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We present a novel scheme to calculate directly the complex resonance poles in electron-atom or
electron-molecule scattering. The method is based on the many-body Green’s-function formalism
and the use of separable expansions of the self-energy part. It is shown that the poles are given by
the complex zeros of certain determinants, which can be straightforwardly calculated using analyti-
cally determined matrix elements of the free-particle Green’s function. We introduce a projection
procedure which (i) leads to a simple and unified description of shape resonances as quasiparticles
and (ii) is essential for the numerical feasibility of the calculations. Exploratory calculations are per-
formed for the 22} shape resonance in electron-H, scattering in the static-exchange approximation.
This resonance represents a difficult problem owing to its large width at short and intermediate in-
ternuclear distances. The fundamental difficulties which arise when using basis-set representations
of the potential in the calculation of complex resonance poles are discussed.

I. INTRODUCTION

The calculation of the complex poles of the S matrix, T
matrix, or Green’s function is of considerable current in-
terest as a means of characterizing resonances in
electron-atom and electron-molecule scattering. A well-
known method for determining directly the complex poles
was formulated by Siegert! and applied more recently to a
variety of problems, see, e.g., Refs. 2—5. An alternative
approach is the method of complex-coordinate rota-
tion®=° where the resonance poles are obtained as eigen-
values of a dilatation-transformed non-Hermitian Hamil-
tonian. A modification of this approach is based on the
use of a Hermitian Hamiltonian, but with complex basis
functions, in variational calculations.!®!! In addition to
numerous calculations for resonances in electron-atom
scattering (for a review, see Refs. 9 and 11), ab initio cal-
culations of resonance poles in electron-molecule scatter-
ing are now becoming available.!?~'* It is generally found
that the inclusion of polarization and correlation effects is
important to obtain accurate resonance energies and
widths. So far, self-consistent field (SCF) and
configuration-interaction (CI) techniques have been imple-
mented for the direct calculation of molecular resonance
poles.12:13.15

An alternative approach to the correlation and polariza-
tion problem is based on the many-body Green’s-function
formalism.'® It can be shown that the complex poles of
the single-particle Green’s function for an N-electron sys-
tem determine the resonances in electron scattering from
this system and also contain information on the unstable
states of the (N — 1)-electron system.'”!® The many-body
Green’s-function approach has been used in combination
with Siegert-state techniques!® and complex-coordinate
techniques?®~?2 to calculate shape resonances in electron-
atom scattering and atomic Auger resonances.??3~2 A
particular advantage of the perturbation-theoretic Green’s
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function approach is the balanced treatment of correlation
in the N- and (N *1)-electron systems, which has been
amply demonstrated by the calculation of ionization po-
tentials and electron affinities.2%%’

Another important aspect of a consistent use of Green’s
functions is that—in contrast to all standard methods of
quantum chemistry—the electronic kinetic-energy opera-
tor is not approximated by a representation in a finite
basis. In the present work we exploit this particular
feature of the Green’s-function approach. Employing se-
parable expansions?®?® of the scattering potential and us-
ing analytically calculated matrix elements of the free-
particle Green’s function, the complex resonance poles
can be straightforwardly calculated. The approach is
closely related to the Schwinger variational principle for
the calculation of resonance poles as discussed by
Domcke®® and Watson®! and yields the exact poles of the
Green’s function for the approximate separable potential.

An important ingredient for the practical feasibility of
the method for electron-molecule scattering resonances is
the implementation of the Feshbach projection-operator
approach.>=3 OQut of the infinite number of complex
poles of the S matrix, the projection procedure selects one
or a few poles which are associated with a given reso-
nance. A first application of this approach to the ZHg
state of N,~ using a self-energy given by the two-
particle-hole Tamm-Dancoff approximation (2ph-TDA)
has been reported recently.® In the present paper we give
a more detailed description of the method and apply it, as
another test of its performance, to the 22} shape reso-
nance in e-H, scattering in the static-exchange approxi-
mation.

The complex S-matrix pole corresponding to the 23
ground state of H,™ has first been calculated by Bardsley
et al.? using Siegert-state techniques. The inaccuracies in-
herent in these early calculations were considerable, how-
ever, and only a qualitative picture of the complex ener-
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gies of the 3.} and 23 states of H,™ could be obtained.
More recently, the complex energy of the 23] state at the
equilibrium geometry of H, has been calculated by
Moiseyev and Corcoran!? using CI techniques for the
dilatation-transformed Hamiltonian. @ McCurdy and
Mowrey'® have calculated the complex 22} pole of H,™
for a range of internuclear distances between 1.4 and 4.0
a.u. using the complex SCF method.!® Their result at the
equilibrium distance of H, is, however, in disagreement
with the complex CI estimate of Ref. 12. Since target
correlation effects, which are neglected in complex SCF,
are not expected to significantly affect the position and
width of the 23} resonance, this discrepancy illustrates
that the unambiguous location of complex poles associat-
ed with short-lived molecular shape resonances is not a
straightforward task, even for few-electron systems.

II. OUTLINE OF THE THEORY

A. Poles of the Green’s function
for separable potentials

As is well known, resonances in potential scattering can
be mathematically described by poles of the analytically
continued S matrix, 7 matrix, or Green’s function (GF)
on the unphysical sheet of the complex energy plane,
which corresponds to the lower half of the complex
momentum plane.*® Only those poles which are situated
sufficiently close to the real energy axis lead to detectable
structures in the scattering cross section and are con-
sidered to be of physical relevance.

