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Elastic scattering of low-energy electrons by Ne, Ar, Kr, and Xe
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We treat low-energy electron scattering by atoms within a Kohn-Sham-type one-particle theory.
In applying this theory, all many-body effects involved in the projectile-target interaction are ab-
sorbed into a one-particle potential. Hence, one merely has to solve an elementary potential-
scattering problem. However, there are two crucial points to be observed in the construction of the
scattering potential. {1)The Kohn-Sham-type exchange-correlation potential must be formed by us-

ing correlation factors which are required to have certain asymptotic and integral properties. {2)
Since the scattering process is viewed as being quasistationary, the unbound projectile state must be
modified by a bell-jar-type envelope function to account for the effect of a finite residence time in
the target where the projectile causes a finite perturbation. During this time the entire system has to
be treated as consisting of N +1 indistinguishable electrons which in a Kohn-Sham-type theory are
described by only %+1 self-consistent one-particle states. Once the analytical forms of the correla-
tion factors and the envelope function have been chosen, the calculational procedure is completely
parameter-free. Although it is considerably simpler than well-established methods in this field, it
provides comparably good results on differential cross sections and scattering-induced polarizations
in a wide range of impact energies {5—100 eV).

I. INTRODUCTION

In a recent paper (hereafter referred to as I), Fritsche
et al. ' have shown that electron scattering by atoms can
consistently be treated by employing a Kohn-Sham-type
one-particle scheme. Within that approach exchange and
correlation is accounted for by introducing model pair
correlation functions which are subject to certain
representability conditions obeyed by the exact pair corre-
lation functions. The (N+1)-electron system consisting
of the projectile and the N-electron target is described
then by a set of N+1 one-particle equations where ex-
change and correlation is absorbed into a potential which
contains these model functions. The one-particle potential
thus constructed differs favorably from commonly used
local-density approximations in that it shares the virtues
of the latter but does not suffer from the obvious failure
in describing the proper asymptotic behavior for large
electron-nucleus separations. This property becomes par-
ticularly evident when one is dealing with limiting cases
such as hydrogen or negative ions. In the case of hydro-
gen, the effective one-particle potential reduces exactly to
that of the nuclear Coulomb potential as it should. On
the other hand, negative ions prove to be generally stable
when treated within that scheme. Moreover, as has been
shown by Fritsche and Gollisch, ' affinity energies turn
out to be in relatively good agreement with the experi-
rnent. It is particularly the latter result that has en-
couraged studies on the applicability of the new approach
to the (N+1)-electron problem of electron scattering by
atoms. An important point of this scheme resides in the
assumption that the projectile can, during its passage
through the atom, be viewed as being localized within the
target and that it is nondistinguishable from the N target

electrons in that state. The entire system can be treated
then by self-consistently solving N+1 one-particle equa-
tions as in atomic structure calculations. All many-body
effects involved in the action of the projectile on the tar-
get are thus adequately accounted for. The advantage
gained over other (N+1)-electron theories of scattering
consists in the fact that the perturbed target states are
iteratively recalculated within the self-consistency pro-
cedure so that one is definitely dealing with only N+1
states all the time. This is distinctly different from con-
ventional methods which are based on (in principle infi-
nite) expansions in terms of fixed bound and unbound tar-
get states describing the perturbed occupied states in the
presence of the projectile. (For a review of these methods
see, e.g., Burke and Williams and Callaway. ) Since the
actual perturbation is small and the convergence of these
expansions accordingly slow, the calculational procedure
is a relatively delicate one. In a straightforward approach,
one would need a large number of unbound states in the
expansions to mimic the perturbed states. To make the
calculation manageable one has to put up with certain in-
consistencies or auxiliary constructs, e.g., pseudostates
whose selection is not at all a trivial matter.

At first sight, our approach appears to be open to dis-
cussion as well, as the Kohn-Sham one-particle scheme
has only been proven to apply to ground states. We deli-
berately omit here discussing the problem as to what ex-
tent one is justified in applying this theory to the scatter-
ing problem which deals with excited (N+1)-electron
states. An extensive study on this subject will be pub-
lished else~here.

