibrational-rotational
transition, population is then rapidly thermalized among
the manifold of rotational states of the ground and excited
vibrational levels. Subsequent deexcitation of population
to ground occurs at a considerably slower rate normally
through vibrational-translational (V-T) relaxation
(10 —10 atm s). We note that, at least for low levels,
vibrational-vibrational (V-V) relaxation between like mole-

cules, although often faster than V-T relaxation, does not
in general contribute appreciably to population redistribu-
tion. Similarly, spontaneous radiative emission, which is
extremely slow in the infrared () 10 s), has little effect.

A typical energy-level scheme showing the relevant lev-

els for the vz fundamental band, of NH&, is illustrated in

Fig. 5(a), showing the radiatively coupled vibrational-
rotational (V-R) transition and collisional relaxation
routes For .the purpose of analysis it is convement to
represent this scheme in the simplified form shown in Fig.
5(b), where ni and nz are the number densities of the
molecules in the vibrational-rotational level interacting
with the CO2 pump laser and N& and N2 represent the
number densities of all other molecules in the states of the
same vibrational mode.

The radiative coupling between the pumped transitions
is shown by continuous lines, and the corresponding rate
coefficients are Wz =l(t)oi /fico (s '), where cri is the
absorption cross section, I(t) the pump-laser intensity,
and fico the pump-photon energy.

Collisional relaxations (both rotational and vibrational)
are shown by wavy arrows and corresponding rate coeffi-
cients linking levels I and m are denoted by ki
(Torr ' s '). Vibrational cross relaxations are omitted for
the sake of clarity in illustration.

The genesis of our model can be traced to the work of
Burak et al. , in which they provided justification for
treating the molecular densities N& and N2 as single ki-
netic groups. The implication of this treatment is that
rotational-level populations constituting the kinetic group

(or Nz) relax together, maintaining their thermal
equilibrium distribution. It was further shown that the
equilibrium rate law between the rotational relaxation
rates, namely,

=(f ~fi)k i (3.1)

where fi is the thermal equilibrium fractional population
of the level 1, can reasonably be extended to the nonequili-
brium case of pumping. The equations describing energy
transfer are considerably simplified by considering only
those collisional relaxation processes that make a dom-
inant contribution to population redistribution among the
levels. These are U-V and V-T or V-R relaxation from
the manifold of rotational states comprising Nz to those
comprising Ni (rate constant k„)and the rotational relax-
ation of population between the pumped level and these
manifolds. Specifying the rotational relaxation rates from
levels 1 and 2 as k& and kz, respectively, then the rates
from the manifolds to these states, K, and Kz, respective-
ly, are determined by detailed balance, Eq. (3.1). The rate
equations then can be written as

dni g&= —8' n) — n2 —kjn)+I( )X),
dt gz

(3.2)

dn2 = W ni — nz kznz+K—zNz,
dt

(3.3)

dNi

dt
= —K)N)+kn )+k„N2,

dX2

dt
= —I(Ik 2 N2 +k $ n 2

—k
U N2

which imply the conservation of population

N=n )+n2+N)+N2

(3.4)

(3.5)

(3.6)

General consideration of these equations is given in Ref.
24. Here we concentrate on the solution specific to our
experimental conditions. For simplicity we assume equal
level manifold rate constants in the two levels k, =kz ——k
and Ki ——Kz K. The degenera——cy factor g&/gz is —'

, for
the aR(1, 1) transitian and for our conditions k„,the V-T
rate, is negligibly small.

These equations conserve (ni+nz) = n, and
(Ni+Nz) =N, separately (e relating to thermal equilibri-
um); if k, K cannat be set equal in the two levels, generali-
zation is straightforward. Detailed balance requires that
kn, =KN, ; in the infinite reservoir limit K thus goes ta
zero and the system has effectively just two levels with
appropriate dynamics. In NH3 however, n, /X, -2% and
K-2 ps 'Torr '. The major effect of finite K is a
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—(g+1)
~

e(t)
~

(1—e ~ )/2aL],

N =K[(D+g)I(1+g) N], —

where g =gi/g~, and [compare (2.10)]

D(t) = (ni —gnq ) In,

(3.7)

(3.8)

and N(t)=(N~ )/N„and where n2, Nz, ——0 is as——sumed
for simplicity.

