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In order to investigate the potential precision of quantitative calculations using hyperspherical
coordinates, we have reexamined this method in detail. By developing an analytic solution of the

angular equation in the form of a series expansion in the variable x =tan(a/2), we are able to isolate
the numerical errors in the solution from those caused by the truncation of the angular momentum

expansion and by the exclusion of radial coupling terms, which we then examine separately. This
new method enables us to extend the calculation of the potential curves and channel functions to the
large-R region and to obtain asymptotic expansions for the potential curves and radial couplings.
From these we determine general expressions for the boundary conditions of the radial equation. Fi-
nally, we preent the first nonadiabatic result for the ground-state energy of helium.

I. INTRODUCTION

Hyperspherical coordinates have been frequently used
in atomic physics to obtain wave functions in two-electron
systems, such as He and H, or more generally in divalent
atoms. ' The method is particularly intended for the con-
struction of wave functions in the continuum with one un-
bound electron. In this context it was used, in a pioneer
work by Macek, to calculate the positions of resonances of
helium corresponding to autoionizing states ending on
n =2. This calculation was done in the so-called adia-
batic approximation in which the radial equations are
decoupled by neglecting off-diagonal coupling coeffi-
cients. His results are in qualitative agreement with ex-
periment. 3 s The classification of states, computation of
potential curves, and analysis of correlations for various
channels were subsequently given by l.in. ' Further
calculations were carried out for the scattering phase shift
of H, still within the adiabatic approximation, with
satisfactory results only very near threshold. " An appli-
cation of the method to Be and K was performed by
Greene, ' taking into account nonadiabatic couplings and
using a Hartree-Fock potential for the atomic core. An
examination of the large-R behavior through the intro-
duction of "diabatic states" was performed by
Christensen-Dalsgaard. ' A critical discussion of the
method and some suggestions for improvement have been
given by Macek in a recent publication. ' However, it is
apparent from this work that the question of whether the
hyperspherical method is really suitable for a more quan-
titatively accurate construction of wave functions is still
undecided. Therefore, a careful analysis of this method
aimed at evaluating its accuracy and appraising its poten-
tial for precision computation of wave functions is war-
ranted. The results of this analysis are presented in this
paper.

Section II r roduces material which already exists in
the literature we include it here in order to make this

paper more self-contained and to establish notation. The
Schrodinger equation is written in hyperspherical coordi-
nates consisting of the angular variables of the electrons
Qi(8i, p&), Q2(82, gi) and two variables, a and R, related
to the radial coordinates by

r
&
——R sina, r2 ——R cosa .

The wave function for a state of total angular momentum
L with azimuthal component M and principal quantum
number K is expressed in the form

(ri, r2)= g (R ~ sinacosa) 'F „(R)
p, ,I),l2

~+2 (R )ELM

where F I,I, represents a state in which the two elec-

trons have angular momentum /~ and 12, respectively;
tt zt, t (R,a) are the components with indices 1, ,12 of a
channel function labeled by a discrete quantum number p
(or a set of quantum numbers). They are solutions of cou-
pled Schrodinger equations in the variable a, with R as a
parameter. The eigenvalues U „(R) become potential
functions for the multicomponent radial wave functions
F (R)= IF &(R)J, where p is a component index and
K stands for a set of quantum numbers, including the en-
ergy. The sum in 1&,12 in Eq. (1) is restricted to a finite
number of terms by iinposing on them a cutoff
li, 12 &1,„. A cutoff in the p, index has to be made as
we11.

In Sec. III the analytic structure of the functions
u „t t in the variable x =tan(a/2) is investigated, and an

analytic solution is obtained in the form of a power-series
expansion. The expansion coefficients, which depend on
the parameter R, are determined by means of recursion
relations. The R dependence of the angular functions and
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the potential curves is discussed, with particular attention
to the behavior of the potential curves as they avoid cross-
ing, and to the asymptotic forms for large R. A classifi-
cation of these wave functions based on the R =0 and
R = oo solutions is briefiy reviewed.

In Sec. IV we describe a computer code designed to
solve numerically the recursion relations and to determine
the potential functions. An analysis of the error propaga-
tion in the expansion coefficients, particularly relevant for
large R, serves to control the precision of the calculated
potential curves and channel functions. The code also
normalizes the channel functions and computes the radial
coefficients P„„(R) and Q„„(R). Results are presented
for the singlet S =0 states of helium with L =0 and prin-
cipal quantum numbers n =1, 2, and 3.

In Sec. V we analyze the truncation of the expansion (1}
both by a cutoff l~,„on the angular momentum states
and by the exclusion of channel functions u „(R,a) with
principal quantum numbers n &1,„+1. For L =0,
S =0, we compare potential curves calculated using
values of l from 0 to 3. In the absence of electron-
electron interaction the system of equations for u „i i

decouples as l~, li become good quantum numbers. In
this case we can compare exact Coulomb solutions with
their expansion in terms of the orthogonal functions
u „(R,a). This was done for the ground-state wave func-
tion (L =O, l&

——li ——0) using p values corresponding to
the four lowest curves U &(R).

In Sec. VI we consider the radial equation. In subsec-
tion A the boundary conditions are formulated for bound
states and for states in the continuum. In the adiabatic
approximation the wave function is regular at R =0.
However, for the system of coupled equations one recov-
ers the long-established logarithmic singularities. ' ' At
large R, P„„(R}behaves as p„„"'/R.' We have derived
an expression for P„„'"which shows that it vanishes
when the states u& and u„become degenerate at R = oo,
i.e., they have principal quantum numbers n& n„——at
R = 00. The boundary conditions at R =0 and at large R
require an expansion of the potentials and radial coeffi-
cients in powers of R and 1/R, respectively. The first
coefficients in these expansions are determined by means
of perturbation theory. Numerical calculation of
higher-order coefficients for large R requires rather pre-
cise determination of the potentials and wave functions.
In subsection 8 we present results for L =0 of the expan-
sion coefficients for the potential curves with principal
quantum numbers n =1,2, 3 and for the P&„'s between the
ground state and excited states with n =2 and 3.