The most intriguing question to be dealt with is how
one is to treat the scattering process in a quasistationary
fashion although the actually occurring perturbation of
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the target clearly reflects the fact that there is only a finite
residence time of the projectile during which it can medi-

ate a finite effect on the target. It becomes particularly
obvious from our one-particle description of the scattering
process that this perturbational effect would be vanishing-

ly small if we were to assume the projectile in a stationary
one-particle state whose contribution to the effective po-
tential within the target would be of the order
(4n. /3)rett/V where reft is the effective target radius and
V the volume of the scattering chamber. Curiously, this
basic problem of scattering theory, i.e., the question of
how to choose the normalization of the projectile state, is
rarely addressed. In the present paper we adopt the plau-
sible view that the projectile is during some residence time
localized within a sphere of radius r,tt defined by the up-
permost occupied target state obtained within the self-
consistent calculation. Since the latter implies indistingui-
shability of the %+1 electrons involved, our assumption
just accounts for the fact that the incoming electron loses
its identity as it trespasses that sphere. Consequently, the
electron emerging from the atom after the scattering will

very likely be some other electron irrespective of whether
or not the energy is conserved in the process.

The method of determining the localization volume put
forward in I was much more involved than the one which
will be used here. Moreover, the former method led to
differential cross sections for collision energies below 20
eV which were in poor agreement with the experiments.
Hence, the progress achieved by the present paper in pro-
viding significantly better results is primarily connected
with a simpler and physically more adequate description
of the projectile localization. We have, in addition, intro-
duced a slightly different projectile envelope function
which allows a favorable modification of the long-range
behavior of the effective one-particle potential. Details on
this subject will be presented in Sec. II. Section III is en-
tirely devoted to results obtained for the scattering by Ne,
Ar, Kr, and Xe in the energy regime of 5—100 eV. In
Sec. IV we shall draw some conclusions from the im-
provements achieved and discuss possible further develop-
ment along the lines of the present paper.

and s =+1 denotes the two spin orientations of an elec-
tron. (If not differently stated, all quantities are given in
Hartree units. )

The potential U, (r) is a functional of the charge density

p, (r) and of the correlation factors f, ,(r', r). The latter
are connected with the pair correlation functions g, , (r', r)
through

g, ;(r', r) = 1 —f, ,(r', r)

and have the general properties

f„(r',r) =f„(r,r'),
f, ,(r', r) & 1,

(2a)

(2b)

f (r r)=1,
p, r', , r', r 3r'= .. .

f,;(r', r)~5, , 1/X, as
~

r —r'
~

~~,
where

X, = Ip, (r)d r .

(2c)

(2d)

(2e)

(3a)

where Z is the atomic number, and the nucleus is as-
sumed to be centered at ~=0; the classical Coulomb po-
tential

U, (r)=I, d r';
/r —r'/

and the exchange-correlation potential

(3b)

p, (r') 5f, ,-(r', r)
~r' —r

~
5p (r)

The equations (2d) are commonly referred to as "sum
rules. " (For more details see, e.g. , I.) The potential U, (r)
consists of three parts: the nuclear Coulomb potential of
the atomic scatterer

II. THEORY

As indicated in the foregoing section, we shall not dwell
here at any length on how to justify applying the Kohn-
Sham theory to the excited (%+1)-electron system
under study. We rather refer to the observation that a
simpleminded extension of this theory to, for example, x-

ray absorption of atoms (see Gollisch ) or to photoemis-
sion (see, e.g. , Noffke and Fritsche and Leschik et al. ~)

yields in many cases surprisingly good agreement with the
experiments.

Applying the Kohn-Sham scheme to the problem at
hand amounts to self-consistently solving S+ 1 one-
electron equations which read

(3c)

where 5f„(r',r)/5p, (r) is the functional derivative of
f, , (r', r) with respect to p, . For a detailed derivation of
(3c) see, e.g. , Fritsche and Gollisch. The functional
derivatives of the correlation factors can only be reduced
to siinple analytical expressions if the factors for s'&s are
assumed to be negligibly small for all r' and r and if the
true r', r dependence of f„(r',r) is approximated by

f (
~

r' —r
~
/A, (r)),

where A, (r) is determined by the sum rule (2d). For de-
tails on the derivation of

5f„(
~

r' —r
~
i&,(r))/5p, (r)

H, g;, (r) =e,,g;,(r),
where

H, = ——, V' + U, (r)

