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For a study of the rotational and the vibrational motions of nonrigid molecular systems in terms
of differential geometry, quantum molecular dynamics is set up without using the Eckart frame.
The vibrational motions turn out to induce on the internal space a "gauge" field attached to the ro-
tational motions. A method of obtaining the internal Hamiltonian for nonrigid molecules is present-
ed. The space of internal wave functions on which the internal Hamiltonian acts is associated with

2
the space of wave functions that are simultaneous eigenfunctions of P and 2, where P and J denote
the total linear momentum operator and the total angular momentum operator, respectively. The
internal Hamiltonian to be obtained shows that the internal motions are coupled with the gauge
field.

I. INTRODUCTION

Recently, quantum-mechanical treatments of chemical
reaction dynamics have received much attention, and the
use of the Eckart frame for the separation of the collec-
tive motions from the internal motion of the reaction sys-
tem has been one of the guiding principles in this direc-
tion of research. ' ' Here, the collective motions of the
system mean the translational and the rotational motions
of the system. The theoretical developments on the separ-
ability of the collective motions from the internal motion
have been found also in the nonrigid molecular-dynamics
theory, " ' which calls attention to the concept of the
"structure" of molecular system using the Born-
Oppenheimer adiabatic approximation of the electronic
motion. ~7'~8

If a chemical reaction proceeds via the formation of a
series of reaction intermediates, then we can draw the pic-
ture of the reaction process as the successive formation of
the "supermolecules. " That is, the reaction intermediates
are in one-to-one correspondence with the supermolecules.
This suggests we treat the global dynamic processes of
chemical reaction as the sequential array of the molecular
dynamics of supermolecules.

The supermolecule as a reaction intermediate is usually
a transient species. It may finally decay into the continu-
um of the scattering states after a finite period of its life-
time. Consequently, the quantum mechanic of the super-
molecule is required to describe the large-amplitude vibra-
tional motions of nonrigid molecules. The treatment of
nonrigid molecules is based on the precise knowledge of
the large-amplitude potential, which is nowadays available
by virtue of the extensive developments in quantum chem-
istry. In keeping with the introduction of the large-
amplitude potential, new notions such as a coordinate-
dependent reduced mass or an angle-dependent reduced
moment of inertia are introduced, which depend on the
internal configuration of the nonrigid molecule.

In quantum chemistry of the reaction system isolated in
the uniform and isotropic medium, the conservation of
energy, momentum, and angular momentum is a funda-
mental property. In the usual treatments of reaction
dynamics using the Born-Oppenheimer adiabatic approxi-
mation, the nuclear motion should obey these conserva-
tion laws, because the system is invariant under the
translation and the rotation. As a consequence of the con-
servation laws, the degrees of freedom of the reaction sys-
tem reduces from 3N to n =3N —6, N being the number
of nuclei. The remaining n degrees of freedom serve to
describe the internal motion.

Usually, the internal motion is treated by using the
Eckart frame. By definition, the Eckart frame is a frame
relative to which the molecular motion is vibrational. A
differential geometry concerning the Eckart frame can be
found in a recent work of Iwai, ' according to which the
Eckart frame is determined for any configuration of the
molecule, but not uniquely.

The internal motion of reaction system is described by
the coordinate system which consists of the n-independent
configurational parameters q', q, . . . , q" such as bond
lengths, valence angles, angles between a bond and a plane
defined by three atoms, and angles between the two
planes. 4

The geometry of the internal space of variables
q', q, . . . , q" is concerned with the well-known Rieman-
nian metric known as the %ilson's 6 matrix. ' ' ' ' This
metric is considered as useful in the vicinity of the equili-
brium configuration of molecular systein, where small-
amplitude molecular vibrations may take place. ' ' But it
should be noted that the calculation of the 6 matrix is
straightforward in the molecular configuration space with
no recourse to the location of the equilibrium configura-
tion itself. Hence, it is not surprising that the G matrix is
used as the local metric separating the internal motion
from the collective motions of the molecular system.