We have performed the calculation of the ground-state
wave function of helium using one- and two-channel
functions and four states of angular momentum
(l& ——li ——0, 1,2,3}. The energy eigenvalue found in the
latter, nonadiabatic, case is E = —2.899. Finally in the
last section we present a summary of the results of our
analysis.

II. SCHRODINGER EQUATION IN HYPERSPHERICAL COORDINATES

A. Potentia1 curves and channel functions

The nonrelativistic Schrodinger equation in hyperspherical coordinates R, a, Qi, Qz for two electrons in a central po-
tential Z(r) is'

8 1

BR 4R
1 8 1 I i Ii

R Ba R sin a cos a +2 Z(R sina) Z(R cosa)
R sina coscE

+—[1—sin(2a)cos8ii]'~ —2E (11R~r~sina cosa) =0 (2)
2

R

and we are using atomic units throughout. %'e introduce
the wave functions P=R ~ sina cosa/ which are defined
in a Hilbert space with coordinates R, a, Q~(8i, p~),
Qz(8&, gi), and measure of integration dR da d Qid Qz. As
the total angular momentum 1.=/~+li commutes with
the Hamiltonian, one chooses a basis 4 in the space of
eigenstates of the total angular momentum operator L
with eigenvalue L (L + 1) and of its azimuthal component
with eigenvalue M. E is the set of principal quantum
numbers, including the energy. These eigenstates can be
ex~~anded in terms of generalized spherical harmonics

Y™
, i(iQ&, Q)&defined by

Y i i (Qi Qi}—g (li, mi, li, m2 I
L M &

Ns ),NI2

X Fi, '(Qi)&i, '(Qi), (3)

where 1~ and l2 are the orbital angular momenta of' the in-
dividual electrons. Thus we shaB write

@KLM g KL (R a)YL,M (Q Q )
l), l2

and the functions co i, i,(R,a}are solutions of the infinite

system of coupled equations
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8 1 1 8 1

M2 4R2 R2 Ba R

11(11+1) l2(l2+1)
+

Sm a cos a
2 Z(R sina) Z(R cosa)

sina cosa
—2E

Xco l l (R,a)+ —g C, , (a)co, , (R,a)=0 (5)
l 1,l2

with the symmetry implied by the Pauli principle:

co f, f,(R,2r/2 a) =—( —1) ' 'a} l, l, (R,a) .L+S+l, +l2 KL (6)

f f (R,a)= gR'/ J~(R/2E )(sina) ' (cosa) '

P (II+1/2, f2+1/2}( (2 ))

Here S =0, 1 is the total spin of the electron pair. The
coefficients C~f l l, f, (a) are invariant under the transfor-

mation a~n/2 —a. For a in the interval (0,1r/4) they
are given by

1C
f f f f ~ (a} g (tana) C

1 f12 12 cosa g 12 12

where the coefficients C~f f f, f, are defined in Ref. 1.

In the absence of the electron-electron interaction, the
equations for ro f,f, decouple as l 1 and l2 become good

quantum numbers. The equations for the noninteracting
system are completely separable in the variables R and a.
The solutions are of the form

r0 f, l,(R,a)= QFx &(R)u~& ,ff(R,a), (10)

where u &f, f,(R,a) are solutions, specified by a set of
discrete quantum numbers Iu, of the system of equations

where J~ is a Bessel function with index

m =2j+11+l2+2 (9)

(l] + 1/2 l2+ 1/2)
and PJ

' ' ' is a Jacobi polynomial' with integer
mdex J.

When the interactions are turned on, the Eqs. (5) no
longer separate. There is some freedom of choice of a
basis for the expansion of co l, l, (R,a) regarded as a func-

tion of the angular variable a. We shall follow here a
standard procedure' of separating co in the form

11(11+1) l2(l2+1) Z(R sina) Z(R cosa)+28 . +
Ba sin a cos a sina cosa (el ) 12

+2R U (R)—2R g C, , (a)u, , =0.
l ),l2

The U „(R)'s are potential curves determined by the im-
position of regular boundary conditions at a =0,2r/2 and
the symmetry due to the Pauli principle. It is often con-
venient to use the functions W„(R)=2R U„(R). The
functions u &f, f (R,a) shall be regarded as the com-

ponents of a multicomponent wave function u &(R,a) be-
longing to an orthogonal set in the space of the coordinate
a. We shall normalize them by

e'/2

g u &f,f,(R,a)u „f,f,(R,a)da=5„„. (12)
l), l2

Five-dimensional channel functions p „(R,a, &1,02) are
then constructed according to

pa(R a II1»+2) g u pf l + l l (+1 +2) '

l), l2

Since we are considering states of well-defined I., to sim-
plify the notation we will henceforth drop the superscript
I..

In order to handle the system of Eqs. (11) one has to
reduce it to a finite one by restricting the values of [ l },l2 J

in the expansion (4) by imposing a condition such as
l1,12 & l

2'„(R) +gq„(R) F„(R}=0, (14)

where the nonadiabatic couplings are given by

Q«„((()=(««z «„),

P«„(R}=(«««„). (16)

Here the brackets denote integration over the variable a
and summation over the pair of indices l },l2.

An expression for the P&„'s which does not involve
derivatives of the wave functions and for the Q&„'s with
first-order derivatives only can be obtained by taking the

B. The radial equations

The radial equations for the expansion coefficients
F„(R}are obtained by taking projections of Eq. (5) on the
basis of functions u&(R, a). The result is

a2
2'(R)+2E F—~(R)aR' 4R'
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derivative with respect to R of the equation for iI„(R,a)
and integrating in a with II„(R,a). This also gives an ex-
pression for the slope of the potential curve. One finds

(i}for p=v, W„=2(II„~V
~
u„},

(ii) for IM+v, Pz„——2—{u&
~

V
~
u„}/(W&—W„) . (18)

A dot designates differentiation with respect to R and the
angle brackets have the same meaning as in (15) and (16).
Vis the following matrix:

III. THE ANGULAR %AVE FUNCTIONS

A. Analytic solutions of the angular equations

We shall now consider the system (ll) of N, coupled
equations, where ¹ is found in terms of L, lm, „,and the

parity P =(—1}' ' of the state, to be

N, =S(l +s)—S(l —2L —s),
where

a=[1+(—1) P]/2

1 1 I.
V, , i, ( )=—Z . + I'I I'I + I'I'I I1212 syne co~

The Q's are then calculated by

and

0, n~0
S(II)= n (n +2)/4, n =even integer

(n +1)~/4, n =odd integer .