When dealing with electron-atom or electron-molecule
scattering (we confine ourselves to the fixed-nuclei limit
throughout this paper), we are faced with the considerable
difficulty of the many-body problem, i.e., we have to in-
clude the important effects of polarization and excitation
of the electronic target system. An elegant way of dealing
with the correlation problem in elastic electron scattering
is provided by the many-body GF formalism.'® It can be
shown that the S or T matrices for elastic scattering can
be expressed in terms of certain GF’s.’~* Resonances,
in particular, are given by the poles of the analytically
continued single-particle GF.!7—2>41,42

To calculate the GF, one usually starts from the Dyson
equation, which has the formal structure'®

G=Gy+Gy=G . (1

Here G is the exact single-particle GF, while G, is the
GF calculated with a suitable zero-order Hamiltonian,
usually the Hartree-Fock (HF) [also called static-exchange
(SE)] Hamiltonian. X is the energy-dependent and nonlo-
cal dynamic self-energy which accounts for all effects not
included in the SE approximation. Equivalently, Eq. (1)
may be written as

G=Go+GOVG ’ (2)

where Gy is the GF describing propagation of a free parti-
cle and V is the full scattering potential, including the SE
potential Vgg:

V=V +3. (3)

The potential V, which is the effective potential for elastic
scattering from a many-body target system, is often called
the “optical” potential.’”—*°

The self-energy = is defined by a diagrammatic pertur-
bation expansion in terms of the residual electron-electron
interaction.'® It can be shown that the exact 3 can be
written as'®%

3=3(0)+MYE)+MNE), (4)

where 2( ) is the energy-independent or static part of
the self-energy. The matrix elements of the dynamic parts
MUU(E) have the spectral representation®’ (in an arbitrary
complete and orthonormal single-particle basis)

m Ign)( m q(n))t

LII
, _$ 2 9 " 5
Alpq(E)— - i , (5)

where the summation includes integration over the con-
tinuous part of the spectrum and 7 is the usual positive
infinitesimal (the plus sign corresponds to the superscript
I, the minus sign to II). It is seen that M TY(E) has poles
infinitesimally above or below the real axis as well as cuts
extending from the excitation or double-ionization thresh-
olds to + .

The problem of determining the poles of G has thus
been reduced to two independent problems, namely, (i) the
construction of suitable approximations for X and (ii) the
solution of the integral equations (1) or (2). In the present
work we address ourselves to problem (ii) and refer the
reader interested in topic (i) to the literature, where exten-
sive reviews can be found.*~*® Our approach to solve
Eq. (1) or (2) is to introduce well-known separable expan-
sions?®2%4% of the potentials £ or ¥, which reduce the in-
tegral equations to systems of linear algebraic equations.
The more powerful approach is obviously the separable
approximation of Z, since the SE potential Vs is then in-
cluded exactly in the GF G, in Eq. (1). However, the cal-
culation of the static-exchange GF is already a formidable
computational problem for molecular targets owing to the
anisotropy of the static potential and the nonlocality of
the exchange potential. For this reason we will consider
in the following separable expansions of the full potential
V in Eq. (2), with the result that only matrix elements of
the free GF G, are required, which can be calculated
analytically for suitably chosen basis functions.

Given a set of N square-integrable orthonormal basis
functions, the simplest separable approximation for the
potential operator V is the “truncated” potential®

N
Vm: 2 ‘X|>VU<X]‘ ’ (6a)
i,j=1

Vi=XG V1Y), (6b)

Inserting (6) into (2) and taking matrix elements, we ob-
tain

G=Go+GoKG, (7)

where all quantities X are now N XN matrices with ma-
trix elements X;; =(X; | X |X;). Solving for G, we have

G=(1-GoV)7'Gy. (8)
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It follows that the exact poles of the GF for the approxi-
mate potential (6) are given by

A(z)=det[1 -G ((2)V(2)]=0, 9

where z is the complex energy variable. We have made
explicit that the energy dependence of A results both from
the free GF and from the energy dependence of the opti-
cal potential as shown in Egs. (4) and (5).

An alternative well-known separable expansion of the
potential is2%49

N
yis) — 2 VlX,)(Z—l)U(XJIV (10)
ij=1

An elementary calculation gives the following explicit ex-
pression for the GF:

N
G=Gy+ 2 G()VIX,'>(N_1)U(X]' | VG, ,

ij=1

(11a)

Ny={X; |(V =VG,V) | X;) . (11b)

It follows that the exact poles of the GF for the approxi-
mate potential (10) are given by

B(z)=detN(z)=0. (12)

As before, the z dependence of N results from the energy
dependence of the free GF G, as well as from the optical
potential V. It should be noted that Eq. (11) for the GF is
equivalent to the Schwinger variational principle for the
T matrix.?$2%

The calculation of complex resonance poles has thus
been reduced to the determination of zeros of the complex
functions A4 (z) or B(z). It has been shown for the simple
case of single-channel or multichannel scattering from a
square-well potential that the expansion (10) is very effi-
cient, i.e., that accurate estimates of the poles are obtained
with few basis functions.’3!

