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Semiempirical diabatic potential for low-energy positron-atom elastic scattering
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Cross sections and annihilation rates for the elastic scattering of positrons off hydrogen and heli-

um atoms are calculated in an approximation in which nonadiabatic distortions of the targets are
treated with a model potential. The wave functions of the targets are calculated in a bicentric
spheroidal coordinate system by modifying a computer code written for self-consistent-field calcula-
tions on diatomic molecules. Virtual positronium and correct long-range polarization of the targets
are accounted for explicitly in the wave function by proper choice of basis functions. The wave

function for each target is calculated on a grid of positron-nucleus distances, which generates a
scattering potential for the positron. This is solved by applying partial-wave analysis and numerical

integration. The calculated results for cross sections and annihilation rates for both systems are
reasonably accurate, and suggest that the method can be extended to larger targets.

I. INTRODUCTION

There have been several recent reviews of the theoreti-
cal aspects of positron-atom and positron-molecule
scattering by Drachrnan, ' Schrader and Svetic, Ghosh,
et al. , and McEachran. According to these reviews, the
interactions that characterize elastic low-energy positron-
atom collisions are traditionally divided into two
categories: (i) static and (ii) polarization (adiabatic and
nonadiabatic) or correlation. The effective one-body
scattering potential is then a sum of terms corresponding
to these categories:

V„(rp) = V„(rq)+ V~)(rq),

where rz is the spatial coordinate of the projectile posi-
tron. The static potential V„(rz) is simply the average of
the electrostatic e+-atom interactions over the ground-
state eigenfunctions 4, of the unperturbed target. If +,
can be written as a single determinant of spin orbitals g'; ',

(2)

then the static potential can be expressed in terms of these
spin orbitals:

(3)

where Z is the nuclear charge, and J,' '(r~) is the zeroth-
order Coulomb integral

where o, is the spin coordinate. In the case of e -atom
scattering, there is a third term, the exchange potential, on
the right-hand side of Eq. (1), and the signs of the
Coulomb interactions in Eq. (3) are reversed.

As far as scattering is concerned, the major type of
correlation between the positron and the atomic electrons

is polarization. The incident positron polarizes the elec-
trons and the induced multipole moments attract the posi-
tron. The induced potential, the so-called polarization po-
tential, V~)(r~), is nonlocal but its leading long-range
part is simple: ad l2r~, whe—re a~ is the static dipole po-
larizability of the atom. The next most important long-
range term, which is due to the static quadrupole polari-
zation and the nonadiabatic and second-order corrections
to the static dipole contribution, is of the order of r~
(Refs. 5—11). The short-range behavior is, in general, not
known and has significant diabatic components. ' ' Its
determination, even approximately for simple atoms, re-
quires a major computational effort.

Consequently, many workers have used semiempirical
potentials for modeling the polarization effects at short
range. One of the simplest and most popular is the
asymptotic form multiplied by a short-range cutoff func-
tion containing parameters. ' z5 The simplicity of this
scheme provides the chief advantage of the prescription;
however, it also has a major drawback —the form is some-
times not flexible enough to describe accurately the com-
plicated nature of V~)(r~) at short range, and the results
thus generated are sometimes inaccurate. '

An alternative approximation can be obtained by the
use of polarized-orbital methods, first prescribed by Tem-
kin. A review of these approximation schemes has been
given by Drachman and Temkin. In general, a polarized
orbital computation consists of two stages: (i) the calcula-
tion of the perturbed bound-state electronic spin orbitals

f; and (ii) the computation of the wave function of the in-
cident particle. This technique accounts for the distortion
of the target by the positron fixed at a given position in
space, but it does not provide a good representation of the
nonadiabatic effects; the positron kinetic energy operator
is usually omitted in the first stage of polarized orbital
calculations. Consequently, the calculated phase shifts
tend to be too high. ' ' An empirical remedy is to
suppress the monopole contribution to the adiabatic
V~)(rz) (Refs. 28 and 29). The results are surprisingly

