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The quasiparticle treatment of the electron-hydrogen problem performed in a recent publication is

extended. It is sho~n that the characteristic polarization effect is essentially contained in the third-

order quasi-Born approximation of the effective interaction, i.e., in an order which has not been con-

sidered in the aforementioned investigation. Instead of incorporating the corresponding contribu-

tions exactly, phenomenological polarization potentials proposed in the literature are used in the

present calculations. %'ith an adequate choice of the cutoff parameter in these expressions, almost

perfect agreement between theory and experiment is achieved. The dependence on this parameter is

studied. Comparison of our method with other procedures is being made.

I. INTRODUCTION

Recently it has been shown that systems of integral
equations with Faddeev-type coupling, which have been
used primarily in the three-nucleon problem, also
represent a promising tool for treating low-energy
electron-hydrogen collisions. ' The quasiparticle formal-
ism ' in particular, developed by Alt, Grassberger, and
Sandhas (AGS), turned out to be most adequate in this
context, for the effective potentials occurring in this ap-
proach can be determined by means of a Born-like expan-
sion. This is particularly relevant in the Coulomb case,
where the usual separable approximation techniques of
short-range theory fail. s

In Ref. 1 the two lowest orders of the quasi-Born ex-
pansion, denoted as zeroth- and first-order quasi-Born ap-
proximations (O.QBA and 1.QBA), have been taken into
account. Going up to this order is known to lead in the
nuclear case to rather accurate results. ' In the electron-
hydrogen problem passable agreement between theory and
experiment has been achieved for large scattering angles
only. Remarkable differences, however, showed up in for-
ward direction.

These properties are qualitatively understandable. Due
to the highly symmetric coupling of the equations em-
ployed, the Pauli principle is incorporated in a reliable
way. Hence, in the backward direction, where Pauli ex-
change terms play an important role, good results are to
be expected. For small angles another effect homes
more essential, namely the virtual excitation of the hydro-
gen target into an infinity of bound states and into the
electron-proton continuum. This long-ranged polarization
effect, which is responsible for the pronounced forward
peak, ' is practically not contained in O.QBA and
1.QBA.

It is the third-order quasi-Born approximation where
such contributions essentially show up. %'ith some addi-
tional approximations the corresponding terms, in fact,
take the form derived in conventional approaches for the
polarization effect. ' Hence, in order to reduce the

discrepancies mentioned, the 3.QBA should be taken into
account. To do this exactly would be an extremely com-
plicated task. We therefore replace the correct expres-
sions by simple phenomenological polarization potentials
suggested in the literature, ' which depend on a cutoff pa-
rameter.

Some general comments on our method may be helpful.
In integral-equation approaches based on single (or less
symmetrically coupled) equations, the polarization effect,
which concerns the nonexchange terms only, can easily be
taken care of. But the incorporation of the Pauli principle
is a nontrivial task. Just the opposite is true within the
Faddeev formalism. There, the characteristic symmetry
of the coupled equations implies that the Pauli principle
can be built in naturally. The treatment of the polariza-
tion effect, however, is less evident. Our present approach
overcomes this complication. It, indeed, allows the taking
into account of both effects in a satisfactory way.

In what follows these statements will be substantiated
in detail for the differential cross section belout the first
excitation threshold. In Sec. II the formal aspects of the
problem are discussed. Our numerical results are given in
Sec. III. In particular, we show that almost perfect agree-
ment between theory and experiment is achieved when
adding to the effective interaction of Ref. 1 the above-
mentioned phenomenological polarization potentials with
optimized cutoff parameter. The sensitivity on this pa-
rameter is studied. Furthermore, we compare our results
with those obtained by means of alternative methods.

II. FORMALISM

The quasiparticle approach, specialized to the electron-
hydrogen problem, has been described in detail in Ref. l.
Hence, we can restrict ourselves to those of its aspects
which are of relevance in the present context.