We integrate these equations by a Runge-Kutta
method, using a fit to the observed input pulse shape for
I(0,t). Transverse effects are included by using the iden-
tity for the transmitted power P„

P, (t) = 2n.r dr I,(r, t)
0

Io/I
,'nw'I, J '—*die ~D"", (3.9}

where I equals
~
e(t)

~

. The transmitted power is thus
calculated by summing the transmissions, calculated from
Eqs. (3.7)—(3.9), of pulses which all have the same time
dependence, but whose peak intensities vary from zero in
the wings to Io in the center.

Using this model with the above parameter values, the
observed pump powers and beam area —,

' n.m =0.35 cm,
we compute the dotted pulse shapes in Fig. 3, which
represent a very satisfactory fit to experiment with no free
parameters, and justify our model.

IV. OPTICAL BISTABILITY
AND INSTABILITY GENERATION

IN OPTICAL RESONATORS

A. Ring resonator

The original optical scheme described by Ikeda for the
generation of oscillation and turbulence was a ring cavity
containing a two-level nonlinear medium. In our initial
cavity experiments we have therefore considered this
scheme comprising a unidirectional ring system contain-

leaching of ground-manifold population on a time scale
K ' (which is comparable to our pulse duration at the
operational pressures) due to equilibration of population
between the ground and excited inanifolds.

In applying this model to the absorption data of Fig. 3
and subsequently the nonlinear resonator data, we have to
consider pressure scaling and spatial effects. The rates
k,E are assumed linear in pressure, and consequently the
small-signal absorption coefficient is -P at low pressure
(off-resonance), as confirmed from small-signal absorp-
tion measurements (Fig. 4). We adopt a value 13 MHz
for the FWHM at 1 Torr, ' which leads to a value 80
MHz/Torr for k: K is 2.1% of k. These values lead to a
saturation intensity of 2.31 MWcm at 1 Torr (indepen-
dent of pressure at low pressure). Provided diffraction is
negligible, which is an excellent approximation for the
single-pass experiments at least, we can account for both
longitudinal and radial variation of the field in the gas
cell. The former is achieved by a retarded-time spatial
averaging as discussed in Sec. II, giving

D =k[(g+1)N —g D—

kB~Bs

I;
I

&I

POD

Plane A jR
i BrB~i~A

I

FIG. 6. Schematic diagram of ring-cavity system. B.s., beam
splitter; PDD, photon-drag detector; A/R, antireflection coated.

ing NH3 gas. As discussed above, the aR (1,1) transition
of NH3 is off-resonantly pumped at 10.3 pm by pulsed
emission from a TEA CO& laser. The scheme is illustrat-
ed in Fig. 6. The laser pulses are coupled with use of a
single-surface Ge fiat (R =36%) into a 3.5-m three-
element ring cavity closed by 100% gold mirrors, contain-
ing the gas cell. The input and cavity signals were sam-
pled by KBr beam splitters, and monitored by photon-
drag detectors and a Tektronix model 7104 oscilloscope;
total response time was &1 ns. For NH3 pressures-9—15 Torr, significant self-focusing was observed in
single-pass experiments, confirming a nonlinear
refractive-index contribution substantial enough for
dispersive optical bistability and Ikeda instability. Clos-
ing the ring caused a huge distortion of the pulse shapes
(sampled after the NHi cell). In particular, a considerable
proportion of these showed modulation at the 23.4-ns
period expected for Ikeda oscillation in our system. Fig-
ures 7(b) and 7(c) show representative examples of this
modulation, Fig. 7(a) shows the input pulse shape. To
confirm the period, we have digitized and Fourier
transformed the traces; the resulting spectra show pro-
nounced peaks at -45 MHz, confirming our observation
of Ikeda instability. Subsidiary peaks at (4ttt },possibly
indicating a further bifurcation, have also been observed
for some of the oscillatory signals. In contrast the input
pulse, Fig. 7(a) has an essentially featureless spectrum.