Electron-molecule scattering is, of course, a significant-
ly more difficult problem. To apply the method, matrix
elements of the operators V, Gy, and VG,V are required.
Choosing, as is usual in molecular applications, Cartesian
Gaussian functions as atomic basis functions, the matrix
elements of ¥ can be obtained using standard bound-state
electronic-structure codes. The matrix elements of the
free-particle GF

AR,
Lty

where k is the complex momentum variable and (r|q) is
a plane wave with momentum q, can be calculated analyt-
ically for Gaussian basis functions. The formulas for ma-
trix elements involving Cartesian Gaussian functions up
to f-type symmetry have been collected in Ref. 51 for real
positive k. Since all matrix elements of G, with Gauss-
ians are entire analytic functions of k, the analytic con-
tinuation into the whole k plane is straightforward. More
details are given in the Appendix. Matrix elements of the
operator VG,V, which are required when the Schwinger-
type expansion (10) is to be used, are more difficult to cal-
culate. In practice, one may simplify this problem by in-
serting a large “quadrature basis” between the operators V

’

(X; | Goth) | X;) =2 [ d’q

and Gy, with the result that only matrix elements of V
and G, are needed.>

It should be stressed that all approximations introduced
so far affect only the potential operator V. The kinetic-
energy operator K = —%VZ of the scattered electron is
never approximated in a basis, but is included exactly via
the analytically calculated matrix elements of the free
Green’s function.

Accurate calculations of electron-molecule scattering
resonances require the use of large basis sets including dif-
fuse functions to obtain a sufficiently good representation
of the scattering potential. When large basis sets are used,
however, a serious numerical difficulty arises in actual
calculations. The modulus of the determinants A4(z) or
B (z) becomes exceedingly small, which renders the deter-
mination of zeros extremely cumbersome. For this reason
the calculation of resonance poles via the zeros of A4 (z) or
B(z) is not a practical scheme for actual calculations. We
have found a simple and efficient resolution of this prob-
lem using projection techniques, which are described in
the next subsection.

B. Projection-operator formalism for the poles
of the Green’s function

Let us assume that we are interested in the description
of an isolated shape resonance. The extension of the for-
malism to describe several overlapping resonances and/or
core-excited resonances is straightforward. We postulate
the existence of a square-integrable single-particle wave
function ¢,(r) which approximately describes the reso-
nance. In actual calculations, ¢,(r) may be constructed
using either the stabilization method®>** or the
minimum-variance method.>%¢

Given the discrete state | ¢ ), we may define projectors
in the single-particle Hilbert space according to

Q=|¢4)(ds|, P=1-0Q. (13)

Using well-known projection-operator techniques,*>’ the
GF describing propagation in the one-dimensional Q
space may be written as

Gua(2)={d4|G(2) | g)=[z —Hyy(z)]™" (14)
with

Hyy(z)=€4(z)+F(2), (15)

€1(2)={y | H(2) | $g) =€ + (b4 | Z(2) | d4) , (16)

F(z2)=(¢4 | H(2)G(DH (2) | d,) , (17)

H(z)=—3V*4+V(2). (18)

Here Hg;(z) is the effective Hamiltonian in Q space
which takes account of the coupling to the P space via
the complex level-shift function  F(z). €Y
=(¢q | (K +Vsg)|dy) is the static-exchange orbital ener-
gy of the discrete state |¢4). The GF G(2) in Eq. (17) is
the full GF projected onto P space. It can be constructed
by solving

A

G=Gy+G,VG , (19)
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where G, is the free-particle GF in P space, which is ex-
plicitly given by>* %

Go=Go—Go|64){da|Golda) (da|Go.  (20)

It follows from Egs. (14) and (15) that the poles of G in
the complex energy plane which appear with nonzero resi-
due in G44(z) are given by

D(2)=Gy(z) '=z—€4(z)—F(2)=0. 21

It is clear from Egs. (17)—(20) that the calculation of
the level-shift function F(z) is not easier than the calcula-
tion of matrix elements of G. In practice, Eq. (19) has to
be solved using separable expansions of V as discussed in
the preceding section. Clearly, the zeros of D(z) are iden-
tical with the zeros of A4(z) or B(z) if the corresponding
separable expansions are used in Eq. (19). The advantage
gained by introducing Gg4(z) becomes more apparent,
however, when we consider the biorthogonal expansion of
G (Ref. 18)

G(2)=73, M , (22)

" z—z,

where the summation is over all poles z, of G(z), which
are the solutions of Eq. (21). It follows that

R,

Guld)=3 ~—, 23)
Rv:<¢d|wv><¢vt¢d> . (24)

The residues of the poles of G, are thus determined by
the overlap of the discrete state | ¢, ) with the “resonance
wave functions” |W,). The |W¥,) are the well-known
Siegert states,’ satisfying

(H—2z,)|¥,)=0

for the complex energy z,=k?2/2 with the outgoing-wave
boundary condition

\I/v(r)~e‘k”'

for r—>o. If |¢y) is a good approximation to a given
isolated resonance, only one of the overlaps (¢4 | ¥,) will
be significant, all others being very small. The modulus
of the residue R, thus gives a very useful indication of the
character of a given pole z,. There is no need to con-
struct the states |¥,), | ¥,) explicitly, since the residue
may be obtained directly from Eq. (14) by expanding
H,4(z) about the pole z,, giving

R,=[1—€4(z,)—F'(z,)]"}, (25)

where the prime indicates differentiation with respect to
z. For bound-state poles, R, is real, positive, and smaller
than unity. For complex resonance poles, R, is complex,
and its modulus is not bounded.