33 2339 Oc1986 The American Physical Society



2340 S.-%'. CHIU AND D. M. SCHRADER 33

good, but the underlying reasons for this are not entirely
clear. It has been shown quantitatively by Wang et al.
that the monopole parts of the adiabatic and the diabatic
terms fall off exponentially. Thus they have little or no
long-range effects, and they have opposite signs and there-
fore tend to cancel each other. The tactic of suppressing
the adiabatic monopole thus approximately corrects for
the nonadiabatic effect at intermediate range. At short
range the diabatic behavior is less well understood. At-
tempts to account for the diabatic effects in polarized or-
bital calculations by including both the monopole part of
the polarization potential and the positron kinetic energy
operator have proven to be less than satisfactory. ' Fol-
lowing their encouraging results of the adiabatically po-
larized orbital method with monopole suppression when
applied to e+—noble-gas elastic scattering, McEachran
and co-workers have recently reformulated their polarized
orbital scheme in terms of a polarized density. 3 This
newer approach can be applied to e+- and e -molecule
scattering and can be carried out variationally.

Evaluation of the complete wave function can provide
information besides phase shifts and cross sections, such
as the annihilation rate and the angular correlation of the
two y rays produced during annihilation. The accuracy
of calculated annihilation rates depends on the quality of
the wave function at short-range which is primarily af-
fected by e -e+ correlation. ' The most direct ap-
proach to light-particle correlations is the Hylleraas
method which treats the correlational effects by intro-
ducing explicitly the interacting-pair coordinates into the
wave function. The very elaborate many-term Hylleraas-
type integrals discourage general application to one-
positron, many-electron systems. Only a few variational
Hylleraas-type calculations for elastic low-energy positron
scattering by hydrogen ' and by helium have been
carried out. Amusia et al. 3 have applied the random
phase approximation with exchange, derived from many-
body theory, to e+-He elastic scattering by taking into ac-
count the formation of virtual positronium (Ps). The
correction to the correlation effects is expressed through
the self-energy part39 with the use of a diagrammatic
technique.

A recent self-consistent-field approach based on the
variational principle has been tested for e+-H elastic
scattering by Horbatsch and co-workers. Their calculat-
ed s-wave phase shifts are of good quality although the
corresponding annihilation parameters are underestimated
as compared to the accurate results.

As proposed by Massey and Mohr, ' the close-coupling
approximation (CCA) is a general approach that gives a
clear picture of all physical terms. Basically, the trial
wave function is expanded in terms of eigenstates of
bound subsystems, giving rise to so-called virtual excita-
tions and virtual Ps formation. The unknown expansion
coefficients are determined as solutions of a set of coupled
integrodifferential equations whose number depends on
the size of the expansion. In fact, the CCA is a configu-
rational interaction method which is widely used as an in-
direct means for treatment of e -e correlation in bound
states of purely electronic systems. A large number of
short-range correlation terms may be required ' in order

to obtain accurate results. The poor results obtained by
using a six-state close coupling calculation on e+-H
elastic scattering suggest that the method may be incon-
venient for more complicated one-positron, many-electron
systems.

A diatomiclike model for e+-He elastic collision has
been carried out by Pai et a/. Their approach has no
empirical input and is essentially statistical. The physical
picture of their model is as follows: when the positron is
close to or inside the target atom, its ability to polarize is
reduced by its own dynamic motion. This polarization at-
tenuation is modeled by reducing the charge of the posi-
tron. The calculation of the effective charge of e+ as a
function of rz is performed by an energy width miniiniza-
tion principle. %ith the r&-dependent positronic charge
in hand, the effective e+-atom potential can be calculat-
ed, and the scattering equation for positron is then solved.

In the present work, a diatomiclike model is also used,
but with an empirical model potential replacing the posi-
tronic kinetic energy operator in calculating the polarized
electronic orbitals. The resulting orbitals generate an ef-
fective scattering potential for the positron. We hope that
this simple semiempirical method will be generally applic-
able to more complicated one-positron, many-electron sys-
tems without undue computation. The present method,
described in Sec. II, is shown to give reasonably good re-
sults for e+-H and e+-He elastic scattering and annihila-
tion rates.

Atomic units are used throughout this paper unless oth-
erwise specified.

