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Dissipation in a fundamental model of quantum optical resonance
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The fully quantum-electrodynamical model of a two-level atom interacting with a single-cavity

mode predicts an atomic evolution whose form is dictated by the discrete nature of the field energy
and its statistical distribution. We demonstrate that the revivals of atomic excitation which are the
signature of the quantum nature of the evolution are strongly affected by field dissipation even when

the damping hardly affects the underlying Rabi oscillations.

Rydberg atoms, with their long spontaneous lifetimes
and large dipole moments are exceedingly sensitive to
weak radiation fields. Recent experiments by Haroche
and co-workers' have demonstrated that the Rydberg-
atom maser (Rydberg atoms in a very-high-Q resonant
cavity) is capable of detecting only a few photons. The
atom —single-photon coupling energy itself is close to ex-
perimental resolution. Such a system can not only
discriminate between fields of differing photon statistics,
but may even be capable of resolving effects entirely due
to the quantized, discrete nature of the radiation field. In
this, the Rydberg maser approaches that idealization of
fundamental two-level-atom —single-mode-radiation-field
interaction, the Jaynes-Cummings model (JCM). In the
JCM, the familiar Rabi oscillations in the evolution of the
atomic inversion as the atom and field exchange energy
are affected by the distribution of photon numbers which
cause a dephasing or "collapse" as the range of possible
Rabi frequencies interfere. In a coherent-state field, the
Poisson distribution of photon numbers is responsible for
this collapse and is a purely quantum effect. Eberly and
co-workers have demonstrated that the discrete nature of
the photon number distribution leads to a further purely
quantum effect as the dephased Rabi oscillations partially
rephase or "revive. " The revivals are governed by the
single-photon Rabi frequency (effectively the "granulari-
ty" of the field).

Rydberg-atom maser experiments on the evolution of
atoms in coherent and in thermal fields5 have prompted
renewed theoretical interest in the JCM. In these experi-
ments, the finite cavity Q introduces field dissipation into
the system. The cavity losses introduce Langevin quan-
tum noise sources which react back on the JCM and af-
fect the collapses and revivals in a nontrivial way.
Sachdev has obtained an analytic solution for spontane
ous emission in a damped single-mode cavity at zero tem-
perature and approximate solutions exist for the evolution
of an atom in such a cavity at finite temperatures. ' The
quantum theory of an atom interacting with a thermal
field at temperature T in a high-Q cavity using a
dressed-state formalism has been discussed by Haroche
and co-workers. 1

The central problem remains that of accounting for dis-
sipation in a JCM driven by a coherent-state field. Fully

quantum-electrodynamical features such as collapses and
revivals need to be given proper account but bath
Langevin forces must be equally accounted for in a fully
quantum-electrodynamic way.

We have obtained an approximate analytic solution for
the time development of a two-level atom in a quantized
field mode which is resistively damped by the finite cavity
Q. Unlike previous results, our solution is valid for arbi-
trary initial field states. Our method demonstrates for the
first time to our knowledge the effects of damping on col-
lapses and revivals. We report here results on the simplest
case of a zero-temperature cavity excited by a coherent-
state field sufficient to excite many Rabi oscillations in a
cavity damping time. Our approach is based upon an in-
ductive solution of the equations of motion of the atom-
field reduced density operator, combined with a
transformed representation of the density matrix. No
decorrelation between atom and field operators is required
or employed. Our results demonstrate that dissipation
profoundly influences revivals by smearing out the
discrete nature of the Poisson sum over Rabi oscillations;
such effects appear well before cavity-field lifetimes damp
out the Rabi oscillations.

The density matrix for the combined atom-field system
in the interaction picture is obtained by standard master-
equation techniques. The resistive cavity coupling is as-
cribed to a bath of harmonic oscillators which when treat-
ed in Born-Markov approximation leads to a damping
rate y of photon number in the cavity. In the simplest
case of a cavity of 0 K and a field mode exactly resonant
with the two-level atomic transition frequency we have

d—p= ig[(attr —+cr+a), p)dt

+yapa — a ap — pa a,
2 2

where g is the atom —cavity-mode coupling constant, the
field is represented by creation and annihilation operators
a and a, and the atom by the usual Pauli spin- —, opera-
tors.

Numerical solution for components of Eq. (1) have been
reported' and approximate analytical solutions for the
case of few field excitations. We proceed instead by
transforming to a new "dissipation picture" which allows

33 1986 The American Physical Society



33 DISSIPATION IN A FUNDAMENTAL MODEL OF QUANTUM. . .

analytic solution and which stresses the departure from
semiclassical Rabi time evolution.

