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We have calculated approximate hyperspherical adiabatic HD* potential curves. In contrast to
the Born-Oppenheimer adiabatic potential curves, the hyperspherical ones exhibit the correct disso-
ciation limits. The lowest-order vibrational spectrum that we obtain compares favorably with con-
ventional higher-order calculations. The implications of our results for continuum states of HD*
and for ion-atom scattering in general are discussed. We show that translation factors are not need-

ed in the hyperspherical formulation.

I. INTRODUCTION

Our understanding of molecular structure is currently
based on the Born-Oppenheimer adiabatic approximation.
In this picture the nuclei of the atoms in the molecule are
held fixed, in first approximation, and the Schrodinger
equation for the electrons is solved to obtain molecular-
energy curves which are functions of the relative location
of the nuclei. These curves then provide the effective po-
tentials for the nuclear motion. The Born-Oppenheimer
picture is also employed to describe low-energy atom-
atom and ion-atom collisions. For purposes of the present
discussion we regard wave functions for colliding atoms
as continuum functions of diatomic molecules, and thus
refer to both bound and continuum states in the same
language.

Consideration of atomic collisions reveals the limita-
tions of the Born-Oppenheimer approximation. It is
necessary to introduce translation factors,!~® sometimes
in an ad hoc and complicated manner, to allow for
translational motion of the electrons relative to the indivi-
dual nuclei. A related problem concerns the dissociation
threshold energies obtained in the Born-Oppenheimer ap-
proximation. Because the nuclei are held fixed, the adia-
batic molecular-energy curves do not separate to give the
correct reaction thresholds. For example, in H,¥, the
lowest-energy curves equal —+ a.u. at infinite nuclear
separation, whereas the correct energy is — 5.y, Where
Hen is the reduced mass of the hydrogen atom. Since the
reduced mass is close to unity, this usually is not a serious
problem unless high precision is required in bound-state
calculations, or unless electron-capture reactions are im-
portant for continuum states. In both cases, complicated
corrections, including translation factors in the case of
electron capture, are required. These problems become
more acute for systems where the electron is replaced by
the more massive negative muon. Then, the incorrect
thresholds cannot be ignored. This is particularly ap-
parent in attempts to describe the autoionizing states of
He in terms of an H,* model.* Then one obtains Ryd-
berg series of autoionizing states which converge to series
limits that are in error by factors of 2.

The incorrect thresholds of Born-Oppenheimer approx-
imation also imply that the theory of upper and lower
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bounds on energies and phase shifts, developed primarily
by Spruch and co-workers,” does not immediately apply.
It is necessary to correct the threshold energies and to re-
move the attendant spurious long-range couplings charac-
teristic of the perturbed-stationary-state approximation.®

The purpose of this paper is to point out that an alter-
native adiabatic approximation, namely, the hyperspheri-
cal adiabatic approximation,’ gives the correct thresholds
without introducing electron-translation factors. This is
well known in the case of the autoionizing states of He,
but it has not been developed in connection with conven-
tional molecular structure. Greene® has demonstrated the
connection between the hyperspherical adiabatic approxi-
mation and the conventional Born-Oppenheimer approxi-
mation for the case of H,™, but he introduces approxima-
tions which give incorrect thresholds as in the convention-
al Born-Oppenheimer theory. Here, we reexamine his
demonstration for the interesting case of HD*. For this
system the lowest two molecular states in the separated-
atom limit are not degenerate owing to the mass differ-
ence of the proton and the deuteron. Then the structure
of Born-Oppenheimer and hyperspherical adiabatic poten-
tial curves are qualitatively different in first approxima-
tion. Since this qualitative difference may show up in the
vibrational structure of HD*, we compute the vibrational
spectra in the two alternative adiabatic approximations in
lowest order. These spectra are compared with each other
and with a more accurate calculation’ which includes
higher-order corrections to obtain some quantitative mea-
sure of the difference between the two conceptual frame-
works for understanding molecular structure.

That the hyperspherical adiabatic approximation gives
the correct separated-atom limits follows from the com-
mutation of the generalized angular-momentum operator
with the “kinematic rotation” of Smith.!° Conversely, the
kinetic-energy operator of the electron alone does not
commute with the kinematic rotations, and thus the
Born-Oppenheimer approximation, which separates elec-
tron motion for special consideration, gives incorrect
thresholds.

