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Quantum measurements and the standard quantum limit
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%'e discuss quantum measurements and find
free-mass position to an arbitrary accuracy.

a repeated-measurement scheme to monitor the

Sensitivity demands on gravitational-wave detection ex-
periments lead naturally to the question of whether there
are fundamental limits in the detection schemes. In the
early and mid 1970's Braginsky and his colleagues' 6 be-

came increasingly concerned about the impact of
quantum-mechanical limits on the efforts to detect gravi-
tational waves. Quantum limits for certain measurement
schemes were formulated. For example, standard quan-
tum limits for amplitude and phase measurements of a
mechanical oscillator or ultimate sensitivity limit of a
resonant IIravitational-wave antenna using a linear motion
detector' ' and the standard quantum limit for repeated
measurements of free-mass position were studied and
formulated. The last case is especially important for the
laser-interferometric gravitational-wave detection experi-
ments. ' ' Together with the increasing sensitivity of
laser interferometers, there have been considerable deli-
berations about the scope of validity of the standard quan-
tum limit for repeated monitoring of free-mass posi-
tion. '~ 23

In studying the effect of the quantum-mechanical prop-
erties of test objects on the accuracy of measurement of
forces, Braginsky and Vorontsov argued for a limit on
the uncertainty dLx of the second measurement of position
of a free mass tn after a time ~ to be

b,x & (kr/tn)'/ (1)

Equation (1) is called the standard quantum limit (SQL)
for monitoring the position of a free mass. 9 For a free
mass, the evolution of position operator x in Heisenberg
picture is

x (t) =x (0)+p (0)t/rn, (2)

(~)'(~)=(~)'(0)+[(&p )'(0)/rn']r'

& 2M(0)hp(0)~/m & err/m .

The last inequality is due to the uncertainty principle
du(0)hp (0) & —,

'
A.

Yuen' has pointed out a flaw in this argument. From
(2},the variance of x at time ~ is not given by (3), but by

where p is the momentum operator. Braginsky and
Vorontsov's argument can be epitomized as follows. By
the time r of the second measurement, the variance of x
(squared uncertainty) increases to

(M) (r}=(M) (0}+(hp) (0)(r /rn )

+[(x(0}p(0}+p(0)x (0) &

—2(x(0) &(p(0) &]~/nt . (4)

The argument (3) implicitly assumes the correlation term
[last term in (4)] vanishes. Yuen' ' indicated that there
are Hamiltonian-realizable measurement processes that
leave the free mass in a contractive state for which the
correlation term is negative and hence, for a while, the
variance of x decrease with time. By a second measure-
ment at time r of different apparatus setup, the uncertain-
ty of position measurement can be smaller than

Equations (1), (3), and (4) are about the intrinsic uncer-
tainties of the free-mass wave function. In a measurement
process, measurement uncertainty is also crucial. This
point is emphasized by various authors' z4 after the ap-
pearance of Yuen's paper. ' Believing that the flaw
discovered by Yuen' lies in the argument, not in the
SQL, Caves ' sharpened the statement of the SQL, gave a
new, heuristic argument incorporating measurement error
for the SQL, and analyzed a linear measurement model
that supports the heuristic argument. He considered
Yuen's first measurement as a preparation procedure for
the second and the two should be regarded as a single
measurement Caves . emphasized on repeated identical
measurement and sharpened the statement of the SQL as
follows. Let a free mass tn undergo unitary evolution
during the time r between two measurements of its posi-
tion x, made with identical measuring apparatuses; the re-
sult of the second measurement cannot be predicted with
uncertainty smaller than (fn./rn }'/ .

One important question implicitly and/or explicitly in
these deliberations is what is the definition of a measure-
ment of a certain variable A. Liberally, any process that
can give us some information about the uariable A can be
considered a measurement of A.23 After the discussions
of measurements and uncertainties by Heisenberg and
Bohr, 26 von Neumann 7 formulated a system of ideal
quantum measurements systematically. These ideal (or
von Neumann} measurements are tied directly to the pro-
babihstic interpretation of qmmtum niechanics. After an
ideal measurement of A, the system with original wave
function

~
t/i& will be left in an eigenstate

~

A & of A and
the probability of achieving this is

~ (g ~
A &

~

or
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~
g(A, . . . , )

~
. Hence the hmits set by uncertainty prin-

ciples have a direct bearing on von Neumann measure-
ments. Although von Neumann measurements are usual-

ly the only measurements treated in the discussion of
measurements in a usual quantum-mechanics textbook or
a usual quantum-mechanical course, many people have
felt that they are too restricted. In fact, besides a few ex-
amples such as the Stern-Gerlach experiments, one seldom
finds von Neumann measurements directly on an observ-
able studied. Most informations in atomic, nuclear, parti-
cle, and solid state physics are not obtained by von Neu-
mann measurements in the first few stages of the settings.
The last stages are still usually described by von Neumann
measurements. Systematic works beyond von Neumann
measurements are very much needed in precision measure-
ments and measurements of weak forces or signals.