(la)

(lb)

the reader is referred to the paper by Gunnarsson et al. '

In cases where relativistic effects are non-negligible (as
for scattering by Kr and Xe), the Schrodinger-type equa-
tions (1) have to be replaced by the corresponding Dirac



33 ELASTIC SCA l IBRING OF LO%'-ENERGY ELECTRONS BY. . . 2307

equations. The form of the potential is not affected by
this. (See I for details. )

Following the arguments of I, we assume the correla-
tion factors to have the following approximate form:

2 —5/2

f, ,(r', r) =5„1+ (4)
A, (r)

where A, (r) is determined by requiring (4} to satisfy (2d).
The ansatz (4) represents a particular case of the form

f (
~

r' —r
~
/A, (r)) discussed above. Obviously, this ex-

pression conforms to the fundamental requirements
[2(b)—2(d)] to be satisfied by f;,(r', r}. The choice of a
Lorentzian to the —, power appears to be rather arbitrary.
We could just as well have chosen a Gaussian, for exam-
ple. Atomic structure calculations based on different
choices of this kind have shown, however, that key quan-
tities like p, (r) and the total energy are only slightly af-
fected by a change of the analytical form of
f„{~

r' —r
~
/A, (r)). This is a consequence of the fact

that the requirements 2(b)—2(d) represent relatively severe
constraints, in particular the sum rule (2d) which has to
be satisfied for any r. Compared to other possible
choices, the expression (4) offers some practical advan-

tages in determining A, (r} from (2d) and in evaluating
U„",(r). Moreover, this form of f {

~

r' —r
~
/A, (r)} has

proved to be particularly suited in atomic structure calcu-
lations with emphasis on negative ions. (See Fritsche and
Gollisch. ' }

Further, we set

p, (r) =p, (r) = —,
'
p(r) (5)

which applies to the case of an unpolarized projectile elec-
tron incident on a closed-shell atom.

In order to retain the separability of the Schrodinger
equation (la) we assume p(r) to be spherically symmetric

p(r}=p(r) . (6)

This represents, of course, an approximation only, since
the charge density

p(r)= g ~ g;, (r) ~'
$7$

(occupied )

(7)

is made up from contributions of slightly perturbed occu-
pied target states and from that of the unbound one-
particle state P„(r) describing the incident and scattered
electron

P„(r)=g;„(r)+g,„,(r) .

The charge contribution associated with the latter is inev-
itably nonspherical as a result of which the self-consistent
target charge density can no longer be spherically symme-
try. The property (6) of p(r) is ensured by forming the
spherical average of the actual charge density after each
iteration step. As in I, we allow for localization of the
projcctllc by choosing a plauslblc form of an cnvclopc
function whose half-width is given by some effective ra-
dius r,tt. We then multiply (8) by this envelope function
and use the resulting new unbound one-particle state 1(7„'(r)
to calculate its contribution to the total charge density. In

g„'(r) =A I exp[(r rgff)/tD]+—1 I 'f„(r), (10)

where A is again a normalization constant, and tz is
determined by the requirement that the radial derivatives
of g'„(r) and that of the uppermost occupied target state
P&(r) agree at r =r,tt. The latter radius is chosen to be
the classical turning point associated with the radial part
of g&(r).

(2) The localized projectile state (10) is subsequently
orthogonalized with respect to all target states so that the
total charge density can be formed according to (7).

(3) The exact functional derivatives of the correlation
factors in (3c) are calculated in complete analogy to the
method suggested by Gunnarsson et al. '0

(4) Because the correlation factor for unlike spins is ac-
cording to (4) assumed to vanish identically, U, (r) cannot
be expected to vary ~ 1/r for very large r. (Sm Williams
and von Barth. ") Nevertheless, U, (r) constructed with
the use of (4) displays for not too large distances an ap-
proximate 1/r" behavior as shown in Fig. 1. [The dashed
straight line refers to the long-range behavior of U, (r) as-
sociated with a Gaussian-like localization as used in I.]
We have forced U, (r) to obey an exact 1/r dependence
for large distances beyond the minimum in Fig. 1 by set-
ting r U, (r) equal to a constant as indicated by the dotted
line. This procedure has proved to be possible and unam-
biguous in all cases.