Since kinematic rotations play a central role in our dis-
cussion, we briefly discuss such rotations and the adiabat-
ic hyperspherical approximation in Sec. II. For definite-
ness we discuss HD* explicitly. The general theory has
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been given by Smith. This section also establishes the no-
tation used in subsequent sections. Atomic units are used
throughout, although it is convenient to write the electron
mass m, explicitly. In Sec. III we obtain an approximate
solution for the adiabatic potential curves. Our solution
closely follows the theory of Greene;® the main difference
is that we obtain approximate wave functions which give
the correct separated-atom energies. Exact solution of the
adiabatic hyperspherical approximation would automati-
cally obtain correct thresholds. Since we employ an ap-
proximate solution valid to order m,/my, it is necessary
to explicitly construct an approximation scheme for the
adiabatic eigenvalues which preserves correct thresholds
at each order. Such a scheme is described in Sec. III and
potential curves computed in lowest order. In Sec. IV we
obtain the vibrational energy levels in the two approxima-
tions and compare with accurate calculations which keep
higher-order corrections in the mass ratio m,/my. The
results are discussed in Sec. V.

II. KINEMATIC ROTATIONS
AND THE ADIABATIC HYPERSPHERICAL
APPROXIMATION

Consider the coordinate systems for the HD* ion
shown in Fig. 1. The vectors r,y and r.p represent the
electron-proton and electron-deuteron separations, respec-
tively, and the vector ryp represents the internuclear
separation. Since we are interested in the lowest-energy
state, and since in the separated-atom limit D + H? is
lower in energy than H + D™, we select the Jacobi coordi-
nates r,p and r.p i of Fig. 1(b) to define the hyperspheri-
cal radius R and the hyperangle a,p according to
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FIG. 1. (a) Interparticle coordinates for the HD* molecule.
(b), () Two alternative Jacobi coordinate systems used to
describe the HD* molecule.

PR ={1,prp +Hep,uleD,H » (1a)
Weptip =R sin’a,p , (1b)
Hep,uep,u =R *cos’a.p , (1¢)

where the reduced masses p,p and y.p g are given by
Mep=m,mp/(m.+mp) , (2a)
pep,u=(me+mpImy/(m,+mp+my) . (2b)

Here, my and mp are the masses of the proton and the
deuteron, respectively, and the parameter u is arbitrary
but has the dimensions of mass. The vector r,p y locates
the position of the proton relative to the electron-deuteron
center of mass.

An alternative set of hypercoordinates, appropriate for
the first excited state which represents H + D+ at large
internuclear separations can be defined in terms of the al-
ternative Jacobi coordinates r,y and r.yp of Fig. 1(c),
ie.,

BLR*=pourlu + e, nf et D » (3a)
Penrly =uR sin’a,y , (3b)
#eH,D’ezﬂ,D =uR 2cos’t,n (3¢)

with p.y and p.y p defined as in Egs. (2a) and (2b) with
H and D interchanged. The hyper-radius R is identical in
the two alternative definitions, however the hyperangle is
not. The transformation between the sets of five angular
coordinates a.p, T.p, Tep,n represented by Q and a.y,
Ten, Ten,p represented by ' is called a kinematic rotation.
Explicitly we have

mp
reﬂzmreD—reD,H ) (4a)
my
TeH,D=TeD— mreﬂ
me(m,+my+mp) my
= T me+mp)m, +mp) ° " m, +my PH
(4b)

These relations take on the more transparent form upon
defining the kinematic rotation angle y, and using the def-
initions of Egs. (1)—(3),

sina, gty =cosy sina,pf,p—siny cosa,pfep 1 » (5a)
COSQ T, 1, p=SinY sina,pfep+cosy cosa,ptep 1 » (5b)
with
tany =m, /( )172 6
any =m,/(fephen,n) " - (6)

For completeness, we write the three interparticle dis-
tances of Fig. 1(a) in terms of the a,p hyperangle and the
kinematic rotation angles y and y":

rep={(/pep)?R sina,p , (7a)

reu={(/pen)"’R | cosy sina,pfep

—siny cosa,pTep.u| » (7b)
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FHD = (,LL /IJ.HD)I/ZR | siny’ sinaeD?eD
+cosy’ cosa.ptep 1| » (7c)
where
tany’ = (,plep,u)'’*/mp . (8)

The Schrodinger equation for the three-particle system
with the center-of-mass motion separated out can be writ-
ten in two alternative forms in terms of the two alterna-
tive Jacobi coordinate systems,

-l v LV v |v=ey, ©)
2pep,H 2u.p

— 2 1 vzH,D—'— 21 V3H+V Y=gV . (10)
HeH,D eH

The transformation between the two forms is just the
kinematic rotation. Note that the kinetic energy is form
invariant to the coordinate transformation.

