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Probability conservation in theories of collisional ionization and detachment
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The semiclassical local-complex-potential theory has been widely used to describe detachment and
ionization in atom-atom and ion-atom collisions. However, it has been shown that the resulting for-
mulas do not conserve probability. In this paper, we show that the problem arises from the incon-
sistent treatment of the effects of interference, tunneling, and diffraction. A more complete theory
is based upon the close-coupling expansion, which leads to an infinite set of coupled equations. A
method for solving such sets of equations was developed in earlier work. Here we implement that
method using a new iterative numerical scheme, and we show that the iteration converges to results
in which probability is conserved.

I. INTRODUCTION

The theory of Penning ionization and associative ioni-
zation was developed by Nakamura' and Miller, 2 and then
carried further by Bieniek and Hickman and Morgner.
The theory has generally been very successful, both for
quantitative calculations of cross sections and for qualita-
tive interpretation of experimental measurements. ' A
particularly careful and detailed calculation on the He'-H
system was made by Morgner and Niehaus. They
showed that the theory was generally in accord with their
experimental observations, but at the same time, they no-
ticed a fact that they found rather disturbing: When the
total calculated ionization probability was added to the
calculated probability of survival of the initial excited
state, these quantities did not sum to unity. The
discrepancies were not large —their calculated total proba-
bilities varied between 0.96 and 1.05—but these discrepan-
cies demonstrated that the theory is not exact and that it
contains errors or inconsistencies which in this case
amount to a few percent.

In view of the very high precision of present experi-
ments, it is desirable to develop a more accurate theory
that does not contain such inconsistencies. The evidence
obtained by Morgner and Niehaus seemed to indicate that
the problem lay in the calculated cross sections for associ-
ative ionization, so they suggested that the discrepancy
might not appear in systems for which associative ioniza-
tion does not occur.

Electron detachment from negative ions is in some
ways quite similar to Penning ionization, and in certain
cases essentially the same theory can be used. In calcula-
tions on such systems, we have also found total probabili-
ties that do not sum to unity —we will later discuss a case
in which the total calculated probability turns out to be
0.65, in error by 35%, quite beyond reasonable expecta-
tions of a theory. This case does not involve associative
detachment, so the problem must be more general than
was previously thought. The first purpose of this paper is
to identify the source of the problem: we shall show that
the problem is inherent in the local-complex-potential ap-

proximation, and that it mainly affects the survival proba-
bility. The second purpose is to show that more accurate
(in fact, essentially exact) calculations can be made quite
easily.

II. SEMICLASSICAL THEORIES

The theory of detachment or ionization can be ex-
pressed either in a semiclassical framework or in a fully
quantum-mechanical framework. The semiclassical ap-
proach is more transparent (and computationally simpler)
and it displays very clearly the problem we want to dis-
cuss, so we shall use it exclusively. Taking the nuclei to
move on a classical trajectory R (t), we assume the follow-
ing properties of the electronic states.

(1) There is one discrete bound state interacting with a
continuum of free states.

(2) Transitions occur from bound to free and from free
to bound states, but direct free-to-free transitions are
unimportant.

(3) The coupling between bound and free states can be
represented "diabatically, " as an off-diagonal matrix ele-
ment of the electronic Hamiltonian. Nonadiabatic cou-
pling matrix elements ((bound ed/dR

~

free) as well as
( free

~
d /dR

~

free') ) are negligible.
Under these assumptions, denoting b i(t) as the proba-

bility ainplitude for finding the electron in the bound
state, and b,(t) as the amplitude for finding it in the free
state with energy e, then these coefficients obey the infin-
ite set of close-coupled equations,

Gf oo

imari
—b i(t) =h , i(t)b i(t) +f h i,(t)b, (t)pPe ,dt

where p, is the density of states in the continuum. Here
h i i is the energy of the bound state [the quantity
called V'{R(t)) in Penning ionization theory], ho o is the
lowest free state [V+(R(t))), e is the energy of the escap-
ing electron, h, ,=hoo+E and h l, is the matrix ele-
ment of the electronic Hamiltonian between the bound
state and the free state of energy e (Fig. 1).
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f
b ) (t)=c ) (t)exp —i f ho 0(t')dt'/A

0

f

b,(t) =c,(t)exp —i f boo(t')dt'/A
0

preserves this property, but changes the form of the equa-
tions to

d 00

iR—c )(t)=b(t)c )(t)+ h ),(t) c,(t)pPe,0
(4a)

iA—c,(t) =ac,(t)+h, )(t)c )(t),
dt ' (4b)

where h(t) =h ) )(t)—boo(t) is the energy gap between
the bound state and the lowest fro: state.