At other cavity settings strong pulse distortion indica-
tive of optical bistability was observed. Examples are
shown in Fig. 8(a).

As discussed earlier, our molecular system is not quite a
two-level system since allowance must be made for popu-
lation transfer within the rotational manifolds. Applying
the simplified molecular-energy-level scheme, developed
earlier, which accounts for this, to the ring-cavity system
we obtain a considerable generalization of Ikeda's model.
The same assumptions previously used in modeling the
nonlinear absorption data are used here.

We have numerically integrated Eqs. (3.7) and (3.8) to-
gether with (2.12) using the pump pulse of Fig. 7(a) as in-
put, and Fig. 8(b) shows the predicted intracavity pulses
as a function of cavity tuning for representative parameter
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FIG. 7. Sample oscilloscope traces of (a) the pump signal,
and (b) and (c) the ring-cavity signal, together with their fre-

quency spectra showing period 2' in (b) and (c) with indication
of 4t~ in (c).

values. For comparison of our model with a pure two-
level scheme we also show in this figure [8(c}]correspond-
ing traces with E set equal to zero. Results are seen to be
in good agreement. Considering data for our generaized
four-level scheme [Fig. 8(b}] oscillation at 2', to be com-
pared with traces of Fig. 8(c), is manifest in the top and
bottom traces, which are for similar cavity detuning of
8=0 and 5 rad, while strong pulse distortion, associated
with optical hysteresis [see inserts of instantaneous input
(x axis) versus output (y axis) signal) occur at the opposite
tuning as expected (see Sec. II). In view of the fact that
our present model neglects self-focusing, this range of
behavior matches extremely well the pulse shapes we ob-
served [Fig. 8(a)].

B. Fabry-Perot resonator

Compared to the ring cavity the Fabry-Perot resonator
is a compact and versatile system particularly amenable to
parametric studies of instability effects. Admittedly, in-
terpretation of these phenomena is complicated by the ef-
fects of standing waves as discussed earlier. The macro-
scopic behavior of the system is nevertheless expected to
be similar to that for the ring system.

To provide a basis for comparison with our data for the
ring cavity we again concentrate on the aR(l, l) NH3
transition pumped by the 10.3-IMm pulsed output from a
single-mode TEA CO2 laser. Fabry-Perot resonators of
various lengths 20—150 cm with intracavity NHi cells of
5—40 Torr were investigated (Fig. 9).

A 17-m optical-delay line prevented significant feed-
back from the nonlinear resonator to the laser. The

TIME (ns)

FIG. 8. Sample oscilloscope traces: (a) the ring-cavity signal,
together with corresponding theoretical pulse shapes for various
detuning angles 8; for (b) the four-level scheme (also showing

hysteresis curves of instantaneous cavity signal intensity against
incident signal intensity) and (c) the two-level scheme. (aL =3,
kr„=5,n„=O.1,

~
e ~.'„=O.9.)

Ge
(Rane)

Ge
( ~ IIc)

CELL

P2T L

PDD

0
CRO

FIG. 9. Schematic diagram of Fabry-Perot cavity system.