In the present paper, the rotational and the vibrational
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motions of the molecular system are described in terms of
differential geometry. After setting up rotational and vi-
brational vectors in an exact way in Sec. II, quantum
molecular dynamics is established in Sec. III without us-
ing the Eckart frame. The vibrational vectors prove to in-
duce on the internal space a gauge field attached to the ro-
tational vectors. The internal motions are shown to be
coupled with the gauge field. Particularly, the internal
Hamiltonian is obtained under the condition of zero-total
linear and angular momentum in Sec. III, Eq. (3.7). An
example of the triatomic molecular system is examined in
Sec. IV.

It is to be noted that we do not treat the dynamic pro-
cesses in which the configuration takes linear form, or the
conversion of the handedness of the moving frame takes
place.

II. A GEOMETRIC SETTING

0
e&

0e

A. Rotations and vibrations

According to Guichardet and Iwai, ' the first config-
uration space is the set Xp of all n-ples x
=(xi,»2, . . . ,x~) with x E.E and x +xp if a&P.
We denote by (

~
) the standard inner product in Ei.

Since the translational motion can be separated out from
molecular dynamics, we have the center-of-mass (c.m. )

system X for inolecular configurations as

FIG. 1. Orientation of the moving frame je~,eq, eq} with
respect to the laboratory frame {e~,ei, eq } in terms of the Eu-
lerian angles.

where I is the tensor of inertia with respect to the c.m.
system,

x CXp g m~x~ =0 (2.1) I=pm [(» ~x ) —(x }(x ~], xeX. (2.5b)

X is always arcwise connected. In this space X, we let
act the group 6 =SO(3) of rotations

We note here that the angular velocity pi is contributed by
the total increment dx~,

gx =(gxi,g»2, . . . ,gx~), g CG, x 'EX ~ (2.2) dx =g(B» Idq')dq'+g(dx Id/')dP'. (2.6)

M =X/6 . (2.3)

This abstract manifold M is referred to as the internal

space. Associated with the group action of G =SO(3), a
moving frame (ei,ei, e&} in E is definei by

0 0 0e l
——ge &, e2 ——ger, e3 ——ge

If the molecular configurations are not linear, every orbit
of 6 can be topologically identified with the group space.
Then an individual molecular structure corresponds to a
point in the orbit space

m=e~au +e2m +e3m

where each co' is expressed as

(2.7a}

In differential geometry, the co is interpreted as a con-
nection form on X, where X is treated as a principal fiber
bundle ' over the base manifold M with structure group
6 =SO(3), and the Lie algebra of SO(3) is naturally iden-
tified with E '.

The connection form co on X is then expanded wjth
respect to the inoving frame in the form

where [e, ,e2,ei } is a laboratory frame (LF), and g&G.
With respect to LF, the orientation of the moving frame
is expressed in terms of the Eulerian angles
P', P,P =$,8,$ as shown in Fig. l. Any molecular con-
figuration can then be assigned by internal coordinates q'
relative to the moving frame and the Eulerian angles P'.

The rotational motion is defined uniquely once the
molecular structure gets "frozen. " The configuration of
the frozen molecule is represented by a point in M. But
the real molecule is "hot" and drys a curve in M because
of the vibrational motion.

Consider the angular velocity co defined by

~u gg adyb+gP ad i

with

(I 'g(m. x.-Xax.say ) } eb) =e.b,

(I 'g(m~»~XB»~Iraq') } e, )=P

(2.7b)

(2.8a)

(2.8b)

co =I g m ~x &g Xdx ~ &
(2.5a)

Thus the forms co' and dq' constitute a local basis of the
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space of one forms on X. We now define vector fields J,
and g; dual to these forms under the conditions

of x are denoted by x ', a = 1,2, 3, below.
First, we expand the rotational vectors J, in 8/Bx

co'(Jb ) =5'b, co'((;)=0,
dq'(J, )=0, dq'(g~) =5'& .