In hyperspherical coordinates, the Schrodinger equation
takes the form

1

1 |d s5d A
2

R dR R?

where the generalized angular-momentum operator is de-
fined by

1 d d
Al= - ——————— — Isin’acosla——
sin’a cos’a da da
LT L}
—+— - (12)
sina  cos’a

The angle a and the subscripts 1 and 2 denote a generic
set of hyperangular coordinates. For example, if a=a,p,
then 1=(eD) and 2=(eD,H). The operators L; are con-
ventional angular-momentum r; X V; operators. Because
the generalized angular-momentum operator takes the
same form in all hyperspherical coordinate systems, it al-
ways commutes with kinematic rotations.

In the hyperspherical adiabatic approximation the total
wave function W is expanded in a basis set of solutions to
the following equation:

2
AV [0 R =U,(RIDL(R;Q) (13)
2uR
ie.,
V=3 F RI®,R;Q) . (14)

In the adiabatic approximation, neglecting couplings be-
tween the different channels, the total wave function is
approximated by ¥ ~F_(R)®,(R ;) and consequently the
hyper-radial equation becomes

1

2

d? 5 d
dR2+R dR

+U,R) |F(R)=¢F,(R) . (15)

Because the generalized angular-momentum operator
commutes with kinematic rotations, the potentials U, (R)
approach the correct thresholds at large R. This was
demonstrated in Ref. 7 for the He autoionizing states, but
is easily seen to hold generally. The price one must pay
for this attractive feature is the use of approximate wave
functions, because Eq. (13) has no known solutions in
closed form. Accordingly we seek approximate solutions
accurate to order m,/my. Many different solutions to
that order are possible. Indeed, the binding-energy differ-
ence of H and D is of order m,/my, and approximate
solutions correct to that order could still give incorrect
thresholds. Accordingly, we also require that the approxi-
mate solutions give the correct threshold energies. Terms
neglected in the lowest order could be calculated in higher
order using perturbation theory. We therefore give an ex-
pression for the “perturbation” operator but do not evalu-
ate its expectation value to obtain the first correction to
the energy. This task is left for future studies.

III. APPROXIMATE SOLUTIONS

We consider only states of total angular-momentum
zero. For such states, the rotation of the plane containing
the three particles gives no contribution to the kinetic en-
ergy, and Eq. (13) can be written'!

1 1

2 2 d
sin‘a cos“a— ~

"~ 2uR? | sin*acos’a da a
Lgn
-5 | tV[PAR;Q)=U,(R)P,(R;Q) .
sin’a cos’a

(16a)

In accordance with our choice of the Jacobi coordinates
r.p and r.p y we have

y_ 1 —ZuV len
VR | | cosy sina,pf.p —siny cosa,pfep 1
_ ZeD HeD
sina,p
+ ZuyZpV pup
| siny’ sina,pT,p—+Cosy’ cOSAepTep H |
(16b)
and the combination of L? and L3 yields
2 —1 d .
=— ——sinf;,—— . (16
b2 sm9|2 d012 o1 d012 c)

6, in this case is the angle between the T,p and T.p y
directions.

We now rewrite Egs. (16) in terms of the new variable
s=tana,p,
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1 > 2d _ Lgnz N 3 Next, we define _the new variable r according to
2uR? |ds? s ds s (1+4s%)? vV'm,r=VuRs (20)
U,(R) and set
+ V22 ¢, = lv 2)2¢v, (17a)
(1+4s7) (1+s P 212)
V= 1 —ZuV en _ ZpV lep + ZyZpV pup S VRS ~ m, 1/2RA
- VR COSYSeH s cosy’ Sup Melep =V URSeq=V M, |F' Top— e TeDH| >
(17b) 21b)
where V/itep,u7ha =V RS HD
172
Sen= | tana,pt,p—tanyt.p | , (18a) Y g tany’ r 2.0+ Reumm
’ ~ HeD,H
sup = | tany’ tana,ptep+Ten,u| » (18b)
(210
and ) .
Notice that R, as opposed to 74, is a constant. Equation
@, =(1+s1)', . (19)  (17a) now becomes
|
2 L}
1|4t 24 L 3
2m, |dr* r dr r? (1+m,r*/uR??