{20}

Therefore in (14) the operator

""dR

can be written as

Ppv + Ppv {lip
~
iiv} (21)

which is manifestly Hermitian. At R =0, W„and the
P„„'scan be calculated by first-order perturbation theory.

The coefficients in these equations are singular at the
boundaries a =(O, ir/2) of the physical region. The physi-
cal solutions are required to be regular at these points.

A number of methods have been employed in the solu-
tion of this system of equations. As pointed out by Lin, '6

early methods suffer limitations in the form of numerical
instabilities, lack of convergence at large R, and inaccura-
cies when a large number of channels is introduced.
These problems hindered the calculation of the nonadia-
batic coupling terms as well as the investigation of the
convergence of the angular momentum expansion. We
have developed here an analytic approach which is not
beset by these difficulties for the specific case of a
Coulomb central potential Z(r)=Z/r. For this purpose
it is convenient to introduce a new variable x =tan(a/2),
so that the coefficients of the differential Eqs. (11)become
rational functions of x. The equations then read

l i (l I + 1) 12(12+1) 1 1
—,
' (1+x') (1+x') —(1+x')', +,, +2ZR(1+x') +, + W(R) III,I,dX X 4x2 (1—x } 2x

for x in the interval (O, xz) where xc ——tan(m/8) =v 2—1.
For xo &x &1 one has to replace in the electron-electron
interaction a by (m /2 —a) which transforms x to
y =(1—x)/{1+x). Because of the symmetry of the
Harniltonian it is sufficient to solve this system of equa-
tions in the interval (O,xo) and use the conditions

L +S+l1+l2
u„i,i, (R,XO) =(—1) Qpi I (Rpxo )

u„I i, (R,x}

(24}

u&i, i, (R,X)=(—1) ' 'u„i, i, (R,y) (23)

set by the Pauli principle to determine the wave functions
throughout the interval 0&x & 1. Finally we impose the
continuity of the wave function and its first derivative at
x =xo'.

These boundary conditions determine the eigenvalue
W„(R).

Let us now study the analytic structure of this system
of differential equations. In the absence of the electron-
electron interaction there are regular singularities at x =0,
00, +1, and +i. The electron-electron interaction is not
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represented by the same analytic function in the two inter-
vals (O, xp) and (xp, 1). Although the system of Eqs. {22)
with or without electron-electron interaction has the same
analytic structure, except for the nature of the singulari-
ties at x =+1, the analytic continuation of its solution
from the interval (O, xp) to (xp, 1) coincides with the func-
tion obtained by using (23) only in the absence of the
electron-electron interaction. Since this interaction is con-
tinuous at x xp but its first derivative is not, the condi-
tions (24) and (25) ensure the continuity of the wave func-
tions and their derivatives up to second order only.

The singularities at x =0 and at x =1 are at the
boundaries of the physical region. Their indicial equa-
tions are

si(si —1)=l;(l;+1), (i =1,2)

with solutions s; =l;+1 and s; =—l;. The physical wave
functions correspond to solutions whose indices have
values (l i + 1}at x =0 and (1i+ 1) at x = 1. These regu-
lar solutions can be represented in the interval (O, xp} by a
power-series expansion in x with a radius of convergence
x = 1, since the nearest singularity to the origin lies on the
unit circle. The fact that all the singularities other than at
x =0 and x = ce lie on the umt circle indicates that the
choice of the variable x is the best for a power-series rep-
resentation of the wave functions in the interval (O, xp).
The indicial equation for the singular points x =+i is
s2=2R U(R)= W(R).

At R =0 the eigenvalues are W(R) =m 2 where m is an
integer given by (9). In the regular solution (8)
P ' '+'»''+'»'(cos2a} is a polynomial of degree j in
cos2a, hence the index of this solution is —m. The in-
dices s =+v'2U(R) will be imaginary when U(R) be-
comes negative. It is not difficult to see that two real in-
dependent solutions behave as exp[+aR& —2U(R)] and
the solution which is regular at x =0 will be of the form

u~i, i (R,x)=u ~l, i,(R»)exp[ aR+ —2U(R)]

+u+&i, i,(R,x)exp[+aR V' —2U(R)] . (26)

The imposition of the boundary condition at x =xp
suppresses the increasing exponential term by a factor
=exp[ (—n/2)R& 2—U] A. ctually in the absence of the
electron-electron interaction u and u+ are related by

u id i (R,x)=( —1) u pi i (R,f)

Xexp ——R &—2 U(R )
2

(27)

For large R, 2 U(R) approaches an eigenvalue —Z /n
of the Coulomb Hamiltonian for a single electron, and the
behavior of the wave function is dominated by the de-
creasing exponential in the range (n/4 a)R—»1. This
analysis suggests a representation for the wave function
with quantum number m, in the interval (O,xp), of the

u&i, i, (R,a)=(2x) ' (1—x )
' (1+x )

X exp[ —aE(R)]g„, , (R,x),

where g„I,i, (R,x) has a power-series expansion:

(28)

gqi, i, (R,x)= g A„(,i, (R,k)x"
k=0

(29)

and E(R) behaves as R&—2U(00) for large R and van-
ishes at R =0. For practical reasons we have chosen
E(R)=R& 2U( ao )—. The first factor in (28) will ensure
the proper behavior of the wave function at x =0; the
second was introduced for convenience and could have
been left out; the third will improve the convergence for
small R; while the exponential will improve the conver-
gence for large R. Upon inserting the expression (28) in
the Eq. (22), one obtains a system of differential equations
for the functions g„i,i, (R,x). Substitution of these func-

tions by their power expansion (29) generates recursion
formulas for the coefficients Ai, i,(R,k). The boundary

conditions for g &i, i,(R,x) are

L +~+&)+I2
g~I, i (R,xp) =(—1) g„i,i,{R»p» (30)

2
g„i,i, (R,x) —

2 [2jxp+E(R))g„i,i, (R,xp)
z =zp 1 +xp

( 1)I.+s+I)+12 d 2
g&i, i, (R,x) — [2jxp+E(R)]g&i i, (R,xp)

z =zo 1+xo
(31)

From (30) and (31) one obtains a set of homogeneous
equations for the coefficients A&i i, (R,O) which are eigen-

value equations for the potential functions W(R).