II. THEORY AND CALCULATIONS

A. Self-consistent-field equations

The self-consistent-field theory for one-positron,
many-electron systems with approximate wave functions
of the form

%=Pp(xp)W ff P„(x„,rp)

as derived by Schrader (x denotes spatial and spin coor-
dinates and W is the electron antisymmetrizer and nor-
malizer) leads to differential equations for the electronic
and positronic orbital functions defined by

P;a for p=2i —1

P;P for p=2i, ,

The electronic equation is

2" rp 2 ' re
+ g(2JJ E) BJ"V~) e;(—r—p) P;(rq, rp)=—0, (6)

and the positronic equation is

l 2 Z——V~+ —+ V„(rp) Egp(rp) =0 . —
2 rp

The term BJ appearing in Eq. (6) has an exchange charac-
ter
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B&".F(r„,rp)=(PJ(r rp)
~

F(r rp))„[ V—pg, (r„,rp)], we obtain the positronic equation in the form

where F is an arbitrary vector function. The Coulomb

( Jz) and exchange (KJ ) integrals are familiar and are r~

dependent. The term V« in Eq. (7) is identifiable as the
effective electronic energy of the one-positron, many-

electron system concerne,

V«(rp)= g P((rq, rp) 2 — Vp
— —— V'p ——

——Vp+ —+ V p(rp) — Pp(rp) =0 .

In the present work, the dynamical positron operator,
—

2 Vp —g BJ'Vp 1I1 Eqs. (6) and (9), whtch gives 11se to
the nonadiabatic effects, is replaced by an empirical model
potential of the form of a screened Coulomb potential
with a short-range cutoff function,

+ g(2' Kj—BJ V—p)

x 0;(r„r,)),
Equation (6) does not depend upon the solution of Eq. (7),
so the electronic orbitals P; and the potential V„can be
calculated independently of P». Thus Eq. (7) can also be
applied to elastic scattering, even though it was originally
formulated for bound states. For scattering systems, the
total energy E is the sum of the energy of the incident
positron and the ground-state energy of the isolated target
Eo

be=(1—c e„"e «)
PP

where e~ is the incomplete exponential:

n i

it'
i=O

r&3'=
ro

(14)

The parameters a, b, t.", ro, and n are disposable. Equa-
tions (6) and (9) can now be expressed as

(10)
——V—1 2 Z

2

1 + VMp(re rp )

where k is the wave vector of the positron. By substitut-
ing Eqs. (10) into (7) and writing

V,p(«p) = V„(r, ) Fo, — (11) and

V„(rp)= g P;(r„,rp) 2 ——V'„— +VM»(r„p, rp) + g(2JJ K~) P;(r„,rp—) (16)

Equation (15) is very much simpler to solve than Eq. (6)
because rp appears in Eq. (15) only as a parameter. Equa-
tion (15) is solved for a given value of rp by the
Roothaan-Hall-Hartree-Fock technique: the electronic or-
bitals P;(r„,rp ) are expanded in terms of Slater-type orbi-
tals (STO's) X„l each of which is centered on either the
atomic nucleus or the positron,

{17)

of STO basis functions; (b) the model potential VMP im-

plicitly takes care of nonadiabatic and reduced mass ef-
fects of the e -e+ pair through parametrization; and (c)
once V p(rp) is determined, it can be used in Eq. (12) for
any reasonable value of k. The effective e -e+ potential

V,p(rp) is thus independent of the positron momentum,
yet it includes the diabatic effect as well as the effect of
virtual Ps formation.

where cf gf« the expansion coefficients for the ith occu-
pied orbital, are functions of rp. The electronic orbitals
are then of diatomic symmetry, with the angular momen-
tum quantization axis coincident with the positron posi-
tion vector rp, and they are independent of the positronic
function Pp(rp). By repeating this calculation for dif-
ferent rz values, V,z is evaluated over an rz grid, and Eq.
(12) is then solved by numerical integration after resolu-
tion into its partial wave components.

These are the important features of the present frame-
work: (a) the e -e+ correlation and virtual Ps formation
are built into the electronic function by the proper choice

B. Method of parametrization

—Q1'

1 be
F. Pp, (r p)=0. —

ep ep

Substituting the ground-state wave function for Ps

—0.5r
Pp, (r,p ) = e

8m

(18)

(19)

%e can calibrate our model potential by applying it to
positroniurn and a proton very far removed. Now r& is
very large, so Eq. (15) becomes
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and the ground-state energy E=—4, premultiplying by

Pp„and integrating gives a simple relationship between

the parameters a and b,

(1+a)

F. [Eq. (18)] nor the condition given by Eq. (20).
Table I lists the basis functions used for e+-H/He elas-

tic scattering.

D. Method of calculation

This relationship is used throughout our calculations in
order to make our model "true" to positronium.