—Zylpen/m)N?*  Zplpep/m,)"?

- U,(R)

COSY Ve, r

+ ZpZy(pup/pen,n)"? ) m,r?
cosy' rpy

¢v=

(1+m,r2/uR?? sl
(22)

nR?

Since no approximations have been made, Eq. (22) is still exact. Now we note that since » and R are of comparable
magnitude, and since the kinematic rotation angles ¥ and ¥’ are of order (m, /my)'/?, Eq. (22) can be written as

L | a2 Lo | Zuew/mo'?  ZoGeo/mo' | Zulpew/m)'? |
T 2m, |dr2 " rdr 2| Pen B r R LR
15
= |UQR)+—— |¢, (23)
v 2R’ ¢
with
Ten=|rTep—RTep | (24)
and the corresponding hyper-radial equation
P 1
1 d* 5 d + )
- —+——+— |+E,’(R) |F,(R)=¢F,(R), (25)
2u.pn |dR? R dR  R? I
where the “perturbation operator” V), is of order m,/my and is given explicitly by
—-372
me 2 ZH(Au'eH/me )1/2 ZD(ﬂ'eD/'ne)l/2 ZH(ﬂeH/me )1/2
Vo= |14+ —— V— |- - +
uR Yeh r R
212 3 15
—1+—=+| |UJR) UQ(R)+— 26)
[ TuR? ’ Y +2#R2'+ 2uR?

with p=p.py and where EL(R)=[U(R)+ L/
2uR?] is the zeroth-order energy defined by the eigen-
value equation, Eq. (23), with ¥, set equal to zero.

The first term in Eq. (23) just has the form of the total

kinetic energy in spherical coordinates for a particle in a
state with magnetic quantum number equal to zero. Ac-
cordingly the zeroth-order equation with ¥, omitted is
identical in form to the usual equation of the Born-
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Oppenheimer approximation with effective charges
Zp=Zplep/m)"? and Zy=Zyluen/m,)"?*.
27

A similar zeroth-order equation has been introduced in
another connection in Ref. 12. Our Eq. (23), although
similar in form to Eq. (3.20) of Ref. 12, has a significantly
different interpretation. In particular, only one variable R
is held fixed in the hyperspherical adiabatic approxima-
tion, whereas the vector ryp is fixed in the approximation
of Ref. 12.

In addition to perturbation corrections to the potential-
energy curves, it is also necessary to include the lowest-
order nonadiabatic diagonal perturbation (P, ,®P,) where
primes in this case denote differentiation with respect to
R and the inner product is taken with respect to the five
angular coordinates (.

The complete first-order correction is thus

E‘v”(R)=(¢v,VI§°)¢V)—?1;@,,,4’,',') , (28)

where U,(R) is set equal to E ‘9(R) in the expression of
Eq. (26) for V, to obtain V;,O), and

6,V "8)= [ 43V s drdiepdicon  (29)
with
($undy)=1. (30)

At large distances, the nonadiabatic term cancels some
of the perturbation terms of (¢, | V;O) | ¢,). This only hap-
pens when the approximate solutions have the correct
asymptotic form, and is one of the reasons for selecting
the particular form for V,. Even though it appears that
other choices of the effective charge and of the reduced
mass pu result in fewer correction terms, we know that the
present choice is optimum, at least at large distances. For
the exact solution of Eq. (22) none of the questions con-
cerning the reduced mass and the effective charges are
relevant. It is only when treating Eq. (22) approximately
that these considerations matter.

The hyper-radial Schrodinger equation in the adiabatic
approximation is given by Eq. (25). Upon setting
f,(R)=R ~3/F (R) we have

d2
EI'{Z— +E (VO) (R)

1
2.u'czD,H

[+(R)=¢ef,(R) . (31

This equation is identical in form to the standard Born-
Oppenheimer equation for nuclear motion with rotational
angular momentum equal to zero, and with the identifica-
tion of ryp with R. Because of our choice of R=ryp
and because we include the factor — % /R? in Vy, the ra-
dial equation (31) correctly describes a proton moving rel-
ative to a deuterium atom at large R, in zeroth approxi-
mation. Higher-order calculations of the hyperspherical
adiabatic potential curves would include the correction of
Eq. (28).