The first step in solving these equations is to relate c,( t)
to c,(t) using (4b):

c,(t) =(iA') ' f exp[ is(t —t')/R]—
0

y h, ,(t')c, (t')dt',

where we have used the initial condition c,(to) =0 Now.
if we have any approximation for c,(t), then evaluation
of this integral gives c,(t), and the probability that the
e1ectron escapes with energy e is

PD(e) =
i c,(t = ao )

i p, .

FIG. 1. Typical form of energy curves for (a) electron detach-
ment from negative ion, h ~ &(R) is the negative ion curve
(AS) and h00(R) is the neutral (AS); (b) Penning ionization,
V (R) is the excited state of the neutral (AS) and V+(R)

represents the ion ( AS)+.

III. CLASSICAL AND SEMICLASSICAL
LOCAL-COMPLEX-POTENTIAL APPROXIMATIONS

The local-complex-potentia1 approximation is obtained
by taking

rc,(t)=e p x—i J S*~~(& )dt /R''
0

where

I') )(t) =h(t)+5(t) ——I (t),
2

(8a)

)(t) [ +f ) b, (t) [ pgE=1 . (2)

A phase change

The above assumptions have been stated with more pre-
cision and discussed at length in Refs. 8(a) and 8(d).
These assumptions are widely accepted, and they underlie
all of the work considered here. ' ' Our purpose now is
to examine the approximations that have been used to
solve the resulting close-coupled equations (1).

Equations (1) have a Hermitian "matrix" on the right-
hand side (h &,——h,' )), so it follows that they conserve
probability

(8c)

I ( t) =2m
~

h ( a(,)(t) ~ pa(, ), (Sb)
t'

5(t)=9' f '
ppp

~

h ),(t)
~

2

h(t) —e

We refer to 5(t) i I (t)/2 as th—e local complex potential.
Its real part 5(t) corresponds to the "shift" of a resonance
state in a continuum, and its imaginary part 1(t) corre-
sponds to the width. ' In Ref. 8(e), we showed how this
formula follows from the close-coupled equations (1) us-
ing certain additional approximations.

Let us now put approximation (7) for c )(t) into Eq.
(5) for c,(t),

t
(t~) h, —1(t )exp —&(t' —t) —f g) )(t")dt" dt'

0 local

(10)

and evaluate the integral using the stationary-phase method, assuming 5(t) and I'(t) are much smaller than g(t). The
stationary-phase points t„(e)occur when

b.(t„(e))=e
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and the contribution of each stationary-phase region to the integral is

(ii{i) 'h i,(t„(e)) 2irii

dh(t„(e))
df

1/2 Jh,t„{e}
exp —e[t„(e)—t]— 8'(t")dt" —i—sgnn 'o

db(t„(e))
dt

Summing over the stationary-phase points and neglecting
interference between them, we obtain

IV. EXACT SOLUTION
TO THE CLOSE-COUPLED EQUATIONS

dr g {g)

t„{e}
)&exp —f, I (t")dt "/R

and of course

~
c,( ao )

~ p,=g Al (t„(e))

(12)
iA—c i(t)=h(t)c, (t)+ f 9'(t, t')c, (t')dt',

0

where

(14)

It turns oui to be surprisingly easy to obtain an essen-
tially exact solution to the close-coupled equations (4}.
Using (5) in (4a) and inverting the order of integration
over t' and e, we obtain a single integro-differential equa-
tion for c

i c,( )
i

=exp —f, I (t")dt"/I
0

(13)

(15)

We refer to Eqs. (12) and (13) as the classical local-
complex-potential formulas. It is not difficult to verify
that these equations exactly conserve probability. Howev-
er, they have other well-known defects: they do not
describe interference between transitions taking place on
incoming and outgoing parts of the trajectory, they do not
describe "classically forbidden" transitions to free states
with e outside the range of values of h(t), and they give
singular behavior in the electron-energy spectrum at those
values of e such that (dh/dt) ~; i, ~