B. R dependence of the angular functions

At R =0 the solution of the angular equation with
quantum numbers j, li, l2 is given by Eq. (8), with eigen-
value W&(0) =m~ and m given by {9). For a given value

of m one obtains a degenerate set of solutions.
As one moves away from R =0, the degeneracy is re-

moved by the interactions. Each energy eigenstate wi11

have a limit for R~0 which is a linear combination of
Jaeobi polynomial solutions that can be obtained by first-
order perturbation theory. These eigenstates can be classi-
fied by a set p =(ji,jz,j}of positive numbers according to
the following rule. If the electron-electron interaction is
adiabatically switched off, the wave function rmiuces to a
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pair of components with indices li, l2 and 12,li. The set

(j&,j2) is given by the pair (li, lz) subjected to the condi-
tion ji j2, and j is defined in terms of the eigenvalue at
R =0 by (9). The range of values of these numbers for
states of total orbital angular momentum L, total spin S,
and parity P = ( —1) ' ', corresponding to potential
curves which start at the same value IV(0) =m at R =0,
is given by

(i) 0&j2 —ji &L &j2+ji &m —2;
(ii) j &(m L ——2)/2;
(iii) if ji ——j2, then ( —1)i=(—1) +

In the absence of the electron-electron interaction the
Eqs. (22) decouple. The eigenvalues W„(R) for two dif-
ferent eigenfunctions, with the same quantum numbers L,
S, P do, in some instances, cross at some value Ro of R.
However when the electron-electron interaction is turned
on and a sufficiently large value of I is chosen, the po-
tential curves always avoid crossing.

At large R, the equation for the channel functions
u „(R,a) may be written, following Macek 2 in terms of
the variable p=Ra, for a &n/4; the effective potential
expanded in inverse powers of R is then given by

I i(1i+ 1)
VLi ii, i, (R,a)=

1212 2p

Z Z —1 1 Z
p R

+ —,Ii(Ii+1)+—,12(12+ 1)——p6

P I r —3X5i it 5i iI + 2
C

i i iIi, +O(R )11 22 R
(32)

Accordingly the wave function has an asymptotic expan-
sion of the form

u„(R,a)=A(R) g Iu„' '(Ra)+( —1)
k=0

X [u„'"'(R(n./2 —a))] ) /R

(33)

where (u„i,i,
' ')"=u&i,i,

'"' and A(R) is a normalization

factor which for R~co behaves as (R/2)'~. To order
1/R the equations for u&i, i, separate; the eigenfunctions

are bound-state Coulomb functions with eigenvalue
W& = [(Z /—n& )+2(Z —1)/R]. In this approximation
there will in general be a set of degenerate eigenstates
u&' '(p) with the same eigenvalue n„We shal. l say that
the indices p and v of the channel functions u„and u„
belong to the same equivalence class, p-v, if n„=n„
This degeneracy is removed in the next order, 1/R . The
components of the zeroth-order wave function u„' '(p)
are expressed in terms of bound-state Coulomb wave
functions t'ai„i(p) by

u, i, i, "'(p)=a,i, i,f.i, (p); (n =n, ), (34)

O,O-

-05"

2U {R)

0=2

a set p=tni, n2, n], where n is the principal quantum
number and ni, n2 are given by the angular momenta
li, l2 of the leading component of the asymptotic wave
function as R~ 00, with the electron-electron interaction
turned off.

For states of given L, the range of these numbers is

(i) In2 nil &I &n2+n

(ii) n, &n —1.
Because of avoided crossings the correspondence be-

where the g's are normalized by

f e. i, (PV i, (P)dP=5. . (35)

and a&i i =0 if li & n —1. For Ii & n —1, the a's are the
orthonormalized solutions of the eigenvalue equations:

I1,12 - 2.0
0 20 30

where V i i i, i,
' ' is the matrix element of the coefficient"~ 12' 12

of the 1/R term in the effective potential between states
t)'„,, and y„, .

The channel states can likewise be classified in terms of

FIG. 1. Excited-state potential curves. The curves are la-
beled according to the convention (1&,ji,j), where j is defined by
Eq. (9). Note the avoided crossing of the (330) and (004) curves
at R ~ 15 brought about by the electron-electron interaction.
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tween the labels (ji,j2,j) and {n,,n2, nj is not the same
with and without electron-electron interaction. An exam-
ple of an avoided crossing is shown in Fig. 1 between the
curves (3,3,0) and (0,0,4). In the absence of electron-
electron interaction they start off at m =8 and m =10,
cross at some value of R and end up at n =4 and n =3,
respectively, with corresponding labels {3,3,4I and
{0,0,3 ). Actually the situation is somewhat more compli-
cated because the curve (0,0,4) also crosses the curves
(1,1,2) and (2,2,0) which both end at n =3. With the
electron-electron interaction included, all the crossings are
avoided. Then the three curves ending at n =3, namely
{0,0,3), {1,1,3I, and {2,2, 3) will be resp':tively identi-
fied with (2,2,0), (1,1,2), and (3,3,0). Other examples are
given in Ref. l.