The modifications (2) and (3) do not give rise to sizable
changes of the differential cross sections within the energy
regime of 5—100 eV, whereas modification (4) slightly af-
fects the results below 10 cV.

Except for the above four amendments, the calculation-
al scheme remains the same as that used in I. Once the
self-consistent scattering potential U, (r) has been deter-
mined, the direct scattering amplitude f and the spin-flip
amplitude g can be obtained by employing the partial-

I the envelope function was assumed to be a Gaussian so
that g'„(r) attained the form

ij'7„'(r) =A exp[ —,
'

(r—/r,ff) ]P„(r),
where the constant A ensured proper normalization

f i
g„'(r)

i
d r =1 .

The method used in determining r,ff was a relatively
clumsy and in some cases unreliable one. Moreover, the
envelope function ought to preserve the original form of
P„'(r) inside the target as best as possible which in retros-
pect makes a Gaussian a relatively unfavorable choice.
The localization described by (9) was thought to automati-
cally ensure a correct asymptotic behavior of U, (r) for
large r Ac. loser study preceding the present work re-
vealed, however, that the long-tail behavior of U, (r) was
cc 1/r rather than oc 1/r . Finally, it had been over-
looked that f'„(r) is no longer orthogonal to the target
states as a result of which p(r) is not given exactly by (7)
any more. The shortcomings of the previous method in
describing the projectile localization can be entirely re-
moved by proceeding along the following lines.

(1) The Gaussian is replaced by a Fermi distribution
function. Hence, P„'(r) attains the form
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FIG. 1. Long-range behavior of the scattering potential V(r).
Since the r dependence of the true potential is ~ 1/r~ we have

plotted —r4V(r): ———,Fritsche et al. (Ref. 1); this
work. For distances beyond the minimum of the solid curve the

potential used in calculating the scattering amplitudes f and g
has been continued according to the dotted line.

wave method as described in I. From these two complex
functions one can readily derive the following quantities
of particular interest.

The differential cross section

~
= I& I'+ Ig I

'

the total cross section

atoms for impact energies ranging from 5 to 100 eV. To
ensure sufficient accuracy all calculations were carried out
by using partial waves up to a maximum angular momen-
turn of i=14. The overall agreement with the experi-
ments is very satisfactory considering the fact that the
calculations do not contain adjustable parameters. We
want to emphasize again that these calculations are based
on a fixed number of self-consistent one-particle states,
viz, , N target states plus one projectile state. Neverthe-
less, they cover a range of impact energies from well
below excitations of the target to way above the ionization
threshold. Toward lower impact energies the differential
cross section becomes, of course, increasingly sensitive to
possible peripheral departure of the scattering potential
from its true r dependence. Hence, the relatively good
agreement obtained lends some credit to the adequacy of
our method.

Although the contribution of the projectile state to the
total charge density varies it spatial dependence as the im-
pact energy goes up, the effect on r,~r is zero on the scale
of interest. Naturally, the radial derivative of P&(r} at
r =r,ff picks up that variation much more sensitively.
This is reflected in the energy dependence of tD shown in
Table I, where we have also compiled data on r,rr and the
total elastic cross section for the atoms studied.

In presenting our results on differential cross sections,
we have limited ourselves to including only one respective
example from other theoretical sources. We have chosen
two recent papers by McEachran and Stauffer" who use a
carefully crafted polarized orbital approximation which is
conceptually quite different from our approach and covers
essentially the same material on the same target atoms.
Our results are generally drawn with solid lines, those
referring to McEachran and Stauffer are dashed unless
differently stated.

TABLE I. Calculated values r,q~, tD, and total elastic cross
sections 0 (in atomic units) for impact energies c; of 5—100 eV.

and the Sherman function

fg fg-
lf I'+ lg I'

which describes the scattering-induced polarization of an

initially unpolarized electron beam. There are two further
quantities which have been of interest in connection with
recent triple-scattering experiments:

If I' —fg I'
I & I

'+
I

g'
I

and

fg'+f'g
lf I'+ lg I'

The quantities 5,T, U describe the change of the polariza-
tion components of a polarized electron beMn by the
scattering process (for details see, e.g., Kessler' }.