The projection formalism outlined above provides the
basis for a unified description of shape resonances in
electron-molecule scattering as ‘“quasiparticles,” a concept
which is well established in condensed-matter phys-
ics.!®~!® The present description includes the effects of
electron correlation [represented by the dynamic self-

energy 2(z)] and discrete-continuum coupling [represent-
ed by the complex level shift F(z)] on an equal footing.
If the dynamical self-energy 3(z) and the level shift F(z)
are small and smooth functions of energy for z~€y, Eq.
(21) will have a solution z, close to €y’ with a residue
|Rqy| close to unity. This solution represents a narrow
resonance, or, in other words, a well-defined quasiparticle.
If either 2(z) or F(z) are large and strongly energy depen-
dent in the vicinity of €, Eq. (21) will no longer have a
single solution with a large residue. Rather, we will find
several solutions z, with comparable residues | R, |, none
of which can be identified as a quasiparticle occupying
the discrete orbital ¢4(r).

The above considerations also have important implica-
tions for practical calculations. In contrast to the deter-
minants A(z) and B(z) of Egs. (9) and (12), which be-
come exceedingly small when large basis sets are used, the
function D(z) of Eq. (21) is numerically well-behaved in
the vicinity of €’ and its zeros are easily located. The
reason is that Gz (z)=D(z)~! has only one or a few poles
with large residues, the remaining infinitely many poles
being strongly suppressed by the projection onto the
discrete state |¢y). It is also interesting to note that
D(z) is a meromorphic function with an infinite number
of poles on the unphysical sheet, while the determinants
A(z),B(z) are entire analytic functions on both sheets.

III. CALCULATIONS FOR THE 23}
SHAPE RESONANCE
IN ELECTRON-H; SCATTERING

We have applied the above-described formalism to cal-
culate the complex pole corresponding to the well-known
23+ shape resonance in e-H, scattering as a function of
the internuclear distance R. This pole has been the sub-
ject of an early study of Bardsley et al.? and of more re-
cent complex SCF and complex CI calculations by
McCurdy and Mowrey!® and Moiseyev and Corcoran.!?
We have performed calculations both on the SE level of
approximation as well as with the 2ph-TDA optical po-
tential *4” It turns out that polarization and correlation
effects are not of major importance for the description of
the =] resonance of H,. The more interesting aspects of
the problem arise from the large width of the *=; reso-
nance of H, at short internuclear distances. Therefore we
confine ourselves to a discussion of the SE results. We
emphasize, however, that the inclusion of correlation and
polarization effects is important for almost all other mole-
cules (see, e.g., Ref. 35).

Calculations have been performed for nine internuclear
distances ranging from R =1.4014 a.u. [the equilibrium
distance of H, (Ref. 60)] to R =3.0 a.u. For each inter-
nuclear distance a HF calculation for the X ‘2;' ground
state of H, has been performed using the 10s5p1d uncon-
tracted Gaussian basis set of Schulman and Kaufmann.®!
The basis functions and their exponents are specified in
Table I. Schulman and Kaufman have demonstrated the
approximate completeness of this single-particle basis by
testing various sum rules.8! The s, p,, and d, functions
of this basis form the “scattering basis set” {{r|X;)} in
the 22} symmetry which defines the truncated potential
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TABLE 1. Gaussian basis set for e-H; scattering. Exponents of the basis functions on the atoms are

listed.

s 600,192,64.224,9.9142,2.5988,1.0676,0.4384,0.1569,0.05,0.017

Px»Py>P:z 4,2,0.9,0.4,0.2
dxx»dyyydzzydxy’dxzydyz 2

operator V' according to Eq. (6). Since the basis orbitals
are nonorthogonal, the overlap integrals have to be expli-
citly taken into account in the actual calculations.

Once the scattering potential is defined, we construct a
suitable discrete state ¢,(r). Employing the well-known
stabilization method,’>>* we have diagonalized the SE
Hamiltonian Hgg =K + Vg in discrete Gaussian basis
sets of various sizes, looking for approximately stable
eigenvalues of o, symmetry. It is found that after the re-
moval of the three most diffuse s orbitals of the HF basis
the energy of the lowest unoccupied o, orbital becomes
approximately stable with respect to further restrictions of
the basis. Removal of p-type functions had no significant
effect on the o, orbital energy. The discrete state was
thus taken as the lowest unoccupied o, orbital in this re-
stricted basis. It has been shown in Ref. 62 that the pro-
jection defined by this particular discrete state leads to a
clean and physically sensible separation of the 23 eigen-
phase sum into a smooth background term and resonant
term which varies rapidly with respect to energy and in-
ternuclear distance. It can be seen from Ref. 62 that
Q= |¢s){ds| is a suitable projector even for near-
equilibrium distances where the 2} resonance is very
broad.