Adequate off-shell extensions Wtt (ktt, ka) of the
ele:tron-hydrogen scattering amplitudes satisfy the exact
set of relations
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Wti, (kIt, k }=Wti (kp, k )

+ g I d3k„" &p„(kp, k'„')

Xb,„(k„")Wr (k„",k ) (2.1)

(2.S)

(2.9)Hp,' Pg——,'+ +5tt„5r (xtt I Go T'„Gp
I
x ),

Hp'=P p", + +5p„5„p (Xtil GoT'rGoT,'Go IX ),
which, considered as a matrix equation, evidently shows
the structure of the two-body Lippmann-Schwinger equa-
tion. The effective potentials occurring here are exactly
given by

&n"=&a'+ X 5tt 5r&~5»

(2.10)

~p (kti k }=&ktil &PI GoUti Go I
a& lk &

with Uti being defined by the set of coupled AGS equa-
tions

3

Utt, =5tt Go '+ g 5tt„T'yGoUr
@=1

(2.3}

In order to obtain these relations, the electrons had to
be considered as distinguishable particles e& and eq. The
electron-proton and the electron-electron subsystems
(eip), (ezp), and ( eie2) are denoted by a (P or y) =I, 2,
and 3, respectively. As usual these indices also label the
corresponding two-fragment channels, and k (kti or k„)
are the relative momenta between the fragments. The free
three-particle resolvent is given by Gp, and 5ti ——(1—5ti )
represents the anti-Kronecker symbol.

The essential step in deriving the effective two-body
equations (2.1}is the splitting

(2.4)

of the three subsystem transition operators Tr. One stan-
dard way of constructing such decompositions consists in
decomposing first the subsystem potentials according to

v, = lx, )x„(x„l+v,'.
In Ref. 1, the form factor

I X„)has been chosen as

(2.5)

(2.6}

with
I g„) being the eigenfunction of the two-body

Lipptnann-Schwinger (LS) kernel, which belongs to the
respective biggest eigenvalue rir. This provides

I y ) =
I xr ) and (y I

= (xr I
for the form factors in (2.4).

Since
I gr ) is normalized to unity, we have

b,r=krl(I —gr) for the propagator. The rest amplitude
Tr in the above decomposition satisfies the two-body
operator LS equation

Tq ——Vy+ VyGpTy (2.7)

For y = 1, 2, the Sturmian functions
I fr ) are related to

the hydrogen ground state. The separable term in the
splitting (2.4) thus represents the corresponding bound-
state pole behavior of Tr. For energies below the first ex-
citation threshold, the rest Tr, therefore, can be expected
to be fairly small, and the same should be true for y=3.
This suggests solving (2.3) by iteration, a rocedure lead-
ing to the quasi-Born approximations g, of the effec-
tive potential (2.2). Up to the order n =3, these approxi-
rnations are given by

x &xp I
GoT„'GoT,'GoT'„Go

I xa& .

1
GoTiGo —GoTiGo —

I yi& &yi I =GiQi —Goz~E z —Ej

(2.13}

Here Q, is the projection onto the whole spectrum with
the exception of the ground state. This shows that for
such energies &» contains essentially a contribution of
the form

x(1(,„l(v,+v, ) Iy, ), (2.14)

where
I g,„)denotes the bound (and continuum) states in

subsystem 1, and
I 1(» ) has been abbreviated as before by

I f, ). This expression evidently is of the conventional
form of the polarization potential derived in other ap-
proaches. '3

Let us add some comments. In the above argurnenta-
tion we have fully ignored the 2.QBA, and only part of
the 3.QBA has been taken into account in &». Further-
more, we have replaced ( T2+Tq) by ( Vz+ Vi) and then
by ( Vz+ Vi). Moreover, as mentioned already, P"ii(z)
approaches P»(z} only close to the energy shell. Inspec-
tion of the neglected terms, however, indicates that this is

(2.11}

In Ref. 1 only the O.QBA and the 1.QBA potentials
P"It ' and P ti,', respectively, have been taken into account,
with T'„being approximated additionally by Vr. The
discrepancies between theory and experiment found in this
reference, however, indicate that important contributions
to the effective potential are contained in higher orders.
Indeed, as we will see, the essential effect of target polari-
zability shows up just in the 3.QBA elastic potential.

Let ei be the incoming electron. Then in &'ii' a term

~» = &Xi I Go(T2+ T'i)GoTiGo(T2+ Ti }Go
I Xi & ~

(2.12)

occurs, where T'i represents the rest-transition operator of
the (e2,p) subsystem, which still contains all excited tar-
get states, including the continuum. Hence, (2.12) plays
the role of a polarization potential. To exhibit this point
more clearly, we recall that, close to the ground-state pole,
we have'
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justified. In fact, some of the terms omitted are governed

by overlap integrals between differing Sturmian functions
which, according to the considerations of Refs. S and 16,
should be negligible even if these functions do not belong
to the same subsystem. The other neglected contributions
are similar to lower-order terms, being multiplied, howev-
er, by factors which are small due to the smallness of the
electric coupling constant. Of course, detailed estimates
would be necessary to rigorously confirm these argu-
ments, a task far beyond the scope of the present investi-
gations.