Fabry-Perot resonator comprised in most investigations a
single-surface Ge flat input coupler of reflectivity
Ro ——36—85 % and a single-surface Ge output coupler, of
2-m radius of curvature and reflectivity Rz ——76%. The
intracavity NHi gas cells, of length 10—100 cm, were ter-
minated with KBr Brewster windows. As in the ring ex-
periment, the input signal, sampled by a KBr beam split-
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ter, and the output signal were monitored by photon-drag
detectors and a Tektronix model 7104 oscilloscope. The
output coupler was equipped with piezoelectric (PZT) tun-
ing encompassing one free-spectral range of the Fabry-
Perot resonator; for an empty cavity the temporal profile
of the transmitted signal was identical with that of the in-

put, and showed the expected variation in signal strength
with PZT tuning, Fig. 10(a). The transverse intensity pro-
file of the input signal was spatially monitored using con-
ventional pinhole-sampling techniques and shown to be
Gaussian with a 1/e spot diameter of -3 mrn.

The effects obtained with NH& were huge; the transmit-
ted signal showed large pulse distortion and modulation,
the structure of which was sensitive to NHi gas pressure,
cavity tuning, and input-signal intensity. Of the various
gas cells investigated optimum performance was obtained
for lengths of 50—70 cm; optimum gas pressure decreased
approximately linearly with increased cell length. The
modulation period of the transmitted signal scaled linear-

ly with cavity length, as expected.
Representative examples of the modulated output for

PZT tuning are shown in Fig. 10(b) for cavity length 86
cm, cell length 70 cm, and pressure 10 Torr with input
coupler refiectivity 679o. Strong Ikeda oscillation (period
= 13 ns, fairly close to 2tR ——11.5 ns), persistent
throughout the pulse, is evident in the neighborhood of
minimum transmission, consistent with the four-wave
mixing interpretation of this instability discussed earlier.
(Note that in contrast to the ring resonator the Fabry-
Perot geometry does not prescribe 2' as the basic period
for Ikeda oscillation. ) PZT tuning of the cavity leads pro-
gressively to "switching" behavior with high peak

transmission followed by damped oscillation of longer
period. At lower pressures (4—8 Torr), where inhomo-
geneous broadening may be important, we also obtained
strong and sustained 4' oscillation. A typical PZT scan
showing these oscillations in the region of low transmis-
sion in shown in Fig. 11(a). At higher pressures (20—30
Torr) much more complex pulse shapes were obtained.
These features were enhanced for reduced input coupler
refiectivity (Ro 36%%uo), since large input coupling is need-
ed to bleach the high absorption (al. =6) to achieve ade-
quate cavity feedback. The PZT sequence shown in Fig.
11(b) for a pressure of 19 Torr shows 2t~ oscillation (top
trace), developing to 2/3' oscillation on the higher
branch, bifurcating to 4/3t~ before again evolving to
lower-branch 2t~ modulation (bottom trace). Aperiodic
pulse shapes, characteristic of chaos, are also evident here
and in other data taken at similar pressures. An example
for ammonia pressure 15 Torr is shown in Fig. 11(c)
where aperiodic pulse shaping is clearly evident in the
middle traces. We have undertaken spectral analysis of
these pulse shapes, and find strong sharp lines for the os-
cillatory traces; the aperiodic traces give a broad spectrum
with weak structure, as expected for chaos, though pulsed
operation perforce reduces the utility of spectral evidence
in the identification of chaos.

Our modeling of this system is based on the standing-
wave analysis Sec. II for a fully saturable medium, ' but
in the limit T&~0 necessary for the validity of the
analysis. This is probably quite a good approximation at
NH3 pressures above 10 Torr, and at lower pressure inho-
mogeneous broadening ought to be considered in any case.
The field equations, using (2.9) and (2.22), become

I:c3

II I I I I i I I i I Ill I ( $ I I I I I I I I II
~

10 nS 10ns

C0

I-
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LIJ
I

Z

30 60 90 &20 $50

T/ME (ns3

FIG. 10. PZT scan of (a) empty cavity; (b) cavity with 10
Torr NH3 in 70-cm cell (I.=86 cm); input and output reflectivi-
ties 67% and 76%, respectively; (c) computer traces for parame-
ters corresponding to (b); aL = 1.5, 5—10; tick spacing t&.