The parameter ro is chosen to be proportional to the ex-

pectation value of the radius of the valence orbital (r ) of
the isolated target: in this work, we have found from trial
calculations that rp=2(r) gives good results. Similarly,
trial calculations show that a suitable choice for n is 3—6
and that for a is 1—3. Values of 5 for n and 1 for a are
used throughout this work although several other sets of
values werc used in test calculations.

Of the five parameters a, b, n, rp, and c, the first three
are taken to be universal; i.e., independent of target. The
fourth one depends on target size. Once these four are
chosen, the last parameter c is then empirically deter-
mined. That is, it is adjusted such that the calculated V,~
leads to known scattering lengths a, for the system under
consideration. These are —2. 1036ap for e+-H (Ref. 35)
and —0.472ap for e+-He [Ref. 36(a)].

C. Basis sets for the electronic orbitals

Normalized Slater-type orbitals, STO's, used for ex-
pressing the electronic orbitals [Eq. (17)] are given by

(21)

where Fi (5,qr) are the normalized spherical harmonics.
In selecting basis functions, the concept of even-tempered
basis sets is employed.

The sizes of the basis sets and the values of the orbital
exponents g are determined as follows. When r~ =0, the
e+-H system, for example, becomes something like He+;
on the other hand, as rz~ 00, the system becomes H per-
turbed by a distant unit charge. Thus, the basis functions
used should be sufficiently fiexible to reflect these struc-
tures. Similar remarks hold for the helium target.

The basis functions centered on the positron include the
ls Ps function, Eq. (19), as well as properly chosen p-type
STO's. The ground state of Ps is of s symmetry, so these
additional p-type STO's have no effect on the calculated

The SCF diatomic program BISON was modified to
solve the electronic Schrodinger equation (15). The posi-
tron is treated as a hypothetical proton, so that rz is iden-
tified as the internuclear distance of a hypothetical dia-
tornic molecule. The rz dependence of the electronic orbi-
tals P; is obtained by repeating the calculation for dif-
ferent rz values. The matrix elements of —1/r„~ are
equivalent to those of —1/rb coded in BIsoN. The calcu-
lation of the matrix elements of the model potential,

(22)

is very straightforward, being quite similar to those of the
nuclear attraction integrals coded in BISON.

A grid size of O. lap when rz &7ap for e+-H and

r~ &5ap for e+-He is used. For r~ values greater than
these ranges, a larger grid size of 0.5ap is used for both
systems, out to r~ =20ap for e+-H and rz ——10ap for e+-
He. The dipole polarizabilities ad of H and He are ob-
tained from the slopes of plots of V z(rz)+Z/rz vs I/2'
near the ends of these ranges (15—20ap for e+-H and
8—10 for e+-He). The results are 4.51ap for H and
1.334ap for He, which are essentially in exact agreement
with accurately known values for these parameters.
Beyond rz ——20ap for e+-H and 10ap for e+-He, Vz(rz)
is not calculated by running BISON but instead is set equal
to its asymptotic form,

Z cKd

V,p(rq) ~
r ~ce rp 2'P

(23)

P& I(k, r& ) ~ kAI(k)[jt(kr&)cos5I r/I(kr& )sin51 ],—
P ~ca

(24)

where ji(x) and r)i(x) are the spherical Bessel and Neu-

With V,z(rz) thus in hand, Eq. (12) is then solved by
the partial wave method for 1&4 to extract phase shifts
51. The asymptotic solution for the partial waves /~i
have the general form of

TABLE I. The basis functions used for e+-H and e+-He elastic scattering.

Target
No. of STO's

Type of STO's

1s on H
2p on H
1S on
2p on e+

Orbital exponents g,
g;+~ ——aP', i =0, 1, . . . , n —1

a=1.0, P=1.5
a = 1.0, P= 1.5
g =0.5
a =0.5, P= 1.6

He 1s on He
2p on He
1s on e+
2p on e+

a=0.9445, P=1.55
a =0.8, P= 1.5
(=0.5
a = 1.0, P= 1.5
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which corresponds to one positron per unit volume.
The total elastic cross sections O,i(k) are calculated

from the equation

u, )(k}= g (2I+1)sin 5i .
4m.

k~ I=o

In addition, partial-wave phase shifts with 4g 1 &10 are
calculated by the formula

ada.k
5i —— (27)

(21 —1)(21+ 1)(21+3)

derived by O' Malley et ah, Contributions to the sum in
Eq. (26) for I & 10 are ignored.