Then we have

(2.9)

(2.10)

Jg ——g +8, "8/Bx~
a b

=g(8, ~8/Bx ), (2.15a)

and

J, =g(8 '), 8/BP
b

(2.11a) with

8, =geboa"
b

(2.15b)

g, =a/aq' —g P, 'J. , (2.11b) Equation (2.12) is paired with e, along with Eq. (2.15a) to
give

where

g(8—i) ceb g b

a. '=(e. ~x Xeb'),

(2.11c) so that

(2.16a)

In differential geometry, the g; is called the horizontal
lift of the vector of the internal motion a/aq'. Since the
angular velocity ro vanishes for all g&, the g; are called the
vibrational vectors. Contrary to this, the vectors J, are
rotational. In fact, for each J„one has co(J, ) =e„which
means that J, is an infinitesimal rotation around e, .
Furthermore, we can prove

J=y„».Xa/ax.

8, =e.x~~. (2.16b)

(2.17a)

with

Second, the vibrational vectors g; are expanded in the
form

g, =g pa, 'a/ax. '

e1J1+e2~2 +3 J3 (2.12)

Ji ——csee sin/8/BP+ cosgB/88 —cote sin/8/Bg,

=g eb08 +b

b

(2.17b)

(2.13a)

J =csee costa/ay —s1nlpa/ae —cote costa/aq,

Equations (2.8b), (2.lib), (2.16a), and (2.17a) are combined
to yield

Ji ——8/8@ .

(2.13b)

(2.13c)

The latter expression of the rotational vectors are familiar
in the standard treatment of rotational motion of rigid ro-
tator molecules.

The vibration-rotation coupling appears in the commu-
tator of the vibrational vectors

—(gmpxpXBxp/Bq'(I ' (x Xeb ),

so that

(2.18a)

[g;,gj ]= QFJ'J, , —

with

F,,'= apj'/aq' ap, '/aq J . —

(2.14a)

(2.14b)

8; =Bx /Bq' I 'gmpxpX—Bxp/Bq' Xx
P

(2.18b)

This means that infinitesimal vibrations are coupled to
give rise to an infinitesimal rotation. This is the reason
for the nonseparability of the vibrational motion and the
rotational motion. Thus we may call (2.14a) the Coriolis
coupling. The I',J.

' can be interpreted as a gauge field on
M and the pj' as the gauge potential.

B. The Eckart condition

In this section we relate the rather abstract geometric
object J, aiid g; to the Eckart condition. The components

The expansion coefficients have the following dynamic
properties:

gm 8,~=0, (2.19a)

+ma; =0,

g m~x~ Xa; =0 .

(2.19b)

(2.19c)

Equations (2.19a) and (2.19b) result from Eqs. (2.16b) and
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(2.181), respectively, together with g m«x =0, and im-

ply that B, and B; are tangent to X. Equation (2.19c}
can be shown by pairing Eq. (2.181) with eb and using

the definition of the tensor of inertia. The latter Eqs.
(2.191) and (2.19c) mean that the B; satisfy the Eckart
condition.

The c m. system I is endowed with a metric through
the kinetic energy of the molecule,

ds =pm (dx Idx ) . (2.20)
a

With respect to this metric, the vectors B,«and B; can
be proved, after calculation, to satisfy

)=«. II I
eb)=I.b (2.21a)

(B IB& )=g (8 /Bq'Ir) /Bq') (Q— ,XB /Bq'II 'I g ~pXB»~/dqj)
a a a P

(2.211)

pm (B, IB; )=0. (2.21c) i ~ 0 isa ~b sab
b

(2.24b)

The matrix
I Ia&J I I

will be soon shown to be the inverse af
the Wilson's 6 matrix.