For completeness we note that the matrix elements with
integration variable a transform to matrix elements with
the integration variable s according to

2
S
S S
1522 ®
(32)

fo | @, | 2V sin’a cos’ada= fo | ¢,V

Changing the length scale does not change the magnitude
of the integral provided ¢, is normalized. Thus we may
replace s by r provided this change is made in the normal-
ization integrals also. We must, however, evaluate (®,®")
using variable a or s kept constant, not r. This is one
manifestation of the difference between the hyper-radius
R and the internuclear distance ryp.

IV. ZEROTH-ORDER SPECTRUM OF HD*

The exact Born-Oppenheimer and the zeroth-order hy-
perspherical adiabatic potential curves are shown in Fig.
2. The inset in Fig. 2 shows the behavior of the potential
curves at large internuclear separations. These potential
curves are obtained using suitable eigenfunction expan-
sions in the appropriate regions of small rgp and large
rup- The expansions lead to three-term recurrence rela-
tions, resulting in continued-fraction equations, which are
evaluated to a required accuracy.’* Consequently, no nu-
merical approximations are involved. For small internu-
clear separations, the potential curves obtained from the
two different adiabatic approximations are almost indis-
tinguishable from each other, as concluded and correctly
emphasized by Greene. However, the use of effective
charges to obtain the hyperspherical adiabatic potentials
gives qualitatively different curves at large internuclear
separations, leading to the correct dissociation thresholds.
This is one of the main differences that distinguishes the
two adiabatic approximations. The effect of this differ-
ence in the two approaches at larger internuclear separa-
tions should be most apparent in the vibrational spectrum
of the weakly bound states of the HD* molecule.

To obtain the vibrational spectrum, the numerical in-
tegration over R of Eq. (31) is performed using the
Numerov algorithm.'* Starting with a trial bound-state
energy, the solutions of the outward and the inward in-
tegrations are matched at a point where the potential is

2F
or é-soo
’5: L w
S -2t
g | ZPUU -502
W-gqt
6 r 1sqy
_8 1 L 1 1 1 " " I n 1
0 2 4 6 8 10

Ra.u.)

FIG. 2. Adiabatic potential curves for the two lowest states,
Iso, and 2po,, of the HD* molecule. Solid lines represent the
Born-Oppenheimer potential curves, and the dashed lines
represent the zeroth-order adiabatic hyperspherical results.
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TABLE 1. The dissociation energies D,; of HD* in cm~!.

Dy (cm™)
v (J=0) Born-Oppenheimer Hyperspherical Ref. 9
0 21527.2 215164 21516.073
1 19614.1 19 603.4 19 603.079
2 17797.0 17786.6 17786.217
3 16073.5 16063.1 16062.630
4 14 440.4 14430.1 14429.831
5 12896.0 12885.8 12 885.697
6 11438.6 114284 11428.466
7 10066.7 10056.5 10056.731
8 8779.4 8769.4 8769.444
9 75759 7565.6 7565.920
10 6455.9 6445.6 6445.854
11 5419.5 5409.1 5409.332
12 4476.2 4456.8 4456.863
13 3600.1 3589.4 3589.404
14 2819.4 2 808.5 2 808.402
15 2127.1 2116.1 2115.845
16 15259 1514.0 1514.323
17 1019.0 1007.0 1007.086
18 610.5 598.3 598.111
19 304.9 292.5 292.063
20 107.0 94.4 93.603
21 16.9 10.7 (2.93)
22 0.8

not too small compared with the energy. The amount of
the mismatch then yields a second approximation to the
bound-state energy. This procedure is iterated, and the
convergence is accelerated with the use of Aitken’s &%
method,'> until the eigenenergies converge up to 0.1
cm~!. For the computation of the eigenenergies of the
high-lying bound states, the convergence criterion was a
stricter 0.01 cm ™.

Since the dissociation energy of the molecule is dif-
ferent for the two dissociation channels H+ D% and
D + H*, with D 4+ H* being the lower in energy, and
since we are interested in the lowest-energy state, we de-
fine the dissociation energy in a particular vibrational and
rotational state by

D,=Ep—E,, (33)

where E,; is the energy of the (v,J) state represented by
the vibrational v and the rotational J quantum numbers,
and Ep is the energy of dissociation in the appropriate
channel, the D 4+ H™ in this case.