III. RESULTS

The method described in the preceding section has been

applied to electron scattering by Ne, Ar, Kr, and Xe

Kr

s& {eV)

5
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5
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20
50

100

5
10
30
60

100

jeff

0.7
0.7
0.7
0,7
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1.3
1.3
1.3
1.3

1.6
1.6
1.6
1.6
1.6

2. 1

2. 1

2.1

2.1

2.1

0.8
0.7
0.6
0.5
0.3

1.0
1.0
1.6
1.1
0.4

0.7
0.8
1.0
1.1
0.8

0.6
0.8
1.2
0.5
1.1

11.8
14.4
14.5
12.0
9.7

36.2
64.5
70.5
33.3
23.2

54.7
85.6
79.4
51.3
32.5

104.3
129.0
65.8
31.8
30.1
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Fig. 2 shows differential cross sections for Ne com-
pared with experimental results of Register and Traj-
mar, ' Brewer et aI. ,

' and VA'lliams and Crowe. ' For
impact energies above 20 eV these results are obviously
very well represented by our theory except for the deep
minimum at 50 eV around a scattering angle of 105'. For
lower energies our calculation tends to overestimate the
experimental values around the maximum at —55'.
Nevertheless, there is a striking improvement over the ear-
lier calculations in I which are shown with dash-dotted
lines. Hence, the departure of those curves from the ex-
perimental results does not primarily originate from as-
phericity affects as suggested in I but is mainly caused by
an inadequate description of the projectile localization.

B. Argon

Experimental results on scattering by Ar are available
from the works of Srivastava et al. ' and WiIliams and
Crowe. ' The differential cross sections are shown togeth-

er with the respective theoretical curves in Fig. 3. The re-
sults for 5 eV impact energy around the minimum at 30'
appear to favor neither of the two theories. However, un-

published results of Andrick and Bitch quoted by Bell
et al. ' as well as the R-matrix calculations of the latter
authors confirm our results within that range of scattering
angles. Also, the results for 10 eV [Fig. 3(b)] are clearly
in favor of our calculation. At higher energies, the experi-
mental values are mostly overestimated by the theory
within the entire range of scattering angles. This may be
due to the fact that the elastic differential cross section is
influenced by the presence of inelastic channels which has

not been accounted for in our calculation.

C. Krypton

Figure 4 presents the experimental results by Srivasta-
va, ' Jost, ' and Williams and Crowe, ' together with
those of the two theories. Again, around the first
minimum of the differential cross section at 5 eV the
theoretical curves depart from the experimental data in
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FIG. 2. Differential cross sections for elastic scattering of electrons by Ne atoms (in atomic units): (a) 5 eV, (b) 10 eV, {c)20 eV, (d)
50 eV, {e) 100 eV. Experiment: , Ref. 14; o, Ref. 15; &, Ref. 16. Theory:, present work; ———,McEachran and Stauffer
(Ref. 13); —- ——-, Fritsche et aI. {Ref. 1).
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FIG. 3. Differential cross sections for elastic scattering of electrons by Ar atoms (in atomic units): (a) 5 eV, (b) 10 eV, {c)20 eV, (d)
50 eV, (e) 100 eV. Experiment: 0, Ref 17; o, Ref. 16. Theory:, present work; ———,McEachran and Stauffer (Ref. 13).
The theoretical results of McEachran and Stauffer at 50 eV are not included because they coincide with the present results.

different ways. Surprisingly, the minimum around 75'
seen in the experimental data at 10 eV is clearly missing
in our theory which otherwise neatly follows the trend of
the observed angle dependence. At 20 and 50 eV our re-
sults agree slightly better with the measurements than
those of McEachran and Stauffer' yet generally confirm
our conjecture on the effect of overshooting the experi-
mental results.

As the atomic number of the scatterer becomes larger,
spin-orbit coupling gives rise to an ever increasing polari-
zation of the scattered (initially unpolarized) electron
beam. %'e have calculated the angle dependence of this
polarization for three impact energies. The results are
shown in Fig. 5 and compared with experimental data of
Beerlage et aI. and Schackert. ' At 10 and 20 eV the
calculations compare very satisfactorily with the observed
data. At higher energies discrepancies develop. Our
theory does not predict the large polarization effect

around 65' seen at 50 eV. Also, the large positive pclari-
zation around 45' found by Schackert ' is not confirmed.