In a converse way ta the above, we can obtain dual vec-

tors s' and s' to 8, and 8~ . To do so, we decompose
8/» into the rotational and vibrational parts

g(B, Isb )=5,b, g(B, Is& )=0. (2.25)

Inserting Eq. (2.22) with Eqs. (2.23a) and (2.24a) in Eq.
(2.15a), we obtain

a/». =(a/». )...+(a/». )„,,
where, the rotational part is expanded in J„

(2.22) In the same way, from Eq. (2.17a) we have

g(B, Is'.)=o, g(B,«Is~.}=a,j. (2.26)

(a/». )...=ps' J. , (2.23a) It is now a matter af calculation to find out s'«and s'
fram Eqs. (2.16a) and (2.18a) in the form

with

a ~ 0 as a ~bs
b

and the vibrational part is expanded in g;,

(a/». }„,,=g s'g, ,

s'~ ——m (x Xeb II 'Ie, ),
(2.23b)

so that

s'«=(I 'e«)xm«x«,
(2.24a}

(2.27a}

(2.27b}

s «b Xm«(eb I
» /~q") —(» xeb'

I
I '

I g mzxzx»z/aq') a
k P

so that

(2.28a)

s'«=pm«(»«/Bq")a —I 'g grnrr»IrXB»Ir/Bq ak' Xm x
k k P

J

(2.28b)

where the matrix
I I

a'1
I I

is the inverse of
I I a;~ I I

given by
Eq. (2.211), satisfying

gs' =0, (2.291)

g a babj=5
k

(2.28c) gx xs' =o. (2.29c)

a =0, (2.29a)

It is easy to verify that the vectors s' and s' have the
same properties as Eq. (2.19),

The latter Eqs. (2.291}and (2.29c}shows that the s'«satis-
fy the condition of the Wilson's s vector. ' In a dual
manner to Eq. (2.21), the vectors s' and s' satisfy

g(l/m )(s' Isb )=(I '),b, (2.30a)
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g(1/m~)(s'
I

sj )=a'I, (2.30b)

g(1/m )(s' Is' )=0. (2.30c) g x.X(a/ax. )„,,=0 .

(2.31)

Since the s' satisfy the condition of the Wilson's s vector,
as shown in Eqs. (2.291) and (2.29c), the matrix Ila "11

satisfying Eq. (2.301) is nothing but the Wilson's G ma-

trix. 2'

We conclude this section by remarking that the vibra-

tional components (8/Bx~)„;b do not contribute to the an-

gular m.omentum J,

III. QUANTUM MECHANICS

This section deals with quantum mechanics of nonrigid
molecules on the basis of the geometric setting in Sec. II.

Consider the matrix element of the kinetic energy

operator T with respect to an arbitrary pair of basis func-
tions 4'i, say 4& and %i. Let Xc be the c.m. coordinates.
Then we have

(q'i
I
T

I
q'i) =(A /2) I (I/m)(8%" /BXc

I

M' /BXc)+g(1/m )(&0"/Bx 18''2' ) dV I 0';0 dV, (3.1a)

where m is the total mass,

Pl = P7l~, (3.11)

and the volume element d V is given by the standard 3N-form. Making full use of the results of Sec. II B, we have the in-
tegrand of Eq. (3.1a) in the form

g(1/m. )(~q'1/~x I~e'2/~x ) g(1 }b(J %1)(Jbp2)+peti(k, q'i)(kjq'2)
a, b

The volume element takes the form

dV=J~„,dXc'AdXc Ada Aco'AaPAco'Adq'A Adq"

=sin8J;„,dXc' A dXc A dXc A d P R d 8 A d P R dq
' A A dq",

(3.2)

(3.3a)

where

H m. 'detl Il.b I
1detl lu I I

and

1/2
(3.31)

J Xbr» fi L(L+1)X——M»

JzXM» =++XM»

~3~MK =~~MKL L

(3.61)

(3.6c)

(3.6d)

det118,
I I

=sin8 .