IU. COMPUTATIONAL ANALYSIS

Ai i (R,k) due to an error e in the potential 8 (R), propa-

gates according to a similar law

DAN, i, (R,k)/DAi, i, (R,k —1)=-2p/(k+1, +1),
but this behavior starts at k =2. When
xo EAi i (R,k)=AI i (R,O) the wave function at x =xo ls

overcome by the error in the kth order and following
terms. At this point the expansion must be terminated.
The value of N(R) required to give a precision e in W(R)
can be accurately estimated and was verified in the course
of the calculation. In double precision, i.e.,

~
e/W(R) {

=-10 ', the maximum value of N(R) is
N, „=-63 for p=26. For larger values of p, N(R) will
decrease. Consequently a determination of the potentials
at large R with the required precision can be achieved
with only relatively few terms, e.g., 20—23 terms for dou-
ble precision at p=50.

A. Numerical methods

We have written a computer code to calculate the angu-
lar wave functions u „i,i,(R,a) and the potential curves

U &(R), for L =0 and I.=1. The first task is to solve
the recursion formulas at equally spaced values of R. The
number of terms N(R) kept in the power expansion is ad-
justed to give a selected precision e in 8' „(R). At each
value of R the recursion relations are initially solved for
two trial values of W~&(R) as a starting point for an
iterative linear interpolation of W „(R) designed to mini-
mize the determinant of the linear system of boundary
conditions at x=xo. As R is successively increased,
values for W z(R) are provided by Newton's method of
forward differences. The procedure converges rapidly;
usually only very few iterations are required to achieve the
desired precision. Next the channel functions are normal-
ized according to Eq. (12) using a fifth-order Gaussian in-
tegration method with I.egendre polynomials as basis.
This method is highly efficient, and the errors of integra-
tion are smaller then those due to other approximations.
The components of the channel functions and their first
derivatives are then calculated at x =xo to check how
well the boundary conditions are satisfied at a given value
of R.

At small R, the precision in the wave functions can be
increased by increasing the value of N(R). At large R,
the propagation of errors in the expansion coefficients
prevents one from an arbitrary choice of N(R). Beyond a
certain value of R, best results are obtained for decreasing
values of N(R).

Let us consider a state whose eigenvalue, in the limit
R~ao is 2U(oo)= Z!n, and intro—duce an effective
parameter p =2'. /n which approximately scales the
behavior of the expansion coefficients A(R, k). When k
reaches a value such that

[(2p)"/k!]exp( mp/4) =1, (k =p/—2),
the coefficients change with k approximately as
A (R,k)/A (R,k —1)—=2p/k, refiecting the presence of the
exponentially increasing term in the wave function. On
the other hand, for large R, the error EAi, i,(R,k) in

I

l-1.0-
I

I

I

1&

I

I

I

1

l

l
I

\ 2

2U(R)

1.4-

2.0 4.0 8.0 10.0

FIG. 2. Channel dependence of (002) potential curve. The
dashed line is the calculation using two channels (I =0, 1), and
the smooth line is the calculation with three channels
(l =0, 1,2}. The stars indicate the alteration in the potential
minimum due to the addition of the fourth channel (1 =3). This
is much less than the difference between the three-channel ener-

gy calculation (3) (Ref. 2) and the experimental result (E) (Ref.
5).

B. Potential curves and radial cauplings

Potential curves for the singlet states of helium with
l. =0, ending on n =1, 2, and 3, calculated with 1,„=3
are shown in Figs. 1—3.

The radial couplings P&„(R) and Q&„(R) can be calcu-
lated either by means of Eqs. (15) and (16) or Eqs. (18)
and (20). The first and second derivatives of the wave
functions can be calculated using data at points R and
R+5R, with an intrinsic error of order (5R) . If e(R,n) is
the random numerical error in the wave function, the first
and second derivatives will have random numerical errors
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-5.0-

plings P&„are calculated as precisely as are the channel
functions, and the Q„„couplings have the accuracy of the
first derivative. Numerical results using these formulas
for channel functions with 1,„=3,are shown in Fig. 4
for the P„„couplings between the ground state and all the
excited states ending on n =2 and n =3.

-6.0-
2U(R)

V. ROTATIONAL AND RADIAL EXCITATIONS

A. Rotational excitations

-7.0 "

-8.0-

0 2 3 4 5
R

FIG. 3. Ground-state potential curve. Four channels were
used in the calculation of the curve shown here. In the inset is
depicted the percentage difference in the effective physical po-
tential, [ W(R) —mi], as one successively includes further chan-
nels, l.e., DJ=[W(R) WJ(R)]l[—W&(R) m]—, where the sub-

script refers to the number of channels used in the calculation.

0.30

o.20

0.10

0.00
PI) V

-G.& 0

-0.20

—0.30

of the order s/5R and s/(5R)i, respectively. Choosing
the value of 5R so as to minimize the total error in the
first derivative (5R=

~

s
~

' ), one obtains a precision in
the determination of the first and second derivatives of or-
der

~

s
(

~ and
~

s
(
'~, respectively. The advantage of

using Eqs. (18) and (20) is that the long-range radial cou-

The contribution of rotational excitations to a given
state is restricted by the truncation of the angular momen-
tum channels included in the expansion (4). As a rule, one
expects higher angular momenta to have little effect on
the low-lying states and resonances, but to become
paramount for the correct description of highly excited
states and resonances, which would require a large value
of I to even appear in a first approximation. Hence for
highly excited rotational states the choice of hyperspheri-
cal coordinates may become impractical.

In order to investigate quantitatively the effect of the
cut on the angular momentum channels we have done a
calculation of the potential curves for singlet states with
total angular momentum L =0, taking values of I,„
from 0 to 3. In this case li ——li ——l so that we have chan-
nel functions with 1 to 4 components. In Fig. 3 is shown
the ground-state potential curve calculated for four cou-
pled channels. In the inset is shown the percentage
change in the effective potential (2 U —m ~/R ) as a func-
tion of R, when I,„ is successively increased by one unit.
The relative difference Diq between the curves calculated
with one and two channels is as much as 5% for R =1,
but the difference D34 between the curves calculated with
three and four channels decreases to 10 . This means
that the exclusion of angular momentum channels with
1&4 should give an error in the energy of the ground
state and low-lying excited states of order 1/10000. For
the curves shown in Fig. 1, corresponding to excited
states, these differences become increasingly larger. An il-
lustration is given in Fig. 2 which shows the potential
curves for the state (0,0,2) calculated with two, three, and
four channels. For reference, the experimental value for
the position of the first autoionizing state is indicated, as
well as the theoretical value obtained by Macek using the
adiabatic approximation. The resonance positions ob-
tained with the inclusion of two and three channels seem
to indicate that the discrepancy with the theoretical value
cannot be solely attributed to the neglect of larger angular
momentum channels. Beyond the last curve shown in
Fig. 1 reliable calculations must include channels with
higher values of l.