The annihilation parameter Zcff(k) for e+-H/He elas-
tic scattering is

Z ff(k) = g Z,"ff(k)
I=o

=&. g I IA&, 1(k,r}l' 4.«, r} '«,
I=o

(28)

where n, is the number of electrons in the target.
contributions to Z,fr(k) from partial waves with I y 4 are
small and are neglected.

In terms of scattering length a„
tan6o

a, = —lim (29)
o k

the zero energy partial cross section for the s wave is

man functions, respectively, and the constants Ai(k) are
subject to the normalization condition

~ (k)
[4~(21+1)]'~

(25)
k H

He
1.0
1.0

1.0
1.0

0.8583
0.9881

3.0
1.854 546

III. RESULTS AND DISCUSSION

The target electron(s) is (are) always in a o orbital as far
as the present diatomiclike model is concerned. The total
angular momentum of the system is thus carried by the
positron. Term splittings due to angular momentum cou-
pling do not result. Spin-spin coupling gives rise to multi-
plets, however. For e+-H, the separation of the singlet
and triplet terms for each L term (determined by the I
value of the positron} is very small, presumably of the or-
der of that for Ps [8.57)&10 eV (Ref. 51)]. They are
neglected. Only doublets occur for e+-He elastic scatter-
ing.

The present model, as well as other approximation
schemes (e.g.„Refs. 13, 29, and 30), allows for only one
type of distorted wave symmetry. In general, there are
I+ 1 possible symmetries for the Ith wave and each dis-
torted wave should be constructed as a linear combination
of those spherical harmonics that carry the total angular
momentum and parity dependence of the total wave
function. 3+b' For example, a full treatment of p-wave
e+-H scattering would entail the mixing of the (major}
p-positron+s-electron configuration with the (minor) s-
positron + m -electron configuration. We ignore these
minor configurations in this work, although they probably
become more important for higher incident energies than
considered here.

TABLE II. Parameters used in the model potential, Eq. (13).

Parameters
P'p

47Tsin 5o
oo(0) = lim

2
——4ma, ,k~o

(30)
A. Positron-hydrogen elastic scattering

while those for higher partial waves vanish.
Table II lists the parameter defining the potential VMp,

Eq. (13).

Table III lists our calculated phase shifts for e+-H
elastic scattering. The lower partial-wave phase shifts and
total cross sections are shown in Figs. 1—3. The most ac-

TABLE III. Phase shifts and cross sections for e+-H elastic scattering.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

5o

(rad)

—2.103 74'
0.09002
0.146 60
0.173 95
0.179 39
0.169 56
0.149 63
0.123 37
0.093 54
0.062 12
0.03047

—0.00044
—0.03002
—0.057 90
—0.083 90

51

(rad)

0.002 31
0.009 04
0.01965
0.033 28
0.048 75
0.064 64
0.079 58
0.092 42
0.102 38
0.109 10
0.11257
0.11305
0.11096
0.10678

52

(rad)

0.000 34
0.001 36
0.003 09
0.005 62
0.009 00
0.013 32
0.018 55
0.024 60
0.031 28
0.038 32
0.045 39
0.052 17
0.058 36
0.063 72

53

{rad)

0.000 11
0.00045
0.001 01
0.001 81
0.002 84
0.004 15
0.005 76
0.007 71
0.01004
0.012 77
0.015 89
0.019 36
0.023 11
0.027 04

54

(rad)

0.00005
0.00020
0.00046
0.000 82
0.001 28
0.001 84
0.002 52
0.003 32
0.004 26
0.005 35
0.006 62
0.008 09
0.009 76
0.01164

el
{map2)

17.7029
12.9575
8.6378
5.5415
3.5349
2.3095
1.5910
1.1804
0.9470
0.8109
0.7262
0.6682
0.6245
0.5887
0.5575

'Scattering length ( ap }.



2344 S.-W. CHIU AND D. M. SCHRADER 33

O. l
a
rt)

N
tLi

CL,

50

g

0.0

h

0.0 0. 1 0, 2 0.3 0.4 0.5 0.6 O. V

lf'o Itron r»orr)enturr) k(()nit~ of n, )

FIG. 1. Elastic s-wave phase shifts for e -H scattering. Legend:, present work (Table III); ———,polarization and virtua
positronium (Ref. 55); ---, modified adiabatic [Ref. 28(b)]; ———,accurate [Ref. 34(a)]; Cl, Harris-Nesbet variational (Ref. 54); g,
T matrix (Ref. 53); 6, close coupling with correlation (Ref. 42); o, coupled SCF [Ref. 40(a)].