D. Xenon

In this case we may again refer to measurements by
Jost' and by %illiams and Crowe. ' The experimental
and theoretical material is compiled in Fig. 6. Consider-
ably worse than in the ease of Ar and Kr, our calculations
deviate markedly from the data measured at 5 eV. A
comparison with the results of McEachran and Stauffer'
appears to suggest that there might be a slight advantage
of their theory in the regime of low impact energies. This
is not the case as follows from Fig. 6(b) showing the dif-
ferential cross section at 10 eV. Experiments by Jost'
clearly indicate that there is only one rninimurn around
115' close to that predicted by our theory. At 30 eV and
even more so at 50 eV (not shown in the figures) both cal-
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FIG. 4. Differential cross sections for elastic scattering of electrons by Kr atoms (in atomic units): {a)5 eV, (b) 10 eV, (c) 20 eV, (d)

50 eV, (e) 100 eV. Experiment: 0, Ref. 17; O, Ref. 19; X, Ref. 16. Theory:, present work; ———,McEachran and Stauffer
(Ref. 13).
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21. Theory:, this work.

culations yield practically identical results. At higher en-

ergies (30 eV and above) the angle dependence of the dif-
ferential cross section develops complicated structures
which makes an assessment of the theoretical results diffi-
cult if not impossible. The experimental situation is af-
fected by this as well. At 60 eV, for example, the mea-
surements by Jost' and those by williams and Crowe'
arrive in the range of 25'—100' at appreciably different re-
sults as can be seen from Fig. 6(d). When the impact en-

ergy is raised to 100 eV we find again good agreement
with the data of Jost' as regards the principal features of
the angular dependence. As in the case of Ar and Kr, the
absolute values obtained from theory are generally too
large.

Our results on the Sherman function at 50, 60, and 100
eV are shown in Fig. 7. Essential features of the experi-
ments by Berger et a/. , Klewer et ah. , and Schackert
are obviously well described by these curves. This applies
in particular to the sign and to the zeros of the measured
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FIG. 6. Differential cross sections for elastic scattering of electrons by Xe atoms (in atomic units): (a) 5 eV, (b) 10 eV, (c) 30 eV, (d)
60 eV, (e) 100 eV. Experiment: , Ref. 19; o, Ref. 16. Theory:, this cwork; ———,McEachran and Stauffer (Ref. 13).

angle dependence of S. Figures 8 and 9 present analogous
results on the T and U parameter. The calculated curves
show only moderate agreement with the respective mea-
surements of Berger. Still, there is an obvious one-to-
one correspondence between distinct structures seen in the

experiment and those predicted by theory.

IV. CONCLUSIONS

%e have shown that a simple Kohn-Sham-type theory
of electron scattering by noble-gas atoms is capable of sa-
tisfactorily describing the wealth of data provided by vari-
ous experimental groups. It appears to be particularly re-
warding that the Kohn-Sham theory retains its consider-
able predicting power in a field of application where it has
been expected to fail. In addition, our results on the

scattering-induced polarization lends strong support to
our method of accounting for relativistic effects by substi-
tuting Dirac-type equations for the one-particle
Schrodinger equations and by adequately including ex-
change in the presence of spin-orbit coupling. (Although
Strange et a/. have independently arrived at a similar
scheme, there is no exact one-to-one correspondence be-
tween their potential and ours. Whether the expression
given by these authors works similarly well in the case
considered here has not yet been shown. ) There is a num-
ber of obvious improvements the present method suggests
making. First of all, the correlation factors for electrons
of unlike spins have so far been assumed to vanish identi-
cally. It appears to be not too difficult, however, to go
beyond that present level by incorporating approximate
forms of these factors which conform to the sum rule (2d)
and ensure proper asymptotic behavior according to (2e).
In finding appropriate forms of these correlation factors it
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is certainly advisable to consult configuration-interaction
(CI) calculations for the systems in question. Work in
this direction is in progress. Furthermore, asphericity ef-
fects brought about by nonspherical contributions of the
projectile state to the total charge density should be ac-
counted for. Finally, since the presence of inelastic chan-
nels gives rise to modifications in the elastic channels, the
present theory should be extended accordingly.
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