-0.40-
0 2 4 6 8 &0 &2 14

R
FIG. 4. Nonadiabatic mixing coefficients. Here are sho~n

the values of the P„„for the ground-state curve mixed with each
of the five curves ending on n =2 and n =3. As expected, the
mixing with the n =2 curves is largest, but that with the n =3
curves is not negligible.

B. Radial excitations

The coup11ng 1n the angular quat1ons of rotational
states with different values of angular momenta li, li for
the electrons is exclusively due to the electron-electron in-
teraction. By contrast, the coupling in the radial equation
of radially excited states is due to the nonseparability of
the Hamiltonian in hyperspherical coordinates, even in
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the absence of the electron-electron interaction.
The effect of truncating the wave-function expansion in

terms of eigenfunctions u&(R, a) of the angular equations
can be investigated by considering the two-electron system
under only the Coulomb interaction with the nucleus.
One can then compare the expansion with the exact solu-
tion. In this case the angular momenta li and l2 of the
electrons are good quantum numbers and, together with
the principal quantum number n, label the eigenstates
u„(R,a), p= Ili, 12,n I, of the angular equation. Let us
consider the ground-state wave function

o) (R,a) and expand it in terms of

u(00„)(R,a). Wehave
3

Vi(R,a) = exp[ —ZR (sina+cosa)]
2

TABLE I. Value of (1—k') for the ground-state curve. N is

the maximum number of potential curves employed in the ex-

pansion of the analytic wave function. The coefficient in

parentheses is the power of ten which multiplies the number.

1 —A,
2

1.47( —3)
5.86( —6)
2.26( —7)
2.10( —8)

comparable to those arising from the cut in angular
momentum channels.

1 g F"( R) u„( R,n),
R SIP coscx

(37) VI. THE RADIAL FUNCTIONS

where u„(R,a) stands for u(00„)(R,a). Let us denote by
(I)N(R, a) a normalized apprmimation of Vi(R, a) by the
first N terms in the expansion and let

E~ ——(Pz ~
H

~
P~). Then we have for the percentage er-

ror in the ground-state energy Ei.

(E —E )/E =1 g l&y—I+.&( (E./E ) (3g)

Since

1&IN I +i& I
'&1—1&Au I +l~ I

then,

(1—)L. ) &(Ei —E~)/Ei &(1—)(, )(1 E2/Ei)= —,'(1——A, ) .

(39)

Now one can immediately find that )I, = ((I)~
~
+i ) is max-

imized by the following choice of F"(R):

F"(R)=—J «„(((,a)P, (R,a)R ) s(nacosada (40)

A. Boundary conditions

Since the number of solutions of the angular system is
infinite (they form a complete set in the interval
0 &a & n /2 with appropriate behavior at the boundaries),
the system of radial equations (14) is also infinite. How-
ever, because of the truncation of the spherical harmonic
expansion, only a limited number Nf of solutions corre-
sponding to a set of low-lying eigenvalues can be mean-

ingfully included in the expansion (1). The resulting sys-
tem of Nf second-order equations will have in general

2' independent solutions. The physical solutions are re-
quired to be continuous and have continuous derivatives
at R =0 and at R =(x). We shall now set up the
boundary conditions for Eq. (14) compatible with this
behavior.

(i) R =0. At R =0 the coefficients P„„and g„„are
regular, while 2U& has a double pole with residue m„i.
The point R =0 is therefore a regular singularity of the
system of differential equations with corresponding set of
indices Is=+m„+ —,

' I. The continuous solutions have
the form

which gives
r

A, = g f R'dR J u„(R,a)+i(R,a)sinacosada
F„(R)=gR p+'~ f -(R)b-,

VP P,
(42)

(41)

This parameter A, is related to the norm of the difference
of the wave functions (Iii and 4N by the following:

The values of (1—A, ) for N = 1 to 4 are given in Table
I. The energy eigenvalue for N =1, corresponding to the
adiabatic approximation, is already correct to a precision
of order 1/1000. The inclusion of eigenfunctions with
n &4 improves the precision to 2&10 . These results
attest to the q~»&iseparability in hyperspherica1 coordi-
nates of the Coulomb Hamiltonian for two electrons, at
least for the ground state. Of course the convergence of
the expansion (10) may not be as good when the electron-
electron interaction is included. One expects the errors re-
sulting from the truncation of such an expansion to be

where the second index with a caret labels a particular
solution, and the first is a component index. The function
f -(R) will have only logarithmic singularities which

occur as a result of the differences (rn„m„)bein—g po-si-

tive (even) integers. The reduced equations for the func-
tions f are

1 d5„„+(2m -+1)5„„—+2P„, +Q„„

2

+(2m-+1) " + 2E 2U+ "
5q„ f—-=0

g2

(43)

with boundary conditions at R =0 given by
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( )f (0)
VP,

(ii) v=p, : f -'"=W-/(2m-+1)

(2m-+1)P-
(iii) v~p, : f„-'"=— (44)

Because the first correction to the zeroth-order asymI2totic
wave function is of order 1/R, it follows that p„„'=0
and q„.(3)=0.