The complete vibrational spectrum of the J =0 rota-
tional states, with the dissociation energies defined as
above, is given in Table I. In addition to the present re-
sults obtained from the two alternative adiabatic approxi-
mations, we also include the more accurate results of Wol-
niewicz and Poll,” who, in their calculations, have taken

into account the higher-order relativistic, radiative, and
nonadiabatic corrections with an accuracy of the order of
0.001 cm™!. For further testing, we show in Table II a
comparison of the Wolniewicz and Poll results with exper-
iment.'6—18

The spectrum obtained from the Born-Oppenheimer
adiabatic potential curve is, as expected, consistently

TABLE II. Comparison of experimental and theoretical tran-
sition frequencies for HD* in cm~!.

Transition Theory
(v,N-(v",J") Experiment Ref. 9 (Theor. —expt.)
(0,1)-(1,0) 1869.134* 1869.135 (4 0.001)
0,2)-(1,1) 1823.533* 1823.533 (0.000)
(1,0-(2,1) 1856.778% 1856.779 (+ 0.001)
(2,0)-3,1) 1761.616° 1761.616 (0.000)
2,1)-3,2) 1797.5222 1797.519 (—0.003)
2,2)-3,1) 1642.108° 1642.111 (+ 0.003)
(16,0)-(18,1) 926.498° 926.490 (—0.008)
(16,1)-(18,2) 932.231° 932.220 (—0.011)
(16,2)-(18,3) 933.204° 933.207 (+ 0.003)
(16,3)-(18,4) 929.238° 929.238 (0.000)
(16,4)-(18,5) 920.097° 920.089 (—0.008)

*From Ref. 16.
®From Ref. 17.
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lower than the hyperspherical adiabatic spectrum by an
average of 12 cm~!. This is not surprising considering
the fact that in the standard Born-Oppenheimer approxi-
mation the nuclei are treated as infinitely heavy. The
surprising fact is the excellent agreement between the
spectra of the present zeroth order hyperspherical adiabat-
ic approximation and the more accurate calculations of
Wolniewicz and Poll. Except for the highest v =21 vibra-
tional state, the two calculations yield dissociation ener-
gies that agree to within 0.5 cm~!. It should be men-
tioned that for the v=21 state, Wolniewicz and Poll do
not include the exact nonadiabatic corrections, because,
for this case, the outer turning point is outside the integra-
tion range (0.8 to 10.55 a.u.) used in their calculation,
yielding unreliable results. Their entry for the v =21 state
was instead obtained by extrapolation from the values
from lower v.

V. DISCUSSION

Our calculations yield a state having the highest vibra-
tional quantum number of v =22 with a binding energy of
0.8 cm™! in the case of the Born-Oppenheimer approxi-
mation, and v=21 with binding energy of 10.7 cm~! in
the case of the adiabatic hyperspherical approximation.
The highest state obtained by the theoretical calculations
of Wolniewicz and Poll has v=21 and rotational quantum
number J=1, with a binding energy of 0.74 cm~!. Ex-
perimentally, the highest states detected are the ones with
vibrational quantum numbers of v=17 and v=18. How-
ever, efforts are currently underway to determine whether
v=21 is actually the highest state.!® Still, with higher ro-
tational levels, the interesting possibility arises for quasi-
bound states of HD™ lying above the dissociation limit
which are metastable to dissociation because of the centri-
fugal barrier.

Whether v =21 or v =22 is the highest state cannot be
answered with certainty in a theoretical calculation
without including the higher-order corrections, and the
nonadiabatic coupling terms. In the case of the hyper-
spherical approximation, the inclusion of the correction of
Eq. (28) will yield an upper bound to order m,/my on the
eigenenergies.

Turning our attention to the atomic collision problem
in relation to the coupling of the different channels,
another important point arises which, though somewhat
related to the problem associated with the correct breakup
thresholds, distinguishes the hyperspherical adiabatic ap-
proximation from the standard Born-Oppenheimer adia-
batic approximation. Were it not for the derivative in the
hyperspherical Schrodinger equation, Eq. (11), operating
also on the parameter R in the basis set @, (R;Q), the
hyper-radial equation would be completely uncoupled.
Since the couplings among the radial functions F,(R) of
the different channels result from the matrix projection of
the nonzero derivatives d®,/3dR with respect to R (the
nonzero gradients of V&, with respect to ryp in the case
of the Born-Oppenheimer approximation), on the basis set
®,, important physical insight is gained by examining in
detail these derivatives of the basis functions. To intro-
duce the notation, a brief discussion of the separability of

the Schrodinger equation for a one-electron diatomic mol-
ecule follows.