Given the discrete state, the complex level-shift func-
tion F(z) is calculated from Eq. (17). The background
GF G(2) is constructed by solving Eq. (19) using the
separable potential (6). Finally, the complex zeros of D(z)
defined in Eq. (21) are located using a search routine
based on Muller’s method.®* Provided that a reasonably
accurate starting guess is available, the zero of D(z) can
be converged to eight digits with four to ten iterations, de-
pending on the residue of the pole. For each final pole z,
the residue R, defined in Eq. (25) has been computed by
numerical differentiation.

The results obtained in this manner are collected in
Table II. The table shows the poles (in electron volts) and
their residues in the lower half of the unphysical sheet of
the complex energy plane (corresponding to the fourth
quadrant of the complex momentum plane). Each pole
has a mirror image in the upper half of the energy plane
(corresponding to the third quadrant of the k plane).*®

Let us first consider the larger internuclear distances
where the 23] resonance is narrow. At R =3.0 a.u. we
find a pole very close to the origin of the complex energy
plane. This is consistent with several other calculations
which predict a crossing of the 2X; potential of H,~ and
the '} potential of H, close to 3.0 a.u.>'>%% Beyond
about 3.0 a.u. the 22] state of H,™ is bound with respect
to electron detachment and its energy and wave function
can be accurately calculated using standard methods of
quantum chemistry.®*~% When the internuclear distance

is reduced, the pole moves out into the complex plane as
expected for a p-wave shape resonance, i.e., the width in-
creases as the 1.5th power of the resonance energy near
threshold. 6%

It is seen from Table II that the pole (called z, in Table
II) recedes rapidly from the real axis with decreasing in-
ternuclear distance. At R =2.0 a.u. the imaginary part of
the complex energy is of about the same size as the real
part. When R is further reduced, it is found that the
search procedure locating the zeros of D (z) converges sys-
tematically to another pole (called z, in Table II) which is
not adiabatically connected with z;. Only after the factor
z —2z, is divided out does the search procedure converge
to the adiabatic continuation of z,. The origin of this
behavior is obvious when considering the residues |R; |
and |R,| in Table II. At R =2.0 a.u. the residue |R, |
drops from a value close to unity to a small value, while
the pole z, attains a large residue. According to the dis-
cussion in the preceding section, we have to conclude that
the 2=} resonance is represented by the pole z, for R <2
a.u., while z, is the relevant pole for R >2 a.u. For R =3
a.u., where the pole z; becomes a bound state, the pole z,
has a small residue and is too far from the real axis to
have observable consequences.

To give also a visual representation of the results, we
show in Fig. 1(c) the trajectories of the poles z, and z, in
the complex momentum plane [Figs. 1(a), 1(b), and 1(d)
will be discussed below]. The calculated poles are shown
as circles; to guide the eye, those poles which belong to a
trajectory are connected by straight lines. The poles move
towards the origin with increasing internuclear distance.
Note that the disconnected set of poles in Fig. 1(c)
represents the trajectory of the pole z, and is not a con-
tinuation of the trajectory of z,. As can be seen from
Table II, the residue “jumps” from z, to z; when the in-
ternuclear distance increases beyond ~2 a.u.

The present results as shown in Table II and Fig. 1(c)
are clearly at variance with the results of McCurdy and
Mowrey'® obtained by the complex SCF method. McCur-
dy and Mowrey found a single complex pole which
represents the 22} resonance for the whole range of inter-
nuclear distances between 1.4 and 3.0 a.u. This poses the
question of whether the “splitting” of the pole trajectory
observed in the present calculations is an artifact of the
representation of the potential operator in a basis (which
is, apart from the SE approximation, the only approxima-
tion in our calculations). We have performed, therefore, a
series of test calculations, varying the size of the scatter-
ing basis which defines the truncated scattering potential
according to Eq. (6).

The simplest test is to reduce the size of the scattering
basis by removing successively the most diffuse basis



TABLE II. Poles z, in the lower half of the complex energy plane (real and imaginary parts are given in €V) and their residues |R, | for the 22} symmetry of H,™ at nine internu-
clear distances between 1.4014 and 3.0 a.u. obtained with the truncated potential (6) using the scattering basis given in Table I. Corresponding trajectories in the complex momentum

3.0 a.u., where the pole z, is located very close to threshold, the differentiation of F(z) was found to be numerically unstable and the residue R,

plane are shown in Fig. 1(c). At R
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FIG. 1. Poles of the GF in the complex momentum plane
corresponding to the 227} shape resonance in e-H, scattering in
the SE approximation obtained with various scattering basis
sets. Results obtained with the reference basis set given in Table
I are shown in (c); (b) and (a) show the results obtained after the
removal of one or two diffuse s functions, respectively. (d)
shows the results obtained by including two additional very dif-
fuse s functions in the quadrature set. Poles which are connect-
ed by lines are parts of a pole trajectory, i.e., these poles are
transformed into each other by changing the internuclear dis-
tance. (a)—(c) show the trajectories of two poles, whereas three
poles are present in (d). Poles generally move towards the origin
with increasing internuclear distance; an obvious exception is
seen in (b) where one of the poles describes a nearly circular tra-
jectory.