We shall now derive an expression for the coefficient
p„„'"in (50) which shows that it vanishes whenever )M -v.
We start with the asymptotic expression'

The second derivative at R =0 is obtained froin the dif-
ferential equation. One finds

where

B-
2(2)

(m„-+2)'—m„' ' (45)

& -= Q I[(2mp+3)P.)
—II'.~.2.]f2„-'"I

+(2m„-+1)P -+Q -+(2E—W„/2)5 -, (46)

All the functions and derivatives in these expressions are
taken at R =0. Higher-order coefficients can be obtained
in the same way. If there is a channel u „with
m, =m - 2, the second derivative off - becomes infinite.p+2l V)4

The function develops a logarithmic sinelularity of the
form f„-' '"R lnR. The coefficient f -' ' is found to be

B-
(2, 1)

2(m -+2) (47)

00f (R) g f (If)Rll

n=0

f (N, NI)R ll(1~)ltl
n=2 m=1

(48)

The existence of a logarithmic singularity in the variable
R was first established by Bartlett' based on work by
Pierce. ' An expansion of the form (48) was proposed by
Pock' and used in variational calculations of the He
ground-state wave function.

(ii) R ~ oo. At large R one uses the asymptotic expan-
sions:

2(Z 1) 2U (2) 2U (2)

and one can take f -' '=0. Because of this logarithmic
singularity, in a numeric integration of the equations the
propagation from the origin to the next point has to be
done analytically. The general form of the functions
f -(R) is then

dp
(52)

and consider the Schrodinger equation for the nonvanish-
ing components of u&( '(p):

d 11+ 2Z Z (0)( ) 0 (53)
l l +1

d 2

Multiply this equation by u„(,(,
' '(p}, interchange v with

p and integrate the difference of the two equations from 0
to p. One obtains

(o) d „(o) „(o)d „(o)
vl1l2 ~ p,l 112 p,l1l2 ~ vl1l2

1 1 ~ (o) (o)dP.
Q 12 12

v
(54)

P„„(p)= g f u„(,(,
' '(p')u (,I, (p }dp

l1, l2

(56)

and (})„„(ao )=5„The difference [(t)„„(p)—5„„] ap-
proaches zero as a decreasing exponential in p.

Integrating by parts one finally obtains

(1) Z 1 1 (p) (p)
2

pp, v =
4 2 2 p p, l1l2 vl1l2 p p

~v ~p l l2
J

If n& n„, p&„—"—' ——0. Since p&„' ' ——0, the leading term in
the P„„will be in this case of order 1/R 2.

A complete set of solutions for the radial equations
may be defined in terms of boundary conditions at large
R. In order to establish these conditions let us write

F+ -(R }=R "exp(-+K„-R)f+JR), - (58)

where f 4R) has an asymptot-ic expansion in inverse
powers of R

Multiplying by p, integrating in the interval (0, 0o), and
summing over the indices Ii, l2, one finds

2p (1)=Z2 ' —'
p p 55

np nv

where

(1) (2) (3)

(50}

f+-(R)—=p-
i

(59)

(2) (3)

g (R )
Vgcv V/lv

R +R (51) Z —1
g E- (61)
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The boundary conditions for the solutions f-(R) with

components f - are the following.

(i) n„=n- F. or components f - such that v-p, :

l. Bound states

In this case K is a real number, and the solution has to
behave as a decreasing exponential. Therefore it will be a
linear combination of the form

f - = [2U- —(s-——, ) 5-—q - ](I) l (2) 2 (2)

g

F„(R)=$R "exp( K-R—)f -(R)c- .

By solving the radial equations we obtain a set of homo-
geneous equations for the coefficients b- in Eq. (42) and

c- which also determine the discrete energy eigenvalues.

(ii) n„gn„-. For components f - with v not -P, one

gets

2. Scattering states

For states in the continuum, K is purely imaginary,
K-=ik-, where

(0) ' 1/2

k-= 2E+
Pl

(65)

(63)

We have suppressed in these expressions the superscript +
in the f's and s. In Eq. (62} the sum is for A, not
Rmvgmt ~ vlf~(i) is tob rqla~ by the exprN-
sion (63).

For physical solutions we have to distinguish two cases.

L

Solutions F+ correspond to outgoing spherical waves, and
F to incoming spherical waves. In photoionization a
solution with outgoing spherical waves specifies an open
channel that can be produced at a given energy E. All the
other solutions must have incoming waves or decreasing
exponentials. Therefore the wave functions will be of the
form

F "„=R "exp(+ikP)f+ gR)+ $ R "exp( ik-R)f -—(R)c-+ $ R "exp( K-R)f QR—)c-„-,
pc(open) p(c10sed)

(66)

where the index ir specifies the outgoing state. The first
sum extends over all the open channels (imaginary K„-)
and the second sum over the closed channels (real K„-}.
Again matching the function E„(R) given by (42) with
F „as given by (66) will produce a system of inhomo-
geneous equations for the determination of the coeffi-
cients b„- and c„-. The wave functions for the different

open channels at a given energy are labeled by the index a.
In order to obtain asymptotic wave functions for the ion
and the outgoing electron with angular momenta ii and
12, respectively, one has to take linear combinations of the
above solutions, g„-F -a&

&
with a~ &

de ined by Eq.ll ~ Jf )l2
(36).

In electron scattering on an atom the asymptotic initial
state is the product of the wave function for the atom and
a plane wave for the incoming electron. The final state is
asymptotically a sup(s(position of the incoming plane
wave plus outgoing spherical waves. The plane wave may
be decomposed in partial waves of angular momentum
caring incoming and outgoing waves. The partial waves
will be specified by the amplitude of the incoming spheri-
cal wave, hence they will be given by E '(R)'. In general
the scattering is off the ground state of the atom, which is
nondegenerate. However one may also consider scattering
from excited states, in which case one should take the ap-
propriate linear combination of the independent solutions

that corresponds to the asymptotic initial state.
For any pair of solutions with the same energy E and

vanishing at R =0, the following identity holds:

g [F "„(R)]'E „(R) —[F "
„(R)]'F "„(R}5q„

+2[F "„(R}]'P„„(R)F"„(R)=0 (67)

which expresses the conservation of the electric current
across a spherical surface of radius R. It follows from
this identity that, in scattering states, one has

c —.k~-=5-.4-
PK P PAL' JC JC Ã

p(open)

(68)

where the sum extends over all the open channels. The
scattering states are then normalized by

J g [F "„(R)]F "„(R)dR=2nkA-„.5(E E') . —

B. Numerical solutions: Ground state of He

The radial equations have to be solved numerically by
any standard method which propagates the function from
one point to the next. In order to enforce correct
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TABLE II. Asymptotic expansion coefficients. The number
in parentheses is the po~er of ten which mu1tiplies the quoted
number.