It is well known that the Schrodinger equation in this
case is separable in elliptic coordinates (A,7,$) where

A=(r,p+r.u)/rup and M=(rep—rey)/rup (34)

with r,p and r,y representing the electron separations
from the two nuclei, and ryp representing the internu-
clear separation.

Taking the electronic eigenfunctions as

V=X (A)Y(n)exp(tim¢), m=0,1,2,... (35)

with the nuclear charges Zy and Zp, the “inner” and
“outer” equations are given by

d 2 dyY 2 2 m2
Ly e pr1 gy
dn " dn F K (1—7%
_(ZH_ZD)rHDn Y——-O, (36)
2
d 2 94X o)1
TR U a4 (AZ—1)

+(ZH+ZD)rHD}" X———O, (37)

ZHZD

THD

2
THD

and C is the separation constant.

The solutions to these equations can be represented by
infinite-series expansions. Hence, the eigenfunctions of
Eq. (36) may conveniently be taken in terms of the associ-
ated Legendre polynomials as

Y()= I

j=morm+1

fiP"(n) (38)

the summation being over even or odd values of j depend-
ing on the symmetry. On the other hand, the eigenfunc-
tions of Eq. (37) can be represented using the Jaffe expan-
sion

X(M)=(A2—1)""2(A+1)exp(—pA) 3 g;&/ (39)
j=0
in which
(Zy+2Z
g moZutZo) (40)
2p

and

E=(A—=1)/(A+1). (41)

The cogent point to notice is the following. Since in the
case of the hyperspherical approximation r,p and 7,y are
defined in terms of a common scale coordinate R [see Eq.
(7)], and because the elliptical coordinates A and 7 are di-
mensionless and they do not involve any R dependence, to
first order in m,/my we have
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A=(pu/ten) " /*sinp+ (tep, 1/ ter)'

X | cosy sina,pf.p—siny cosa.prepu | > (42a)
N=(ttep,n/tep)"/$inAep — (ftep,u/pen) >
X | cosy sina,pf.p—siny cosa.plepu| - (42b)

It follows that the derivatives of Egs. (38) and (39) with
respect to R do not include any derivatives of the series-
expansion functions. Only the derivatives of the expan-
sion coefficients come into play. Considering, for exam-
ple, the expansion (38), we have

3R = 2 3R Pi*(n) . (43)

On the other hand, in the case of the Born-Oppenheimer
approximation, the gradient with respect to ryp of the
eigenfunctions involves derivatives of the expansion func-
tions, the expansion coefficients, and of the coordinates A
and 7, e.g.,

af;

arHD

tup VY= —Lprn) 4+ 3 fPM (20— . (44)
J J

ar HD

That the gradient of the eigenfunctions, and hence the
coupling terms, are dependent on the derivative of the el-
liptical coordinates implies that the Born-Oppenheimer
coupled equations are dependent on the coordinate origin.
Bates and McCarrol were the first to show that this defect
of the Born-Oppenheimer approximation is removed by
introducing translation factors—that are themselves ori-
gin dependent—in the molecular eigenfunction expan-
sions. The complete set of coupled equations are then in-
variant to Galilean transformations of the reference
frame. Conceptual and practical difficulties of this pro-
cedure for molecular states is attested to by the extensive
literature on the subject of “translation factors.” In con-
trast, the coupled equations of the adiabatic hyperspheri-
cal approximation are automatically Galilean invariant,
i.e.,, invariant to kinematic rotations. Hence, translation
factors are not needed in this case. Of course, one pays a
price for this attractive feature; as mentioned above, the
adiabatic hyperspherical functions are not known exactly.
We show here that they can be obtained to order m,/my
using standard molecular codes. The use of the adiabatic
hyperspherical approximation then provides a prescription
on how to obtain the derivative couplings. Derivatives are
taken holding the five variables a,p, T.p, T.p,z constant.
Effects of rotational coupling, however, are included in
the eigenstates of the [A2/2uR? + V'] operator. Because
the present discussion is limited to L=0, such coupling
does not appear explicitly in the radial equations.