In 1965, Arthurs and Kelly formulated an important
model of a simultaneous measurement of a pair of conju-
gate observables. In this model, a pair of conjugate vari-
ables p and q are coupled to meter variables P, and P»
linearly with the following interaction Hamiltonian:

H;„,=K(qP„+pPy ),
where p, q are the position and momentum to be measured
and P„P„are the momenta of the two single degrees of
freedom of the meter. ~ The meter is initially prepared in
the appropriate Gaussian states M(x), N(y) where

M(x) =(2/nb)'~ exp( x /b}, —

E(y) =(2b/ir)'~"exp( by ), —

and b is the "balance. " Arthurs and Kelly considered the
case of real b; but it can be readily generalized ' to
complex b with b =b/I+i e (b,e real). Here we consider
this generalized Arthurs-Kelly scheme. The coupling
constant E is supposed to be large enough so that an im-
pulse approximation can be made. At time t =1/K after
the interaction, the meter positions x and y are measured
in a von Neumann way to have the values x and y
Arthurs and Kelly showed that the expected value of x is
equal to the expected value of q before interaction and
that the expected value of y is equal to the expected value
of p before the interaction. The variances of x and y are
related to the variances of q and P before the interaction
by

(~)'=(&q}'+b/2, (&y)'=(&p)'+(I/2
~

b
~

) . (7)

From (7) and the uncertainty principle b,q hp & —,', one

can readily derive

system before measurement. The Arthurs-Kelly model
can be generalized to more than one pair of conjugate
variables. Thus, by delaying the von Neumann measure-
ment to the second or further stage, more general mea-
surements can be included. Yuen and colleagues have
generalized ideal measurements to include an overcom-
plete set of states as a result of the measurements. This
generalization includes the Arthurs-Kelly model as a spe-
cial case.

In all the above generalizations, the state of the system
after measurement is in an eigenstate or approximate
eigenstate of the variable to be measured. Gordon and
Louisell ' considered the case that after measurement, the
system is in a different state. In their formalism, a quan-
tum measurement is described by a set of operators

~
P)(+ ~

such that (+
~ p ~

+) gives the measurement
probability in the state described by the density operator p
while

~ P) is the state after the measurement. The ordi-
nary position measurement is then described by

~

x ) (x
~

.
Although after most measurements in microphysics, the
state of the system is left in a different state, it is not clear
that, in general, the Gordon-Louisell measurement can be
realized by an interaction Hamiltonian. Yuen' has used
the contractive-state Gordon-Louisell measurement to
construct specific examples which violate the limit (1) in
the second measurement. whether these measurements
are Hamiltonian-realizable remains to be solved.

After the above discussions of quantum measurements
and the recent deliberations of SQL, we construct a re-
peated measurement scheme to monitor the free-mass po-
sition to an arbitrary accuracy. Consider the system (x,p)
to be measured, coupled linearly to a meter of four de-
grees of freedom with the following interaction Hamil-
tonian:

H;„,(t) =Ki(t)(xPi+pP2)+Kg(t)(xP3+pP4), (10)

where P&, P2, P3, P4 are the meter momenta with corre-
sponding position variables X&, X2, X3, X4. At t =0 we
turn the meter coupling on. At t =t& &g~ we turn the
meter coupling off. We assume K, (t}, E2(t) are large
enough in certain intervals of (O, t, ) and ti is small
enough so we can use the impulse approximation. Solving
the variables in the Heisenberg picture between t =0 and
t =t&, we have

x (t) =x (0}+Ci (t)P2(0) +C2(t)P~(0),

p (t) =p (0)—Ci (t)Pi (0)—Cp(t)P3(0),

Xi(t)=Xi(0)+Ci(t)x(0)~d, (t)iP (02)+di2(t)P4(0),

Axe) 1

as the proper uncertainty relation for this kind of joint
measurement. Moreover, after the measurement, the state
of the system is given by

P(t) =(I/itb)'~ exp[ —(1/2b)(q —x ) +iqy ] . (9)

with similar formulas for X2(t), X3(t), X4(t). Here

C, (t)= f K, (t')dt',

C2(t) = f K2(t')dt',

d„(t}=f, dt" f dt'K, (t")E,(t'),

d„(t)= f dt" f dt K, (t")K,(t ) .