We define the operators J and L which act to the right
upon the density matrix: '

Jp =rapa (2a)

'p ——p2 2
(2b)

The evolution of this dissipation-picture density matrix is
given by the transformed master equation

t—X=—ig e& ~ a~o X—2sinh o Xa~n t rt

+8 0 ag —e +0' a+ +

+2sinh ago —e ~' ga g
2 + (4)

The density matrix in the dissipation picture is defined as

~
—(J+L)t

This equation resembles the undamped quantum Jaynes-
Cummings evolution equation except for the presence of
terms in which g is sandwiched between operators; these
terms, together with those involving exp(+yt/2), account
for the change in loss rate when the atom makes a transi-
tion. In the semiclassical limit in which the field is taken
as a classical entity unaffected by the atomic evolution,
Eq. (4) becomes

—p= i Q—e r'~ [(o++o ), p],

where II=ga is the semiclassical Rabi frequency and
p=X in this approximation. In this limit we note that the
resistive coupling merely damps the atom-field perturba-
tion in an exponential form expected from a phenomeno-
logical viewpoint. Departures from this form are a conse-
quence of the quantized nature of the atom-field interac-
tion.

In terms of atom-field components, Eq. (4) becomes

d
X(n, m—;+,+ ) = —ig(n + I )'~ e r' X(n + l, m; —,+ )+ig(m + 1)' e r' X(n, m +1;+,—), (6a)

X(n—+l,m; —,+)= ig(n—+1)' er'~ X(n, m;+, +)+ig(m+1)' e r' X(n+1,m+I; —,—)
t

+ig(m + I)'~ 2sinh X(n + 1,m+1;+, +),rt
(6b)

X(n, m +1;+,——)= ig(n +1)'—~ie r'~iX(n + l,m +1;—,—)+ig(m +I)'~2er'~2X(n, m;+, + )

rtig(n +—1)' 2sinh X(n + l, m +1;+,+ ), (6c)

d X(n+l,—m+1; —,—)= ig(n+I—)' er' X(n, m+1;+, —)+ig(m+I)' er' X(n+l, m; —,+)

+(e"'—1) X(n + l—, m +1;+,+ ) .
dt

The coefficient of
~
n){m+1~

~
+)(—

~

is X(n, m+1;+, —) where
~
m+1) and

~
n) are field number states and

~

+ ) are atomic excited and ground states. We note that the dissipation-picture density-matrix elements are coupled
only to elements with the same number of quanta and a single element of the set containing one more quantum in the bra
and ket sides of the density matrix. It is this feature of the representation that allows us to solve for the atomic inver-
sion. If we were to take the atom to be initially excited with the field in the vacuum state as did Sachdev, the number
of participating atom-field states shrinks enormously and the inhoinogeneous terms (terms corresponding to different
number of quanta in this representation) in Eq. (6) are then absent.

The general solution of Eq. (6) is complicated. If we are interested only in the atomic inversion, it is sufficient to trace
over the photon numbers after calculating X(n, n;+, +). We proceed by eliminating X(n, n + 1;+,—), X(n + l, n; —,+),
and X(n+1,n+1; —,—) from Eq. (6) to generate a third-order inhomogeneous ordinary differential equation for
X(n, n;+, +),
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3 d y2
IX(II,II;+,+)+—y 2X(n, n;+, +)+ 4g (n+ I)+ —X(n, n;+, +)+2yg (n+1)X(n, n;+, +)

dt' ' ' '
2 dt' 2 dt

=2g (n + I) yX(n + I,n + 1;+,+ )+2(1—e r') —X(n + l, n + I;+,+ )
dt

(7)

This is soluble, but considerably simplifies in the underdamped limit" n y « (n + 1)'~2g (and no further approximations
are made). We first solve the homogeneous equation [Eq. (7) without the right-hand side driving terms]. We take the
atom to be initially inverted and the field to have a photon number distribution p (n), then in the underdamped regime

X(n,n;+, +;homog)= —,'p(n)e "'~
[ I+cos[2g (n +I)'~2t]I .