0.20

0.00
I I I I t I I I I I I I 1 I I I I I I I I I I I I I I I

0.0 0. 1 0, 2 O. B 0.4 0. 5 0.6 O. T

Positron momentum k(units of a(-, )

FIQ. 2. Elastic p-wave phase shifts for e -8 scattering. Legend:, present work (Table III); ———,modified adiabatic
[Ref. 2g(b)]; —.—.—., accurate [Ref. 34(b}];Q, Harris-Nesbet variational (Ref. 54); X, T matrix (Ref. 53); 6, close-coupling with
correlation (Ref. 43).
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Positron momentum ktunits of a, ,

'
j

FIG. 3. &otal cross section for elastic e+-H scattering. Legend:, present work (Table III); ———,modj fied adiabatic [Ref
28(b)]; ———,accurate [Ref. 34(c)1' 0, Harris-Nesbet variational (Ref. 54); y, T matrix (Ref. 53).

curate calculation of the total cross section34 shows a very
shallow minimum, as do other ab initio calculations.
Its absence in the present work and in other semiempirical
work'4(' is mainly due to the underestimation of the p-
and d-wave phase shifts for k&0.4ao '. Overall, the
present results are satisfactory compared to the best
values.

Numerical values of Z,rr are given in Table IV. The
quality of our s-wave contribution is as good as the cou-
pled SCF results of Horbatsch, Darewych, and

McEachran. ~' It is worthwhile to note that the Z,rr of
Chan and Fraser, calculated by using the two-state CCA
with 26 correlation terms, are inferior to our results, while
the reverse is true for 5o and 5i. It should be mentioned
that the error in Z,rr is of first order in the error of the
wave function whereas the errors in phase shifts are of
second order. In Fig. 4, our total Z,rr values are shown as
well as the results of other calculations. Our results are
encouraging in view of the simple theoretical framework
of the model.

TABLE IV. The annihilation parameters Z,'ff for e+-H elastic scattering.

k(ao ')

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
O.SO

0.55
0.60
0.65
0.70

8.5919
8.0533
7.0562
6.0305
5.1319
4.3899
3.7903
3.3083
2.9200
2.6057
2.3494
2.1390
1.9646
1.8189
1.6958

Zeff
(1)

0.0409
0.1610
0.3499
0.5588
0.8520
1.1120
1.3452
1.5355
1.6758
1.7671
1.8155
1.8298
1.8189
1.7909

(2)
Zeff

0.0001
0.0017
0.0083
0.0245
0.0551
0.1034
0.1707
0.2555
0.3540
0.4607
0.5694
0.6740
0.7694
0.8521

Zeff
(3)

0.0000
0.0000
0.0001
0.0008
0.0026
0.0070
0.0155
0.0298
0.0516
0.0816
0.1203
0.1670
0.2205
0.2787

Zeff
(4)

0.0000
0.0000
0.0000
0.0000
0.0001
0.0004
0.0011
0.0028
0.0060
0.0116
0.0202
0.0327
0.049S
0.0711

Zeff

8.592
8.096
7.219
6.389
5.716
S.300
5.013
4.841
4.744
4.693
4.670
4.664
4.668
4.677
4.689

z~= QI=ozgr
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Ze ff
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Positron momentum k(units of a, ,

'
j

FIG. 4. Annihilation parameters Z,qf for elastic e -H scattering. Legend:
[Ref. 34(c)]; 6, close-coupling with correlation (Refs. 42 and 43).

, present work (Table IV); ———,accurate

B. Positron-helium elastic scattering

Intuitively, it is expected that nonadiabatic effects are
smaller for the heavier atom. For He, each electron has
an average kinetic energy of 39.5 eV while that of the pos-
itron is less than the Ps formation threshold (17.8 eV). In
the case of e+-H, the mean kinetic energy of the atomic
electron is 13.6 eV and that of the positron is less than the
corresponding Ps formation threshold (6.8 eV). One can
see that the positron moves somewhat slower relative to
the target electron(s) for He than for H. The
parametrized value of c for VMp (Table II) is larger for
the e+-He system than for e+-H. In view of the pro-
posed functional form of the model potential, this indi-
cates that the nonadiabatic correction required for the
former is less than for the latter. Perhaps this semiclassi-
cal criterion for the adiabatic approximation is the key for
the success of the polarized orbital calculations of
McEachran et aI.29