——0.
These defects are easily remedied, as Miller showed

long ago. For the "allowed" values of e well away from
any extremum of d(t), one can use the full stationary-
phase result (11), and include interference effects when
summing over stationary-phase points t„(e).For "forbid-
den" values of e, distortion of the contour of t-integration
so that it passes through complex stationary-phase points
gives an exponentially decreasing probability of excitation
of such states. Finally a uniform Airy-function formula
properly describes the diffractive smoothing of the "rain-
bow" at the boundary between allowed and forbidden re-
gions of e. Alternatively, we may continue to use the lo-
cal approximation (7) and (8), but evaluate integral (5) ex-
actly by numerical quadrature. This last approach is
what we shall call the "semiclassical" local-complex-
potential method.

These methods correct the defects of the classical
local-complex-potential formula, but they create a
problem —probability is not conserved. The reason is ob-
vious: the quantum effects of interference, tunneling, and
diffraction are incorporated into the formula for c,(i); in
principle those phenomena must also have some conse-
quences for c i(t), but these consequences are being
neglected. This inconsistent treatment of c, and c
causes a violation of unitarity. Numerical results shown
in a later section all display this quite clearly.

If we now define 8'(t) by the formula

c,(t)=exp —i f 8'(t')dt'/fi
0

(16)

This equation can be solved by iteration:

@'"(&)=&(i)+f, S(t, t'}exp i f 5(r"}dr"/g dr', (18)

This iterative procedure was proposed in Ref. 8(e) and im-
plemented there and in Ref. 8(f), but only through first or-
der. In the present paper we carry the iterative procedure
to sufficiently high order to obtain convergence.

A converged 8'(r) must represent an exact solution to
Eq. (17};using (16) it must give an exact solution to the
integro-differential equation (14), and this together with
(15) must give an exact solution to the close-coupled equa-
tions (4}. Hence the probabilities calculated by this
method must sum to unity. For slow collisions, as was
shown in Ref. 8(d), the exact I'(t} approaches N'i, i(t),
but where 8'i~~ has discontinuous derivatives, 8'(t) has
smooth oscillations. In this way 5'(t) incorporates the ef-
fects that interference, tunneling, and diffraction have
upon c i(t}.

we find from (14}that 8'(t) obeys the integral equation

t
~(&)+f y(r i~t)exp i f @'(r")dt"/R dt'.

(17)
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V. MODEL AND CALCULAT IONAL METHODS

[E V(R—) E—b /R —]dt p

Results will be presented for the trajectory having E=4.0
eV (c.m. ) and 6= 1.6 bohrs.

The propagator 9'(t, t') is related to the coupling be-
tween bound and free states by Eq. (15). For these cou-
pling matrix elements we used a separable approximation
(i.e., we assumed that they all have the same R depen-
dence),

h i,(R)=g(R }V

For the R dependence we chose the form

(20a)

We shall present in detail a case we encountered while

examining the H -He collision system. In this case, the
local approximation and also the first-order approxima-
tion give unsatisfactory results, and higher-order calcula-
tions are needed.

The "input" to the calculation is the pair of functions
b, (t) and 9'(t, t') T.he energy gap b(R} was obtained us-

ing the calculation by Olson and Liu."'2 Specifically
b(R) =h I, i(R)—hp p(R), and each of these functions
was taken as follows: (i) For R & 6.0, h I I

——0.0,
hp, p=0.75 eV; (ii) for 0.75 &R &6.0, a spline fit to the
Hartree-Fock calculation by Olson and Liu was used; (iii)
for R & 0.75, hp p and h I I were taken tobe a;+b;/R
with a; and b; chosen so that this form matches the value
and the derivative of the spline functions at R =0.75; the
resulting h(R ) is shown in Fig. 2.