228 W. DOMCKE, M. BERMAN, C. MUNDEL, AND H.-D. MEYER 33

functions. We have performed calculations by removing
(i) the d function, (ii) one or two of the p, functions, and
(iii) one or two of the s functions from the scattering
basis. It turns out that the poles are most sensitive to
changes in the set of s-type functions. Figure 1(a) shows
the pole trajectories obtained after the removal of the two
most diffuse s functions from the scattering basis; Fig.
1(b) shows the results obtained after the removal of only
one s function. Figures 1(a)—1(c) thus illustrate the evo-
lution of the pole trajectories with increasing size of the
basis of s-type functions.

The trajectory of Fig. 1(a) moves rapidly into the com-
plex momentum plane with decreasing internuclear dis-
tance. Apparently, the potential ¥** in this reduced basis
cannot account properly for the barrier which stabilizes
the 227 shape resonance. With one more s-type function
added [Fig. 1(b)], the trajectory approaches the real axis,
but we observe a distinct perturbation of this trajectory by
an unphysical “background pole” which describes an ap-
proximately circular trajectory in the complex momentum
plane. The comparison of Figs. 1(b) and 1(c) suggests that
the splitting of the trajectory of Fig. 1(c) is caused by the
presence of this background pole.

It is of course desirable to consider also extensions of
the scattering basis set beyond the reference basis given in
Table I. To this end we have considered a simple approxi-
mation to the Schwinger-type Green’s function of Eq.
(11). The difficulty in the evaluation of Eq. (11) is the
calculation of the matrix elements of VsgGo(k)Vsg for
complex k. As pointed out by Watson et al.*?, these ma-
trix elements may be approximately evaluated by inserting
a quadrature basis, which is larger than the scattering
basis, between the operators Vs and Gy. Such a calcula-
tion is largely equivalent to a calculation with a truncated
potential operator V¥ defined in a larger basis, namely
the quadrature basis. We have performed test calculations
with quadrature basis sets obtained by augmenting the
scattering basis by diffuse s or p functions. Again, the
poles are found to be most sensitive to the addition of s-
type functions. The pole trajectories obtained with two
additional s functions with exponents 0.006 and 0.002 are
shown in Fig. 1(d). In this case we locate the trajectories
of three poles, z,, z,, and z;. Similar to the case of Fig.
1(c) (see Table II), the residue of the *Z; resonance is
redistributed among these poles with varying internuclear
distance. For larger distances (R >2.7 a.u) z; (i.e., the
pole closest to the origin) has a large residue; for inter-
mediate distances (2.5>R >2.2 a.u.) the pole z, has the
dominant residue; for short distances (R <2.0 a.u.), the
pole z; has the largest residue. It is thus clear that none
of the poles z;,z,,z; alone can represent the 22} reso-
nance for all internuclear distances.

IV. DISCUSSION

The results presented in the preceding section illustrate
that the approximation of the scattering potential in a
basis is not a trivial step when calculating the analytic
properties of the GF or S matrix in the complex plane.
This question requires, therefore, a detailed discussion.
The analytic properties of S or G in the lower half of the
complex momentum plane (corresponding to the unphysi-

cal sheet of the energy plane) are known to depend sensi-
tively on the long-range behavior of the potential.’® The
truncated potential operator of Eq. (6), for example,
represents with our choice of basis functions a nonlocal
separable potential with Gaussian form factors in coordi-
nate space. Following the lines of earlier work by Regge®®
and Sartori® for local potentials which vanish faster than
any exponential for »— oo, it is straightforward to estab-
lish qualitative but rigorous statements about the distribu-
tion of the poles in the complex momentum or energy
plane. As discussed in the Appendix, all matrix elements
of G, with Gaussians are entire analytic functions of the
complex momentum variable k and are given in terms of
the complex error function. It follows that the deter-
minant A4 (k) defined in Eq. (9) is an entire analytic func-
tion of order 2 (see, for example, Ref. 70 for the definition
of the order of an entire analytic function). As is well
known, the order of an entire function determines to a
large extent the asymptotic distribution of its zeros. The
most important results in the present context are®®®

(i) 4 (k) has an infinite number of zeros in the complex
k plane,

(ii) if N(h) is the number of zeros k, of A (k) with
| k, | <h, then N(h)=0(h?) for h— co.

Numbering the zeros k, in the order of increasing
modulus, it follows from (ii) that

| kyp1—k, | =0(v™17?)

for v— 0, i.e., the distance between neighboring zeros in
the k plane vanishes asymptotically. This should be com-
pared with the case of cut-off potentials, i.e., ¥ (r)=0 for
r>a, where |k, —k,| =0(1) asymptotically.®® When
we map the zeros of A4 (k) into the energy plane according
to z,=k2/2, we have |z,,,—z,| =0(1) for v—> . In
the energy plane the zeros of A4(z) are thus distributed
equidistantly for |z | — co.

It should be clear that these properties of the zeros of
A (k) and, thus, of the poles of the GF are a universal
feature of separable potentials with Gaussian form fac-
tors. The above-discussed distribution of the poles of G
reflects the Gaussian cutoff of the potential in coordinate
space, and we may call these pole “cutoff poles.”® Since
the true scattering potential is not of Gaussian form at
large distances, the true GF will exhibit a completely dif-
ferent asymptotic distribution of poles and possibly addi-
tional singularities such as branch cuts. When employing
basis-set representations of the potential, it is thus impor-
tant to distinguish between “physical” resonance poles
and “unphysical” cutoff poles.