The calculated phase shifts and Zgff are presented in
Tables V and VI, respectively. The lower partial-wave
phase shifts and total cross sections are shown in Figs.
5—7 along with other theoretical results ' ' ' ' for
comparison. For helium, high quality measurements of
the total cross section have recently become avail-
able, ' and these results are also shown. All the
theoretical results shown reproduce the Ramsauer-
Townsend minimum first observed by Stein and co-

workers. Our results are in good agreement with the ac-
curate results (model H5) of Campeanu and Humber-
ston.

An indication of the importance of e -e correlation
is provided by the difference between the cr,~

for model H5
(Ref. 37) and for model DB [Ref. 28(b)]. The former in-
volves using an e -e correlated target function while
the latter does not. The effects are small but unmistak-
able. Since He is less polarizable than H, virtual Ps for-
mation is expected to be less significant. Without virtual
Ps formation, Amusia et aL found that the cross-section
minimum shifts to a lower k value and becomes deeper.
For k &0.4ao ', the influence of virtual Ps on the elastic
channel is insignificant. This is in conjunction with the
poor s-wave phase shifts given by the close-coupling cal-
culation of Ho et al. and Wardle. Inclusion of the Ps
channel only is obviously inadequate. In contrast to the
e+-H case, it seems that virtual excitations are the dom-
inant processes governing the e+-He elastic collision.

Our values for Z,ff are given in Fig. 8. Other results
are also presented for comparison. Test calculations show
that for e+-He, as for e+-H, increasing the value of the
parameter a for VMp gives less accurate Z,rr values, but
the resulting cross sections are slightly better. Overall the
present results are satisfactory.

Z,ff values as calculated by the polarized orbital
method are amazingly good in spite of its use of first-
order adiabatic polarized orbitals. It is rather surprising
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TABLE U. Phase shifts and cross sections for e+-He elastic scattering.

k
(&o ')

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

(rad)

—0.471 99'
0.02009
0.033 56
0.041 3S
0.044 35
0.043 32
0.038 82
0.031 37
0.021 42
0.00944

—0.004 13
—0.018 89
—0.03447
—0.050 59
—0.06700
—0.083 51
—0.09997
—0.11625
—0.13223
—0.147 66
—0.16308
—0.177 86
—0.192 17

5)
(rad)

0.000 65
0.002 40
0.005 01
0.008 31
0.012 16
0.01649
0.021 18
0.02608
0.031 00
0.035 73
0.04006
0.043 86
0.04700
0.049 43
0.051 12
0.05206
0.052 27
0.051 78
0.05064
0.048 92
0.04667
0.043 95

52

(rad)

0.000 10
0.00040
0.000 88
0.001 53
0.002 31
0.003 23
0.00429
0.005 50
0.00691
0.008 53
0.01037
0.01240
0.014 58
0.01685
0.019 17
0.021 49
0.023 77
0.025 96
0.028 04
0.029 95
0,031 68
0.033 20

53
(rad)

0.00003
0.000 13
0.000 30
0.000 S3
0.000 82
0.001 16
0.001 53
0.001 95
0.002 39
0.002 87
0.003 42
0.00405
0.004 78
0.005 61
0.006 54
0.007 56
0.008 66
0.009 83
0.01106
0.012 33
0.01364
0.01495

54

(rad)

0.00002
0.00006
0.000 13
0.00024
0.00042
0.000 54
0.00073
0.00093
0.001 19
0.00140
0.001 64
0.001 92
0.002 19
0.00248
0.002 83
0.003 23
0.003 68
0.004 18
0.004 74
0.005 33
0.005 97
0.006 65

Oe

(~&o)

0.8911
0.6478
0.4576
0.3180
0.2187
0.1506
0.1061
0.0799
0.0672
0.0646
0.0688
0.0771
0.0878
0.0993
0.1106
0.1214
0.1311
0.1397
0.1470
0.1529
0.1582
0.1623
0.1655

'Scattering length ( ao).

that there have been no published data for e+-H scatter-
ing using the same method.