The trajectory function R (t) was calculated using an
average potential energy,

V(R) = i [h I i(R)+hp p(R)]

—
2 [h -1,-1(~ }+"p, p( ~ }]

with

with C=0.01, D= 12.0. As shown in Fig. 3, this quantity
is similar to corresponding quantities we had obtained in
earlier papers using square-well models, but the clean ana-
lytic form (21) greatly simplifies the calculations. Using
(21) in (15), we obtain

9'(r, r') =g(R(r))g(R(t'))9'(r r') „—
where

9'(r) =(C/if&) f eI' exp[ (D+i—r/A)e]de

=( iCm—'' /2R)exp[ —', i ta—n '(r/Dfi)]

X (D'+ +/+)

(22a)

(22b)

(22c)

(the substitution e=x reduces the integral to a standard
form). Computations are further simplified by introduc-
tion of a "reduced time" variable z, defined as

Z =Uot,

(2E/i )I/2

(23a)

(23b)

All of the basic equations can be rewritten using z instead
of t as the independent variable, and when this is done,
one finds that the energy dependence of most quantities is
made less strong. For example, the significant range of
the time integration depends upon the energy, but since z
is closely related to internuclear distance, the significant
range of integration over z is essentially independent of
energy.

Now given h(R}, g(R), and 9'(t t'), for each —value of
energy E and impact parameter b, the following computa-
tional procedure is used.

(1) R (z) is calculated by integration of the equation

below, except where indicated otherwise}. Now from Eq.
(15} one finds that V I, enters the theory only in the
combination

~

V i, ~
p„and for the e dependence of this

quantity we took

(21)

g(R) =A exp( —BR) (20b) =[ 1 —V(R ) /E b /R ]'—dz
(24)

with parameters 3=2.5, 8=0.3 (atomic units here and

square well

I I I

R ( Bohrs)

FIG. 2. The energy gap 5(R ). A spline fitting reproduces
the result of Olson and Liu for 0.75 ~ R & 6.0, and straightfor-
ward extrapolations extend it to smaller and larger r regions.
8fp is the turning point.

e (eV)

FIG. 3. f'=2.
~

V, & ~
2p,. Solid line: Analytic form (21).

Dotted line: square-well model defined in Ref. 8(d}, multiplied

by a constant such that the two forms agree in the limit of small

e. The two are similar in their e dependence, but the analytic

form greatly simplif ies the computations. (In the present calcu-

lations, we also took the magnitude of f' to be smaller than that

in earlier calculations. )



2298 M. L. DU AND J. B. DELOS 33

For 0&z&8.0, the result is fit by a spline. For z~ 8.0,
we take

R(z)=[b +(z+zg) ]' (25)

with z~ calculated by matching (25) to the spline fit.
Since R (z) is a symmetric function, it is now available for
all z.

(2) A function 4 (z) is calculated by integration

eo(z) = J*a(z')dz' . (26)

This is also fit to a spline for z & 8.0, and for z & 8.0 it is
taken to be

4 (z) =«Ii (8.0)+(z —8.0)b( oo ) . (27)

Since 4& (z) is an antisymmetric function, it is available
for all z.

(3) I' "(z) is computed by integration of the equation

s —z

8'"(z)=rWR(z))+g(R(z)) J 9'(z/uo)g(R(z —z)}exp[(i/uo)[4 (z) —4 (z —z)j)dz/uo . (28)

A file is built containing 401 values of 8'" for evenly

spaced values of z from z= —12.0 to 18.0. The step size
for the integration is chosen such that there would be at
least 10 points in each oscillation of the exponential in Eq.
(28}, and ten points in the region where 9(z} is rapidly
changing.

(4) Now the function 4'(z) is computed by integration
of the equation

e'(z) =j e'"(z'}dz . (29)—12.0

This is tabulated at the same set of 401 points, and then a
spline fit is used for interpolation.

(5) The function gr' ' is computed by integration of Eq.
(28), with 4' replacing 4 . This procedure is iterated un-

til satisfactory convergence is obtained. In the present
case (which is one of the worst we have come across) the
fourth iteration gives excellent results.

(6) From the final 8'(z), c,(z) is calculated by integra-
tion of a differential equation derived from Eq. (16):

-2 — Real

Q -4

er

l

suit has discontinuous derivatives at the points where the
discrete state crosses into the continuuin, but the first-
order and exact results show smooth oscillations in these
regions.

In Table I we present the total detachment probability
and the survival probability as calculated by the local ap-

dc, (z) = —i N'(z)c i(z)/uo . (30)

We take P, =
~

c i(z=18.0)
~

. To obtain the electron en-

ergy spectrum, we define

-8
—

1

(a)
I

0
z (Bohrs)

I

5

c,'(z) =c,(z)p,'~ exp(i'/up) .