(c)

FIG. 11. PZT scan showing (a) 4t& modulation at 5.5 Torr;
(b) 2t~, 2t~//3, and 4'/3 modulation at 19 Torr; and (c)
aperiodicity in the modulation at 15 Torr. Cavity parameters
as for Fig. 10 but with Ro ——36%.
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where no and nI are given by Eqs. (2.20) and (2.21). The
simplest method of handling these equations is to replace
the cell with a set of thin slices containing the same num-
ber of atoms. 'o'

Using this procedure, and an input pulse fitted to those
of Fig. 10(a), yields the transmitted pulse shapes in Fig.
10(c), in pleasing agreement with the observed pulse
shapes [Fig. 10(b)], especially since only measured param-
eters are used: a is 0.025 cm ' at 10 Torr, and scales as

p, I, -2.3 MWcm at 20 Torr (2.5 MWcm at 30
Torr). The value I/I, =7 is thus in line with the mea-
sured input intensities in the range 10—20 MW/cm .

This good, if somewhat surprising agreement en-
couraged the development of the nuinerical code based on
that used for Fig. 10(c), but now using finite differences
rather than slices. Reservoir effects are incorporated us-

ing (3.8), on the reasonable assumption that the reservoir
grating is completely washed out. We also account crude-
ly for transverse effects by summing the separate contri-
butions from elemental slices of the transverse intensity
distribution of the input signal.

The data for a pressure of 10 Torr is not significantly
different to that predicted by plane-wave analysis, Fig.
10(c). In contrast, for high-pressure operation where
chaotic emission is observed [Figs. 11(b) and 11(c)],
predicted behavior is sensitively dependent on the in-
clusion of both transverse effects and reservoir features.
For comparison we show in Fig. 12 simulated PZT scans
for the operating conditions applicable to the high-
pressure data of Fig. 11(b), where set (a) is for the simple
two-level scheme under plane-wave approximation, set (b)
includes transverse effects, and set (c) also accounts for
reservoir population transfer (the four-level scheme). The
general features of scan (c) are seen to give quite good
agreement with our experimental findings. Comparing
scans (a) and (b), the significant reductions in the ampli-
tude of oscillation with the inclusion of transverse effects
is attributable to different phasing of the oscillation at dif-
ferent radii. Inclusion of reservoir effects [compare traces
(b) with (c)] leads to modification of the pulse envelope; to
be expected since this manifests the dynamic population
distribution in the radiatively coupled transition, which in
turn is affected by the finite relaxation time for popula-
tion transfer from the reservoir levels (the rotational man-
ifolds).

As further corroboration of the instability phenomena
predicted for our system and also towards eventual gen-
eration of these effects under cw conditions we have ex-
tended analysis to the cw regime. We consider the simple
two-level scheme with parameter values similar to those
for pulsed operation [Fig. 10(b}]. Figure 13(a) shows a
coarse cavity tuning scan for fixed cw input intensity of
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FIG. 13. Predicted cw transmitted pulse shape at NH3 pres-
sure 20 Torr for simple two-level scheme (a) cavity tuning scan
for fixed input intensity of 7I„(b}input intensity scan for fixed
cavity tuning {(9=3.48 rad). (Other parameter values as for Fig.
12.)
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FIG. 12. Predicted transmitted pulse shape at NH3 pressure
20 Torr for (a) simple two-level scheme, (b) two-level scheme
with transverse effects, {c) four-level scheme (reservoir popula-
tion transfer). [Parameter values as for the experimental values
of Fig. 10(b).]
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7I, as for data of Fig. 11(b). Oscillation initially at period
2tit bifurcates on cavity tuning to 4t„and subsequently

8' oscillation at an optimum detuning setting of 8=3.48
rad. Further cavity tuning over its free-spectral range re-
sults in reversal of the sequence back to 2tq modulation
as expected. Evidently the input intensity here is not
quite sufficient to drive the cavity signal to a chaotic
state. Selecting the detuning for period-eight modulation
the input intensity was varied over the small range 6.9I,
to 7.2I, [Fig. 13(b)]. Oscillation at period 4t~ for an in-

put of 6.9I, bifurcates to period 8tit on increasing to 7I„
the original value. For further increase in signal strength
to 7.2I, the transmitted signal shows evidence of the onset
of chaotic behavior.