We take the basis function of the form

(3.3c)

P = —isa/ax, ,

we have

(3.5a)

P exp[i (k
I Xc)]=fik exp[i (k

I Xc)],
and for the total angular momentum operator

J= —i%i,
we have

(3.5b)

(3.6a)

'4=exp[i «
I Xc)]+~br» @» (3.4)

K

Here k =(ki, kz, ki} is the wave vector of translational
motion, and Xbr» are the coefficients of the Lth irreduci-
ble unitary representation of 6 =SO(3), and qi» are
functions of n internal coordinates q', q, . . . , q". For the
total linear momentum operator

where M (
I
M

I
&L) denotes the Z coinponent of the to-

tal angular momentum with respect to LF and E denotes
the 3rd component of the total angular momentum with
respect to the moving frame.

Now, we are in a position to separate collective motions
from quantum-mechanical nonrigid molecular dynamics.
Indeed, when labeled by L, the space of wave functions
(4» },E=L,L —1, . . . , L, on which the—operator of
internal motion acts is associated with the space of vector
functions (3.4) with M ranging from L to L. —

Applying (3.2) to (3.4), and performing the integration
on SO(3), i.e., with respect to the Eulerian angles, we will
find the matrix elements for the internal wave functions.
The first term of (3.2) gives rise to the matrix-valued cen-
trifugal potentials and the rest to the matrix-valued
second-order differential operator coupled with the gauge
field (2.141).

For simplicity, we set up quantum molecular dynamics
under the condition of zero-total linear and angular
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where

f 'Pi(Tints'2)Jintdq'dq'

lp Qg, q q2 o ~ o q~
(3.7a)

momentum, P+k J——+k 0——. In this case, Eq. (3.1) is re-
duced to

(4.2c)

The matrix of the inertia tensor is given as

(q2
q
1)2+(q3)2

r2 ——(1/rn3) [miq'+(rn2+m3}q ]

+(1/m3) (rn2+rn3) (q ) (4.2b)

r, r2cosX=(1/rn3)[ —m1(q') +(mi —m2 —m3}q'q

+(m2+m3)(q ) ] .

—1/2 jk —1/2
Tint 2 g Jint lljJinta ~kJint

j,k

with

IIJ =J;„,' ( —it)18/Bqj)J„

(3.7b)

(3.7c)

I12 I22

0 0 I33

(4.3a}

T;« is a purely internal Hamiltonian which describes vi-
brational motion only. From Eq. (2.14a), we see that the
Coriohs coupling is not observed in this case.

IV. TRIATOMIC MOLECULES

A. Hamiltonian operator on the c.m. system

where

Iii ——(m2/m3)(m2+m3)(q )

I22 (1/m3}[mi(ml+ 3)(q } +m2™2+m3}(q

+2m, m, q 'q'], (4.3c)

I33 —(1/m3) I rn 1(mi+rn 3)(q')

This section deals with the quantum-mechanical opera-
tors of a three-body system. 3' '3 Using Guichardet coor-
dinates q', q, q3, we have the position vectors in the
orm

+m2(rn2+rn3)[(q ) +(q ) ]

+2m, rn, q'q'I,

I12 ———(m2/m 3)[m iq'+(m 2+m 3)q']q

(4.3d}

(4.3e)

Xc+q e, ,
1

2=XC+q e1+q e2
2 3

(4.1a) and

(4.1b) det~ ~I,&~ ~
=I33(mirn2m/m3)(q') (q ) (4.3fl

x3 ~X+ ( 1/m3 )(m iq '+ m2q )et (m2/—m3 )q e2

(4.1c)

where q' &0 and q &0. In this coordinate system, both
the internal coordinates q' and the moving frame appear
in an easily comprehensive form. The Guichardet coordi-
nates q', q, q3 are related to the usual configurational pa-
rameters as follows (also, see Fig. 2):

ail ———(1/I33)(m, m2q /m3) +rni(mi+m3)/m3,
(4.4a)

a22 ———(1/I33)[m2(rn2+m3)q /m3]

+m2(m 2+m 3)/m 3, (4.4b)