This quantity is calculated by integration of

(31)

dc,'(z) = —i(
~

V ~,, ~'p, )' g(R(z))e 'c i(z)/uo
Z

Imaginary
C}

which is derived from Eq. (4b). Then
PD

~
c,'(z=18.0}

~
. A fourth-order Runge-Kutta

method is used for these integrations.

VI. RESULTS

-6
-10

(b)

'1 t
\

I\, I
Local ~

0
z (Bohrs)

l

10

Figures 4(a) and 4(b) show, respectively, the real and
imaginary parts of 8'(t), comparing the local, first-order,
and converged (fourth-order) results. Convergence is es-
tablished partly by the fact that the third- and fourth-
order functions differ by less than the thickness of the line
in the figures. As was found in earlier work, the local re-

FIG. 4. 8'(z )—h(z): fourth order ( ); first order
( ———); local approximation ( ). The "local approxima-
tion" has sharp corners at the points where the bound-state
curve crosses into the continuum. The "first order" and "fourth
order" are smoother than the local approximation and they os-
ci11ate about it. The fourth order can be regarded as the "exact"
solution of Eq. (17).
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TABLE I. Survival and detachment probabilities and their
sum. The total probability in the last column shows clearly the
convergence of the iteration method. Note also that in all cases
the detachment probability is more accurate than the survival
probability.

50—

Local approximation
First order
Second order
Third order
Fourth order

0.4849
0.5461
0.5703
0.5870
0.5890

I's

0.1720
0.1819
0.3965
0.4344
0.4128

I'a+Ps

0.6569
0.7280
0.9668
1.0214
1.0018

ZO-

Corrected
first order 0.5461 0.4539 1.0000

proximation and in each order of the iterative procedure.
One sees that for the local approximation these quantities
sum to 0.66 instead of 1.0. Convergence of this sum to
unity in the iterative calculation is clearly displayed.
Most interesting is the fact that the greatest error is in the
survival probability —the local result is almost 2 —, times
too small, and the first-order result is scarcely better. The
detachment probability is more respectable —the local re-
sult is in error by 0.1 and the first-order result by 0.04 out
of 0.59. This suggests that reasonable results can be ob-
tained using less computer time by accepting the first-
order calculation for the detachment probability, and set-
ting the survival probability to 1 PD. This —"corrected
first-order" result is also shown in the Table I.

The (doubly differential) electron-energy spectrum is
shown in Fig. 5. One finds that the local and first-order
approximations reproduce quite well the shape of the en-

ergy spectrum, but they give a magnitude that is some-
what small, as already found in Table I.

VII. SUMMARY AND CONCLUSION

The failure of probability conservation is a general
feature of semiclassical local-complex-potential theories of
detachment and ionization. The problem arises because
the quantum effects such as interference, tunneling, and
diffraction are included in the calculation of the
detached-electron-energy spectrum, but they are ignored
in the calculation of the survival probability. Because of
this inconsistency, the total detachment and survival
probabilities do not sum to unity.

0 I

I.O

I

l.20.20 04 0.6 0.8
e (eV)

FIG. 5. The detached-electron-energy spectrum calculated by
fourth order ( ), first order ( ———), and local approxima-
tion ( ). These are "doubly differential" spectra, associated
with a specific trajectory having E=4 eV, b=1.6 bohrs. The
curves have similar shapes, but the local approximation is about
20% smaller than the exact (fourth-order) result. The first-
order result generally lies between them.
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Ionization and detachment can be described more com-
pletely by an infinite set of close-coupled equations. We
have developed an iterative method that gives an essential-
ly exact solution to this set of equations, and results of
this method have been presented for a case that arises in
the H -He system.

In most of the cases we have studied, we have found
that the detachment probability calculated from the local
approximation is reasonably accurate, and the error is al-
most entirely in the survival probability. Therefore the
simplest way to correct the problem is to compute I'~ by
the local approximation and set I'q ——1 —I'~. On the other
hand, if accuracy is important, then the iterative calcula-
tion of 8'(t) is necessary. Another method, intermediate
in difficulty and accuracy, is to calculate 8'(t) to first or-
der, and then adjust the survival probability if necessary.
%e have used this last approach in calculations on the
H -He system that will be reported in a future publica-
tion.
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