The practical realization of these effects under cw con-
ditions is, of course, precluded by the relatively high sa-
turation intensity of this transition requiring input signals
of —10 MW/cm . Molecules with transitions in closer
coincidence with the pump wavelengths and with larger
transition moments are clearly favored here. One such
molecule considered in preliminary studies is sulfur hex-
afluoride. Various lines of the 10P band of the CO& laser
were used to excite the dense and broad spectral features
of the v& vibrational mode of SF&. Effects of switching,
power limiting, and overshoot, with nanosecond response
time have been routinely obtained although generation
of instability was precluded in our system since operation
was in the bad cavity limit. Significantly, for SF&, which
exhibits both low-saturation intensity and high absorption
cross section, switching was readily obtained in cavities
with gas cells as thin as 1 mm.

For ammonia we flnally note the generality of our re-
sults with the observations of bistability and 2ta oscilla-
tion using other TEA laser lines again close to resonance
and exhibiting self-focusing in ammonia. The PZT scan
shown in Fig. 14(a) (for —, a free-spectral range) exhibiting

2tlt modulation was obtained with the 9P(20) line at 9.55
pm, pumping the sR (3,0) transition 13.8 GHz above res-
onance; Fig. 14(b), showing strong pulse distortion,
similar to those previously obtained for the aR(1, 1) tran-
sition, was obtained with the 10R (10) line at 10.32 pm
possibly pumping the sg(1, 1)transition. Oscillation was
not obtained for this transition.

ities may lead to the development of passive all-optical
modulators, which could find wide application in op-
toelectronics and laser spectroscopy.

In the experiments reported here we have argued that
rotational relaxation is the significant energy-transfer
mechanism responsible for the instability phenomena we

2Cins

(a)

V. CONCLUSION

In summary, we have observed optical bistability,
period doubling, higher-harmonic oscillations, and chaos
in all-optical, ring, and Fabry-Perot resonators containing
NH3 gas as the nonlinear medium. All these effects have
been shown to be in qualitative agreement with a simple
mathematical model. These results establish the suitabili-
ty of gases for observations of such phenomena, because
of flexibility in the degree of resonant enhancement
through choice of transition, of response time through
pressure variation, and of linear optical properties (finesse,
etc )through .simple independent control of cavity length,
cell length, and, again, pressure. The optical systems dis-
cussed in this paper are of particular interest because of
the possibility of using such systems as a bridge between
turbulence and quantum systems. The oscillatory instabil-

FIG. 14. {a) PZT scan (over ~ free-spectral range) of
transmitted signal showing 2t& modulation; NH3 transition
sE.(3,0), pressure 22 Torr. (b) Pulse shaping; NH3 transition
sg(1, 1), pressure 30 Torr. Cavity parameters as for Fig. 10.
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observe. For our pulsed experiments the considerably
slower processes of V-V and V-T relaxation have little ef-
fect within the time scale of the input signal. However
operation under truly cw conditions will be necessarily
controlled by the V-T relaxation rate since this is the lim-
iting process for recycling of population from the
rotational-level manifold of the excited vibrational-level
state back to ground. Relaxation times r„for V-T pro-
cesses are typically microseconds; for NHq r„—1 ps Torr,
whereas for SFs, v„—122 ps Torr. Saturation intensities
associated with this process are therefore advantageously
very low (for SFs-6 W/cm ), ' though at the expense of

the long medium response time which will normally pre-
clude generation of instability effects. However, a signifi-
cant virtue of the gas phase is in the use of buffer gas to
control response time. This versatility should readily en-
able optimization of a system for cw conditions.
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