(12)

Therefore this measurement is complete, in that the state
of the system after the measurement is dependent only on
the meter readings and not otherwise on the state of the

Suppose at t =0, the x,X,X2,X3,X4 degrees of freedom
are uncorrelated. Then at t =t&, the expectation values
and variances of X's can be calculated readily
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&X,(t, ))=C, (t, )&x(0))+&X,(0))

+d]](t] ) & P2(0) ) +d]3(t] ) &P4(0) ),
(13)

bX](t])=C](t])du (0)+bX](0)+d]](t])~3(0)
+d ]3(t])~4(0)

2/t, , 0&t &t, /2
0, t]/2&t &t],

0, 0&t &t]/2
2/t ], t ] /2 & t & t ]

(14)

with similar formulas for X2,X3,X4.
Now we specialized to the case

and prepare the meter in a Gaussian state so that at t =0,
the total wave function is

p( xX ]X,2X,3X 4t =0)=F(x)(2/n)(1+e ) '/ e ' 'e ' 'e ' 'e1/4 —X1 b) —b1X2 -X3/b2 b2
(15)

' 1/2
1

(x —x]) +ixX3 F](X],X2) — (1+e ) e e2 2 , /4 —X, /b, —b,X4

2b1

1

nb]
(()(x,X],X2,X3,X4, t = t] /2) = exp

where b] & 0 and b2 ——b/(1+i@) with b & 0. For e & 0, X3 degree of freedom is in a contractive state at t =0. Between
t =0 and t =t] /2, X3,X4,P3,P4 are not coupled to either x,p or X],X2,P],P2, and we are in an Arthurs-Kelly scheme
for x,p and X],Xq,P],P2. The total wave function at t =t, /2 is

1/4

where

(16)

' 1/4

F](X],X3)=
4n 3b]

exp (X]—tt)2 e 'F(u)du .
2b1

Between t =t]I2 and t =t], we are in a generalized Arthurs-Kelly scheme for x,p and X3,X4,P3,P4. The total wave
function at t =t] can be solved as

1 1
Ijf]( x X] X2 X3 X4 t —t] )—

( 1 w)]/g

1/4

exp — (x —X3) +ixX4 F](X„X2)F2(X„X2,X3 X4),
1

»2

where

1
F2(X],X2,X3 X4)=

4n b2

1/4
1

' 1/4

1+e
exp (X3—u)3 e

2

' 1/4

~b1
exp — (u —X]) +ittX3 du .1 2

2b]

1 1F(x, t =t, )=
( 1 +e2 )]/4

1
Xexp — (x X3 )+ixX4—

2
(20)

At t =t], we make a von Neumann measurement of
X1,X2,X3,X4. The outcome is X1~,X2~,X3,X4 . The
system wave function is reduced to

&X](t]))= &X3(t]))=&x(0)),

& X,(t]))= &X4(t]))= &p(0)),

EX]=M (0)+
2

EX2 ——hp (0)+
1

AX3 ——M (0)+—+b],b

2

(21)

The expectation values and variances of X1,X2 X3 X4 are
obtained from (11)—(14) as

EX4 ——hp (0)+ +
1
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Thus we see both Xi and X3 measure x(0); Xi with

less uncertainty and X3 with more uncertainty. The re
suiting wave function (20) of the system depends only on
the readings of X3 and X4 and can be left in a contrac-
tive state.

Given b „choose e=rlmb i and b =2b, (1+2/I b f ).
At t =ti, the system wave function is given by (15) with
F replaced by F B.etween t, and r(ti «r), the wave
function evolves freely. At t=~, the system becomes a
minimum-uncertainty state with LLx (~)=b/4(1+ e )

=bi l2. Thus from Eq. (21), for the second and subse-
quent measurements ~~ —bi. —Thus we can measure the
position before each measurement to an arbitrary pre-
cision b.

Whether this measurement is a measurement of posi-
tion in the sharpened SQL statement, ' we have to leave it
to Caves to decipher. %hat I want to stress here is that
the deliberations of SQL do lead us to more of an under-
standing of the structures of quantum measurements, and
that we should consider and investigate more general
quantum measurements more explicitly.

Discussions Sin.ce we anticipate evolution between the
first and the second measurement, the above scheme leave
the free mass in a contractive state [mostly by the interac-
tion with (X3,P3 )) so that just before the second measure-

ment, bx is small and Xi will give a precise value of x.
We can also use the interaction H;„=p Xo to evolve back
the free mass with Xo having a large classical value

(Xo) = —r/rnti in the first half of the measurement.
During the second half of the measurement we can use

the Arthurs-Kelly method to measure x as precisely as we

want.

Either the method (10) with (15) or the method men-
tioned in the last paragraph needs more degrees of free-
dom of the meter than methods considered before. For
von Neumann measurements, the largeness of the ap-
paratus puts a precision limit on the measurement of an
operator which does not commute with the conserved
quantities. This and the above examples lead to the
question of whether the largeness of the apparatus plays
any limiting role to the precision of a single or repeated
measurements of position or other operators in the above
class.

If there is a classical force acting on the free mass be-
tween two measurements, it is only to change the mean
position and mean momentum of this free inass, not the
dispersive properties of it. Hence only the mean value of
Xi,Xz,X3,X4 is going to be changed. This force is readily
detectable if it affects the free mass more than the resolu-
tion of X, . Therefore any small force can be monitored
as closely as one wishes by the above schemes. At present,
a squeezed state of light is close to being produced. 6 If,
somehow, a scheme of using squeezed states of light to
swing mirrors to a contractive state in an interferometric
configuration and to measure the position difference of
the mirrors to arbitrary precision can be found, it would
be very interesting.
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