To illustrate this important point more specifically, it is
useful to consider, as the simplest case, a rank-one sepa-
rable potential

V=Vol|ff]

with variable strength parameter V,. In this case the
poles of G (k) are simply given by

(FIGET )| fYy=p5".

Choosing, for comparison with the 22} symmetry of
H,™, a p-wave form factor
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(r|f) —=Nre=%"cosf ,

where N is a normalization constant, the poles of G are
given by the zeros of

F(k)=142c*+2iVmctw (k) +3a/2V, ,

where k=k /V2a is the dimensionless momentum vari-
able and w(z) is related to the complex error function (see
Appendix).

We have determined numerically the first few zeros of
F (k) [poles of G(k)], for varying potential strength V.
Figure 2 shows the trajectories of the four poles closest to
the origin in the fourth quadrant of the complex « plane
(these zeros have mirror images in the third quadrant).
The pole closest to the imaginary axis coalesces with its
mirror image at the origin for Vy=—3a. For
Vo< — %a, a bound-state pole moves up the positive
imaginary axis, and a virtual-state pole down the negative
imaginary axis. The remaining infinitely many poles
(three of which are shown) are seen to cross the bisector
argk = — /4 with increasing | V| and to approach cer-
tain fixed points for Vy— — . It can be seen that the
distance between poles decreases for increasing v.

The infinitely many poles situated in the vicinity of the
bisector argk= —m/4 are the above-mentioned cutoff
poles which reflect the Gaussian decay of the potential in
coordinate space. Remembering that k =«V'2a, it is
clear that the inclusion of very diffuse basis functions in
the representation of the potential will introduce cutoff
poles close to the origin of the k plane.

The numerical convergence studies of Sec. III as well as
the above general discussion indicate that the splitting of
the pole trajectory of the =} resonance state of H,™ in
the present calculations is caused by unphysical cutoff
poles which come closer to the real axis as more diffuse
basis functions are included in the representation of the
potential. For large internuclear distances (R =3.0 and
2.75 a.u. in the present calculations), where the 23} reso-
nance is narrow, we obtain converged results with
moderate basis sets. For R <2.5 a.u., where the reso-

IMAGINARY x

REAL x
FIG. 2. Pole trajectories in the fourth quadrant of the dimen-
sionless momentum plane for a rank-1 separable potential with
p-wave form factor. Poles have mirror images in the third
quadrant. Numbers serve to indicate the movement of the poles
with variation of the dimensionless strength parameter V,/a.

nance becomes broad, more diffuse basis functions are ap-
parently required for a proper representation of the
scattering potential, with the consequence that cutoff
poles are introduced closer to the real axis, which then in-
terfere with the physical pole trajectory. We may con-
clude that calculations based on the truncated potential (6)
are not suitable to locate poles associated with very broad
shape resonances.

The above model study of a rank-one separable poten-
tial indicates a possibility to resolve the problem caused
by the cutoff poles. It is seen from Fig. 2 that the loca-
tion of the cutoff poles is fairly insensitive to the value of
the strength parameter V), i.e., the cutoff poles are situat-
ed close to the bisector argk = — /4 for a wide range of
Vy. It follows that the cutoff poles in the physical k
plane (k =«V2a), are rotated away from the real axis by
an angle y /2 if we scale the exponent a of the Gaussian
form factor by e‘”. Complex scaling of the basis func-
tions thus appears as a simple means to eliminate the cut-
off poles, provided the resonance pole of interest is invari-
ant to the complex scaling. Originally, complex scaling of
the basis functions has been introduced to eliminate the
spurious poles of the GF on the real axis which appear as
a consequence of the truncation of the kinetic-energy
operator in an L? basis, see, e.g., Refs. 10—13 (these
spurious poles are absent in the present approach which
avoids any approximations to the kinetic energy). Howev-
er, the complex scaling may eliminate, in addition, the
spurious poles introduced by the basis-set representation
of the potential. This explains the single and smooth pole
trajectory of the 2= resonance of H, obtained by McCur-
dy and Mowrey with the complex SCF method."”

V. CONCLUSIONS

We have outlined a straightforward scheme which al-
lows the direct calculation of complex resonance poles in
electron-atom and electron-molecule scattering. The
method is based on the many-body GF formalism and the
use of separable expansions of the self-energy operator.
The exact GF for the approximate separable potential can
be constructed in closed form in the complex momentum
or energy plane. To facilitate the location and identifica-
tion of the poles, a projected GF has been introduced, the
residues of which have an immediate interpretation in
terms of the overlap of the resonance wave function with
a predetermined discrete state. The formalism yields a
unified description of shape resonances as quasiparticles
which exhibit a finite lifetime and are reduced in strength
owing to many-body effects as well as the discrete-
continuum coupling. The impact of many-body effects on
the resonance energy and width has recently been demon-
strated for the ZHg shape resonance in e-N, scattering.*’
In the present work we have considered the 23] shape
resonance in e-H, scattering, where many-body effects are
of minor importance, but the very short lifetime renders
the location of the resonance pole difficult.