The similar diatomiclike approach of Pai et al. has
the advantage that the method is nonphenomenological al-
though the computational procedure is rather laborious.
In view of the present work, it is expected that their re-

suits would have been improved if they had used a proper
basis set. The size of their basis set used is too small to
describe adequately the e+-He system for the entire range
of rz, as explained above. In their work, only s-type
STO's were imposed on the He target which is then not
properly polarized. In addition, the orbital exponent of

TABLE VI. The annihilation parameters Z~~ for e+-He elastic scattering.

k(ao ')

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

Zdr gI OZN'

0
Zeff

3.7003
3.6473
3.5387
3.4045
3.2589
3.1099
2.9627
2.8206
2.6858
2.5598
2.4430
2.33S4
2.2367
2.1461
2.0629
1.9866
1.9164
1.8517
1.7919
1.7365
1.6849
1.6369
1.5920

Zeff
(1)

0.0064
0.0273
0.0609
0.1066
0.1631
0.2287
0.3015
0.3792
0.4597
0.5407
0.6205
0.6975
0.7705
0.8385
0.9011
0.9581
1.0093
1.0548
1.09S1
1.1303
1.1609
1.1872

(2)
Zeff

0.0000
0.0001
0.0004
0.0014
0.0033
0.0066
0.0117
0.0189
0.0288
0.0413
0.0567
0.07S1
0.0961
0.1198
0.1457
0.1736
0.2030
0.2336
0.2649
0.2967
0.3285
0.3601

(3)
Zeff

0.0000
0.0000
0.0000
0.0000
0.0001
0.0002
0.0004
0.0008
0.0015
0.0027
0.0044
0.0068
0.0100
0.0141
0.0194
0.0257
0.0332
0.0419
0.0518
0.0629
0.0749
0.0880

(4)
Zeff

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0001
0.0002
0.0003
0.0005
0.0009
0.0015
0.0023
0.003S

0.0050
0.0069
0.0093
0.0122
0.0156
0.0197

ZeQ

3.700
3.654
3.566
3.466
3.367
3.276
3.198
3.314
3.085
3.050
3.028
3.017
3.017
3.024
3.037
3.055
3.077
3.102
3.129
3.158
3.187
3.217
3.247
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FIG. 5. Elastic s-wave phase shifts for e+-He scattering. Legend:, present work (Table V); ———,coupled static (Ref. 56,
model HY2); ---, modified adiabatic [Ref. 2S(b)]; ——~ —., accurate (Ref 36); C. I, random phase with virtual positronium (Ref. 38);
X, polarized orbital [Ref. 29(a)); 0, static plus virtual positronium (Ref. 57).
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FIG. 6. Elastic p-wave phase shifts for e+-He scattering. Legend:, present work (Table V); - - -, modified adiabatic [Ref.
28(b)], . . ., a~ate (Ref. 37); 0, random phme mth v~ml p itromum (Ref 38) X p lanz~ orblM [Ref 29(a)]
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the ls STO centered on the positron is other than (the po-
sitronium parameter) 0.5.

IV. CONCLUSION

The present results for both e+-H and e+-He scatter-
ing suggest that the model can be extended to other one-
positron, many-electron atomic systems provided that
their scattering lengths or some other properties are
known. It may be even possible to correlate the parameter
c for VMP with known atomic properties (such as dipole
polarizabilities, ionization potentials, etc.) by an empirical
formula with the other parameters fixed as proposed in
the present work. Certainly, this requires one or two
more test systems for calibration. One convenient choice
would be e+-H . For this one-positron, two-electron
atomic system, the parameter c would then be adjusted
such that the V&(r&) in Eq. (12) gives the known binding
energy of e+ to H . Once the method is calibrated in
this way, it can be applied to larger one-positron, many-
electron systems such as e+-noble-gas, e+-halogen, etc.,

without knowledge of any scattering parameters.
Since Eq. (15) is uncoupled from Eq. (12), one may

parametrize a proposed model potential for V ~(r~ ) by ap-
plying Eq. (12) directly without going through Eq. (15).
This procedure requires less computation and perhaps the
results for scattering cross sections are more reliable.
However, evaluation of the complete wave function can
provide additional information such as the annihilation
rates and the angular correlation of the two y rays pro-
duced during annihilation.

One may reverse the computational sequence if a reli-
able Vz is in hand. The desired V«(rz) can be deter-
mined by Eq. (11) easily. Then Eq. (15) may be used to
calculate the closed-channel function by adjusting c for
each rz such that the desired V«(rr) is obtained.
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