However, there is no need to go through such details, as
the only conclusion we draw from the present considera-
tions ts that an essential part of the dominant polarization
effect is contained in the 3.QBA term (2.12) which, there-
fore, should be added to the effective potential used in
Ref. 1. To compute P"~, or even the simplified form P"~,

is of course not an easy task. But, in the energy region
below the first excitation threshold, where the adiabatic
approximation ought to be justified, simple phenomeno-
logical polarization potentials proposed in the literature'
may be used instead of (2.12) or (2.14). In the calculations
presented in the following we have chosen

Wt i'(ri ) = —al2(r I+d~)' (2.1S)
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FIG. 1. Differential cross section at laboratory energy
E =8.7 eV for elastic electron-hydrogen scattering in 1.QBA
(dashed line) and after having incorporated the polarization po-
tential 7 ~' (solid line). The experimental data are taken from
Ref. 7.
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FIG. 3. Same as in Fig. 1, but for E =2.2 eV.



ELECTRON-HYDROQEN QUASIPARTICLE CALCULATIONS. . .

III. RESULTS

We have solved the integral equations (2.1), after sym-

metrization and partial wave decomposition, in the way
described in Ref. 1. But now, the polarization potentials
(2.15) or (2.16},which in momentum space read

y pl(k 1 )
&exp( —

I

k' —k
~
d}

16md
(3.1)

drogen target, i.e., for large values af ri, both potentials
show the asymptotic behavior —al2r, which, in adiabat-
ic approximation, follows rigorously from (2.14). Here
a=4.5a0, with a0 the Bohr radius, denotes the dipole po-
larizability of the target, and d is a cutoff parameter (see
below}.

curves are obtained when using & instead of P ', but
the optimal choices of the parameter are d =1.36 for both
E=8.7 and 4.9 eV and d =1.04 for E=2.2 eV. In-
clusion of the polarization effect, hence, yields a remark-
able improvement over the 1.QBA results, leading to al-
most perfect agreement between theory and experiment.

This improvement becomes particularly evident by in-

spection of the singlet ('5L ) and triplet ( 5L ) phase shifts
obtained in different approximatians or approaches. In
Tables I—III the O.QBA and the 1.QBA results for L =0,
1, and 2 are compared with those obtained after having
included P ' and P" . Moreover, comparison is made
with variational results, which usually are considered to
be most accurate.

In Table IV we campare our L =3 phase shifts with
variational results, 9 and for L =3, 4, and 5 with the 51
provided by the asymptotic formula'

(k', k) =-p2, a(3 —
~

k' —k j d)exp( —
[
k' —k

~
d) n.ak

(2L +3)(2L + 1)(2L —1)
(3.3)

~d~ (tr cI~orsr)
('I

P.4-,& I'.

ll I

~ 1

s I I

1l &
~

2.0-

1.6-
d =1.7
a =1.8

E = 8.7eV

(3.2}

have been added to the first-order quasi-Born approxima-
tion of the effective potential.

Figs. 1—3 show the electron-hydrogen differential cross
sections for laboratory energies E =8.7, 4.9, and 2.2 eV,
respectively. The dashed curves are the 1.QBA calcula-
tians of Ref. 1, the solid curves show the results obtained
after having incorporated P" '(k', k). The d parameter
has been chosen to provide an optimal fit to the experi-
mental data. In Figs. 1 and 2 this has been achieved for
d =1.80 and in Fig. 3 for d =1.53. Practically the same

2.2-
I(ii allsr)

E - 2.2 eY

20-

For increasing L the difference between singlet and triplet
phase shifts evidently vanishes. Furthermore, it turns out
that '5l and 355 fairly agree with the phase shift given by
Eq. (3.3). For L &5 the 5L provided by this formula,
therefore, have been used in computing the cross sections
with inclusion of the polarization effect. The number of
phase shifts taken into account has been increased until
the partial-wave series remained stable.

As mentioned, the cutoff parameter d has been chosen
to yield an optimal least-squares fit to the experimental
cross sections. For E =8.7 eV we faund d = 1.80. In or-
der to demonstrate the dependence on this parameter, the
cross sections obtained for different values of d are shown
in Fig. 4.
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FIG. 4. Solid curve ( d = 1.80) and experimental data of Fig.