The metric tensor on the internal space M is computed
from Eq. (2.21b) as

a33 ———(1/I33) I (m2/m3)[miq'+(m2+m3)q ] )

+m2(m2+rn3)/m3, (4.4c)

a 12
—( 1 /I33 }(rrl 1 m 2 /m 3 }(m 2 /m 3 }(m 2 +m 3 )(q

+mirn2/m3, (4.4d)

a 23 —( 1 /I33 )(m 2 /m 3 )(m 2 +m 3 )q (m 2 /rn 3 )

y [miq'+(rn2+m3}q ],
a31 —( 1/I33 )(m 1m 2/m3 )q (m2/rn3 )

X[m, q'+(m2+m3)q2],

(4.4e)

(4.

FIG. 2. Guichardet coordinates and the conventional config-
urational parameters.

det( )at~ ( )
=(1/I33)(mim2m/m3) (q )' .

Therefore, the volume element is given by

(4.4g)
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dP'=singJ~„, de'hdXcihdXc hdphd8hdfhdq hdq hdq (4.5a)

Ji„,——(m/m3) (q') q (4.5b)

where J;„, is computed from Eqs. (3.3b}, (4.3f), and (4.4g), F/3 (2mim2m /m3133 }q q
3 1 1

F3i —(2m i m2m /m 3I33 )q q
3 1 2

(4.7c)

(4.7d)

[g;,g ]= Fi J, , —

where

(4.7a)

Moreover, the vibrational vectors g; are given as fol-

lows:

g, =a/aq'+(I/133)(mim2/m3)q Ji, (4.6a)

g2
——a/aq +(1/l33)(milmq)(m2+mq )q'J3, (4.6b)

$3 ——a/aq ' —( 1 /I33 )(m 2 /m 3 )[m i q
' + ( m 2 +m 3 )q )J3 ~

(4.6c}

We have at hand all materials with which we can write

out the Hamiltonian operator on the c.m. system. In fact,
integration of Eq. (3.2) by part together with Eqs. (2.13)
and (4.3)—(4.6) gives the desired Hamiltonain operator.
The potential term is added, depending on the situation.

The vibration-rotation coupling appears in the nonvan-

ishing cornmutators

If the total angular momentum vanishes, then
vibration-rotation coupling is not observed. In this case
the purely internal Hamiltonian is given by Eq. (3.7).

(e, iz ie, )

f@i (tint@2')dvini f @i"' @2 'dUini (4.8a)

B. Reduction to the case of zero-total linear
and angular momentum

This section deals with the case of zero-total linear and
angular momentum using the usual configurational pa-
rameters as the internal coordinates. For the application
of the present theory to chemical-reaction dynamics, the
usual configurational parameters are more useful than
Guichardet coordinates.

Since the internal coordinates q' are chosen arbitrarily
in Eq. (3.7), Eq. (3.7) becomes

Fi2 ——(2mimzmlm3Is3)q q
3 2 1 3 (4.7b)

du;„, =sinX dr i h dr2 h dX,

i;„,= —(4/2I, )a'/ar', +(8/2I, }I.'/r', —(a'/2I, }a'/ar', +(4/2I, }I'/r',

(A /m )—cosX(a/ar, —1/r, )(a/ar —1/r, )+(iri /m, )sinX(a/aX)[(1/r )a/ar, +(1/r, )a/ar ]
—(i}I /m2)(1/rir2)(cosXl +sinXa/aX),

(4.8b)

(4.8c)

where

I /)u i ——I /m i + 1/m q,

I /pz ——1/m 2+ 1/m 3,

(4.8d)

(4.8e)

tern. Recently, in this connection, topological properties
of potential-energy hypersurfaces have been studied by
Mezey, 5 where the equivalence classes of configurations
are used to obtain the reduced configuration space which
is equivalent to the quotient space M given in Eq. (2.3) of
the present paper.

I = —a /aX —cotXa/aX . (4.8f) ACKNO%'LED GMENTS
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