In the context of continuum states of atomic He and
H, it has been shown? that the adiabatic hyperspherical
coordinate R converges only slowly to the independent-
particle coordinate of the initial or final channel at large
R. In the present case, R—r,py as R— o with r,p
fixed. Since the slow convergence has noticeable effects
on e~ + H s-wave phase shifts, it is useful to examine
this effect also in the present context for comparison with
similar effects in the Born-Oppenheimer approximation.

At large r,p g We have
R32W ~®(R;Q)sin(kR +8,) , 45)
KR ~v/2u(e — Ep)oprlp +Hepurép.n) 2 /V ik

2
1 r
=v2u.pule—Ep) reD,H+_#;D-iD_

2 UepH TeDH

2
’
=kreD,H+%k__#i}.{__.e;D__+... . (46)
HeD,H TeD,H

For small values of k, in the energy ranges where a wave
treatment for nuclear motion is required, the error term
%k(peD/,ueD,H)(r}D /rep,u) is negligible owing to the
small factor y,p/p.pn. In the case of e~ +H phase
shifts, the reduced mass is unity and some error is intro-
duced for nonzero k. The comparable factor here is the
much smaller parameter ky,p/p.p,u. On the other hand,
at high energies, where a classical treatment of nuclear
motion is appropriate, we have (e —Ep)~ %yeD,Hv 2 and

2

UeD TeD

HeD,H

Tk ~ THepV @7

As long as v is much smaller than other characteristic ve-
locities or r,p y is quite large, this factor is again negligi-
ble.

In contrast, the Born-Oppenheimer approximation em-
ploys the asymptotic form

W~ ® sin(k’ rgp+95) , 48)

where k'=[2uyple—Ep)]'/?, and Ep is the incorrect
threshold energy of the Born-Oppenheimer theory. In
lowest order in r,p/7.p i and m,/my, we have from Egs.
(1c) (6), (7a), (7b), and (8) the result

memy

1
k’ ~k' _——— K
YHD ¥eD,H 2 mD(mH+mD) TeD,H

m,
“+ —k?eD,H'reD . (49)
mp

The last two terms on the right-hand side of Eq. (49)
represent corrections of order m,/my provided r,p y is
small. Note, however, that the second term increases
linearly with r,p i while the third term remains constant
as r,p y— . The comparable correction to the adiabatic
hyperspherical phase shift in Eq. (46) decreases as 7,p g
becomes infinite. For small R and moderate or small
values of r,p y, the errors in the Born-Oppenheimer ap-
proximation are negligible, but they are still larger than
the errors involved in the adiabatic hyperspherical ap-
proximation. For large r,p i or large k, the corrections
to the Born-Oppenheimer approximation are no longer
small, and consequently one must introduce translation
factors. Because the adiabatic hyperspherical phase con-
verges as 1/r,p g, the translation factors are not needed in
this case.
For large values of E such that k ~uyp, we have



2

k' k' 1 my
FHD ~K YeDH— 7Me |~ | VeDH
mH+mD
my
+m, m UTep H'TeD - (50)
H D

Upon setting 7,p y~vt and vf,p =V, we have for the
second and third terms of Eq. (50) the result

2
Lm e - vr +m e - uT, T,

-7 eD,H e eD,H ' TeD

mH+mD mH+mD

1 my 2 my
——5m, vit+m, |———— |V'Ip .

my+mp my+mp

(51)

The right-hand side is now recognized as just the transla-
tion factors of Bates and McCarrol. Again, we emphasize
that such factors are absent in the adiabatic hyperspheri-
cal approximation.

The prescription of treating the translation factors for
L =0 states that emerges from the adiabatic hyperspheri-
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cal approximation developed here is quite simple; first, ex-
press all wave functions in hyperspherical coordinates and
form the relevant radial derivatives holding the hyperan-
gles constant, and next, if desired, reexpress the wave
functions in conventional coordinates. The resulting
theory is then Galilean invariant. Our application of this
approach to the high-vibrational states of the HD* mole-
cule indicates that this prescription does indeed represent
significant improvement over the standard Born-
Oppenheimer approximation. Extension to other mole-
cules and nonzero rotational states could prove equally
fruitful.
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