The calculations for the 2=} resonance in e-H, scatter-
ing have revealed the limitations of the method [as far as
it is based on the truncated potential operator V¥ of Eq.
(6)] for very short-lived resonance states. Since it is well
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known that the analytic properties of the .S matrix and the
GF in the lower half of the complex momentum plane
and far from the real axis are extremely sensitive to the
long-range behavior of the scattering potential, it is not
surprising that the truncation of the potential in a basis is
too crude an approximation for the calculation of broad
resonances. More sophisticated versions of the theory
may (i) use the Schwinger-type expansion (10) of the po-
tential and (ii) include the static part of the scattering po-
tential in the GF G, treating only the exchange and po-
larization parts by separable expansions. The practical
implementation of such calculations is considerably more
difficult, however.

Although the discussion in the present work has con-
centrated on the limitations of the method based on V"
for broad resonances, one should not overlook its attrac-
tive features for narrow resonances. The method is
straightforwardly applicable to arbitrary polyatomic mol-
ecules, and polarization and target correlation are easily
included within the many-body GF formalism. The HF
calculation, the integral transformation, and the calcula-
tion of the poles and residues of M (E) [see Eq. (5)] have
to be done only once for each internuclear distance, which
renders the method very efficient and easy to implement.
It is also possible to calculate the complex poles corre-
sponding to core-excited or Feshbach resonances which

originate from poles of the dynamic self-energy operator
M(E).
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APPENDIX: ANALYTIC CONTINUATION
OF THE GREEN’S-FUNCTION MATRIX ELEMENTS

We consider matrix elements of the free-particle
Green’s function with Cartesian Gaussian basis functions

(uiom | GG (k) | w2,

(Liom | Q| o)
k2—q2+l7’

=202m73 [ d’q ., (AD

where

leik|r—1"]

(+) AV -
Gy (ko) =—(2m) |

, (A2)

(C| WA =Nipn(x — Ay — A, )™z — 4, )"e —|T=AI?

(A3)

and Nj,, is a normalization factor.’! As shown by Levin

et al.’! the k dependence of the matrix elements (A1) is
given by integrals of the form

q°e “"qsz(qR)

k2_ q2 +i )
where L and p are integers with p>L +2, R=| A—B|,
a =(a+p)/(4apB), and j; denotes the spherical Bessel
function.”!

Considering now the If as functions of the complex
variable k =u +iv, we evaluate the integral (A4) for
values of k in the first quadrant of the k plane, u >0,
v>0. The first quadrant of the k plane corresponds, via
the mapping z =k?2/2, to the upper half of the physical
sheet of the energy plane. The resulting analytic formulas
for If (k) define the analytic continuation of these matrix
elements into the second quadrant of the k plane (lower
half of the physical sheet of the energy plane) as well as to
the lower half of the k plane (unphysical sheet of the en-
ergy plane).

The integral I3 can be directly evaluated with the help
of integral tables,”? giving

k)=~ ["dg (A4)

200y _ T, —ak?| ,ikR ikVa
Io(k) 4R ¢ e"*erf Va +ikVa
—ikR R o=
+e erf Ve ikVa H

. T _gk? .

oRe sin(kR) , (AS)
where erf(z) denotes the error function.”! All other in-
tegrals, such as I§, I3, etc., can be obtained from I3 by
differentiation with respect to R or with the use of the re-
cursion relations of the spherical Bessel functions.’!
Equation (A5) defines, therefore, the analytic continuation
of all integrals If (k). In the special case R =0, Eq. (A5)
reduces to

Ak = ~% w/a —iThw(kvVa), (A6)
where

w(z)=e~*[1—erf(—iz)] . (A7)

An alternative form of Eq. (AS) is
T3(k)= — e —R*/afy (_iz))—wliz,)] (A8)
4R
with
R . R .
z= Vi +ikVa, z;= e —ikVa . (A9)

In the numerical calculations we have generally used Eq.
(A5). On the imaginary k axis and for small exponents
a,f (i.e., large a), however, the expression (AS5) is numeri-
cally ill-behaved, since exp(—ak?) can become exceeding-
ly large. In these cases the alternative form (A8) is nu-
merically stable. Gautschi’s algorithm’ is used to evalu-
ate the complex error function.
The integral 13(k) can be obtained via
d

I3k)=———1I%(k)

4R (A10)

giving
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I?(k):%]%(k)+i%ke"“"2 e *Rerf ﬁ_ +ikVa
a
1 172
R —;i e‘RZ/“"—i—i—z%ke“"zcos(kR).

An alternative form, analogous to Eq. (A8), is

12
1 |« 2 1 R
13 - — | —R?%/4a R\ 2]
1(k) °R | a + R + 22 Ig(k)
+TR;-1‘T7_[;—e—R2/““[zlw(—iz,)——zzw(izz)] .

(A12)

—e ~ikRerf

R
—— _ikVa
2vVa ikva

(A1D)

[

For the special case R =0, the integral ? vanishes, as fol-
lows immediately from the definition (A4). All remaining
integrals If follow from I3 and I3 according to the list of
formulas given by Levin et al.’! From the integrals If
the Green’s-function matrix elements (A1) are obtained
according to Egs. (15)—(17) of Ref. 51. Thus all matrix
elements of the free-particle Green’s function are given as
entire analytic functions in the k plane.
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