At this stage wc assume

(artificially)

that the numb r distribution p(n) is such that at some cutoff p, , p(p, +1)=0 and at
the end of the calculation let p~tm. Given this cutoff, the full solution for X(p, ,p;+, +) coincides
X(lM,p;+, +;hoinog) simply because of the absence of driving terms involving p(@+I). This full solution for
X((u,p„'+, +) can then be used in Eq. (7) to derive in turn X(p —1,(u —1;+,+). The general solution is found by repeat-
ing this process inductively and finally taking p~ ao, where we obtain

CO

1/2 — f I —n l!
X(n,n;+, +)=—,'e "' g p(l)cos[2g(I+1)'~ t](e "'—1}'

n!(l n)!—

[2(1—n)]' (1— yt)I —n

22(l —tt)[(1 )()2

The untransformed density-matrix elements are found from p=exp[J(e"' —I)/y]exp(Lt)X so that

00 n!
p(m, m;+, +)= g ' (e"'—1)" e "r'X(n, n;+, +)

0 m!(n —m)!

= —,'e r'~ p(m)cos[2g(m + I)'~ t]e

+ g g lyt( yt I )l ——ttt

n =0 1=n

n! [2(1 n)]!—
m!(n —m)! 2" "'[(I—II)!]

p (I) (10)

The oscillating term in Eq. (10) is due to the sudden switch-on of the atom-field interaction at time t=0 The sum. s in
Eq. (10) represent the slow and incoherent change in the number of quanta in the cavity. The departure from purely ex-
ponential decay in the components of this sum is due to the difference in the decay when the atom makes a transition,
changing the number of quanta in the mode. The probability P+ (t} that the atom is excited at time t is given by the sum
over m of the terms in Eq. (10). We find the particularly simple result

P+(t) = —,e r'~ g e "'p( )cm[o2gs( +IIII
)'~ t]+ g g, l l

'
(1—e r')' "p(l)t/2 —m t [2(1 n) !—

m=0

Note that there is no damping modification of the Rabi
frequency in this underdamped limit. The simplicity of
this result is a consequence of the very weak cavity damp-
ing. Many Rabi oscillations occur in a cavity lifetime. In
an untransformed density-matrix treatment in a dressed-
state basis, the secular approximation enables us to
neglect the couplings between coherences belonging to dif-
ferent manifolds (that is, off-diagonal density-matrix ele-
ments that do not correspond to the same total number of

uallta 1I1 thc atom-flicld system). Tllls much slmpllflics
the dynamics of the "cascade" through dressed states as
the cavity Q resistively damps out the atom-field excita-
tions.

The atomic inversion W is given in terms of P+(t) by

8'(t) =2P+(t) —1 .

In Fig. 1, the atomic inversion is plotted as a function of
time for an initially excited atom interaction with a
coherent field of mean photon number equal to 5 for three
values of cavity damping. As the damping increases the
revivals rapidly diminish in amplitude. The collapse of
the initial Rabi oscillations is much less sensitive to cavity
damping. The quiescent periods in which the inversion
remains at a quasi-steady state slowly decay to values
below zero. The revivals depend upon the discrete nature
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of the photon number distribution; this "granularity ' is
translated into a discrete spectrum of Rabi frequencies.
The cavity damping broadens these spectral components'
(or "dressed-atom" eigenenergies); when this broadening
becomes comparable with the spacing between the Rabi
frequencies the spectrum becomes continuous, the inver-
sion collapses and never revives. The collapse, controlled
only by the spread in Rabi frequencies, is much less af-
fected by this broadening. In Fig. 1(a) we present the un
damped evolution. In Figs. 1(b) and 1(c) we note that the
revivals are significantly attenuated, even though they
occur at times t ~ y ', the cavity field lifetime. Our sim-
ple solution cannot be used to demonstrate the complete
destruction of revivals as this requires a stronger damping
than that permitted by our secular or underdamped ap-
proximation and would require a less restrictive approach
to the solution of Eq. (7).

Cavity damping will significantly attenuate the revivals
unless the cavity Q is such that the field damping rate y
is very much less than the one-photon Rabi frequency g.
An elementary calculation shows that for a Rydberg-atom
mm-wave transition, ylg-10'5Q '(hnV/n )'~i where
the cavity volume V is in m, n is the initial-state princi-
pal quantum number, and b,n the change in n in the tran-
sition. For the experiments of Haroche and co-workers, '

y/g =2 whereas those of Meschede er a/. have
y/g =2X 10, and will be much less affected by the cav-
ity dissipation. The observation of fully-quantum-
electrodyn~~ic strong-coupling collapses and revivals in
the presence of dissipative couplings has a wider signifi-
cance as an example of a quantum coherence phenomenon
competing against an environmental damlring. '

¹teadded in proof. Puri and Agarwal
' have also stud-

ied the effects of dissipation in the JCM and its influence
on revivals and other quantum features.

FIG. 1. Evolution of the atomic inversion W for an initially
excited atom in a coherent field with mean photon number of 5
for (a) @=0,{b)y=0.01g, (c) y=0.03g.
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