1 compared ~ith cross sections obtained for different values of
the cutoff parameter d.

FIG. 5. Solid curve (d = 1.S3) and experimental data of Fig.
3 compared arith cross section obtained for d = 1.80.
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TABLE I. Singlet and triplet elastic electron-hydrogen phase shifts for L =0, 1, and 2 at F. =8.7 eV.

O.QBA
I.QBA
P1 (d =1.80)
P2 (d =1~ 36)
variational

'Reference 8.

'&o

0.7445
0.7126
1.1011
0.9981
0.886

35

0.6231
1.3319
1.3929
1.3954
1.643

—0.7548
—0.2682
—0.1618
—0.1587
—0.004

3$

0.2417
0.3785
0.3792
0.427

—0.1845
—0.0083

0.0397
0.0417
0.0745

3$

0.0309
0.0805
0.0826
0.0697

TABLE II. Singlet and triplet elastic electron-hydrogen phase shifts for L =0, 1, and 2 at E =4.9
eV.

O.QBA
1.QBA
P1 (d =1.80)
P2 (d =1.36)
variational'

'Reference 8.

1.005S

0.9642
1.3774
1.2786
1.041

3Q

1.3068
1.7834
1.8432
1.8457
1.9329

—0.4631
—0.1679
—0.0858
—0.0829
—0.009

3$

0.1829
0.3074
0.3103
0.3412

—0.0865
—0.0066

0.0264
0.0275
0.0383

0.0130
0.0471
0.0483
0.0424

TABLE III. Singlet and triplet elastic electron-hydrogen phase shifts for I =0, 1, and 2 at E =2.2

eV.

O.QBA
1.QBA
P1 (d =1.53)
P2 (d =1.04)
variational'

'Reference 8.

1.3993
1.3373
1.9883
2.0212
1.4146

3$

1.9130
2.2082
2.2714
2.2771
2.2938

—0.2133
—0.0749
—0.0109
—0.0036

0,0100

3$

0.0857
0.1874
0.2030
0.1872

—0.0207
—0.0019

0.0166
0.0174
0.0183

3g

0.0028
0.0216
0.0224
0.0198

TABLE IV. Singlet and triplet elastic electron-hydrogen phase shifts for L =3, 4, and 5 at E =8.7
eV.

P1 {d=1.80)
P2 {d=1.36)
variational'
O'Malleyb

'Reference 8.
Reference 17.

0.0231
0.0237
0.0259

0.0287

3$

0.0256
0.0263
0.0263

0.011S

0.0118

0.0131

3$

0.0115
0.0118

0.0064
0.0065

0.0070

3$

0.0064
0.0064

TABLE V. Total cross sections for elastic electron-hydrogen scattering in O.QBA, 1.QBA, and with
the two different polarization potentials, as compared with some close-coupling results (Ref. 12), the
SEA results (Ref. 18), and variational results (Refs. 8 and 9).

E (eV)

2.2
4.9
8.7

O.QBA

23.56
11.57
4.80

1.QBA

18.54
10.90
6.25

Pl
18.197
12.881
8.029

P2

18.271
12.786
7.908

1s-2p

11.93
7.85

17.5

6.74

variational
(S,P,D,F)

18.65
12.27
8.20
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It is a remarkable fact that the optimal value of d
turned out to be energy independent in the region, where
the polarization effect is particularly dominant, namely
for E =8.7 and 4.9 eV. At lower energies, however, d
had to be reduced in order to get the best fit. Since for
E =2.2 eV the polarization effect is no longer most im-

portant, this probably means that the modification of d
serves to cure inaccuracies of the other contributions to
the effective potential. We therefore show in Fig. 5 beside
the solid curve of Fig. 3, calculated with d =1.53, the re-
sult obtained without changing d, i.e., by taking d =1.80.
It turns out that, under the assumption of energy indepen-
dence of P ', a reasonable fit is still achieved.

In Table V we present total cross sections computed in
our different approximations using the above best fit
values of d. For comparison, close-coupling calculations,
which include the polarizability by means of a 2p pseudo-

state, ' and cross sections found in static exchange ap-
proximation (SEA) are shown. ' Moreover, variational re-
sults ' are given. The remarkable agreement of our re-
sults with the latter should be emphasized.
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