8'(R)
g (0)

(000}
{110}
(002}
(220)
(112}
(330)

—0.50000
—3.8541

2.8541
—11.2345

0.9202
8.8142

—0.75000
—8.03
—4.00

—21.3
—52.2
—0.77

—0.375
—43

30
—65{1)

21(1)
53

boundary conditions, the best procedure is to start from
both ends, i.e., at R =0 and at a suitably chosen large
value of R, propagate the function to some intermediate
value, Rm, t,h, where the two functions and their first
derivatives are matched together. The boundary condi-

tions at R =0 depend on W„(0), W„(0), and P„„(0),all
of which can be calculated in closed form, except for
P&„(0) between two states with degenerate eigenvalues

W„=8'„. In this case one can either calculate it numeri-
cally by means of Eq. (16) or by the expression

8"~—8 gP„„(0)=—2+P„„ (70)

derived from (1S) using 1.'Hopital's rule. However, be-
cause of the logarithmic singularity, in order to propagate
the wave function away from R =0 using the expansion
(48) one also needs the Q&„'s and higher-order derivatives
of the potential function W„(R) and of the radial cou-
plings at R =0. These have to be determined numerical-
ly. (See Table III.)

At large R, according to Eqs. (5S) and (59), the
boundary conditions require the values of the coefficients
in the asymptotic expansions (49)—(51) up to terms in
1/R . The coefficients 8'„' ', p„„"',and q„„' ' can be
computed perturbatively in closed farm. If the boundary
conditions are not imposed at a sufficiently large value of
R, in order to improve their precision, particularly in the
case of scattered states, one may want to extend the ex-
pansion (59) by the inclusion of additional terms in higher
inverse pawers of R. In this case one needs further terms
in the expansions (49)—(51). However we should bear in
mind that in view of the asymptotic nature of these 1/R
expansions, they should not be used for too low values of
R. A reliable evaluation of these higher-order terms will
require an accurate determination of the potential curves
and charmel functions. Using dauble precision, one
should be able to determine up to four of these additional

TABLE III. Derivatives of the potentia1 curves and radial
coup1ing coefficients at R =0.

(000)
(110)

—11.1804
—9.3989

—0.290
—0.279

—0.378
—0.372

(000)-(110)

(0)
gpav

0.08003

(1}
Pp, v

0.043

(2)
Ppv

0.008

Curve-Curve
(000)
(110)

(000)
—0.0207
—0.0388

(110)
0.0472

—0.0138

(I)
Qy, v

Curve-Curve
{000)
(110)

(000)
—0.006
—0.004

(110)
+ 0.012
+ 0.006

coefficients for the potentials and one or two for the P„„'s
and Q„„'s. In Table II a set of these asymptotic expan-
sion coefficients is reported.

We have solved the radial equations for the ground
state of helium with one- and two-chaimel functions
(0,0,0) and (1,1,0) and four angular momentum channels
(li ——l2 ——0 to 3). A fourth-order Runge-Kutta method
was used to solve the differential equations, taking a grid
of points separated by intervals ~ =0.04. This spacing
is sufficient to keep the errors smaller than those resulting
from the truncation in the expansions (4) and (10). The
wave function was initially calculated analytically at
R =0.04, which was the starting point for the propaga-
tion from below. From the other end we started at
R =18. The matching point was chosen at R~„h——2.6.

As expected, for the bound-state solution the energy
eigenvalue is much more sensitive to the boundary condi-
tions at R =0 than at large R. In the one-channel calcu-
lation (adiabatic approximation) we obtained for the ener-

gy the value E = —2.895, in agreement with the result of
Miller and Starace. 22

The two-channel calculation gives an improved value of
E = —2.S99. For comparison, Pekeris's result of varia-
tional calculation is E =—2.9037. The inclusion of all
the channel functions corresponding to potential curves
rvith principal quantum numbers n =2,3 at R = ao,
should significantly improve our result.

P„„(000)—(jIj2j) VII. CONCLUDING REMARKS
AND SUMMARY OP RESULTS

(110)
(002)
{220)
{112)
(330)

0.4753
—0.2937
—0.1753
—0.1485
—0.0810

In this paper we have developed a new procedure for
computing wave functions for He and H using hyper-
spherical coordinates. The angular equation for the chan-
nel functions is solved analytically using a power-series
expansion in the variable x =tan(a/2). The expansion
coefficients, given by recursion formulas, are calculated



HORNOS, MacDOWELL, AND CALDWELL 33

numerically for fixed values of R. The propagation of er-
rors can be rigorously controlled, in particular, for large
values of R. Beyond a certain value, which depends on
the desired precision, a decreasing number of terms in the
expansion should be kept in order to achieve a selected
precision for the potential functions W(R). As a result
one can avoid instabilities at large E. that beset other ap-
proaches.

We have done an analysis of the effects of truncating
the expansion of the wave function both in terms of the
angular momentum states and the channel functions. It
shows that the convergence of the expansion in the angu-
lar momentum channels is somewhat slow. However
keeping only three terms in this expansion already reaches
a precision comparable to the accuracy of the adiabatic
approximation (only one-channel function). Therefore a
consistent improvement of the method would require the
inclusion of more angular momentum states as well as
channel functions. We have established exact boundary
conditions for the coupled radial equations. One finds
that, as long as one retains the coupling of channel func-
tions in the radial equations, the radial wave functions
will have logarithmic singularities at R =0. The radial
equations were solved for the ground state of helium using
two-channel functions and four angular momentum
states. Our result represents an improvement over a pre-
vious calculation using the adiabatic approximation.

We note that the hyperspherical method was primarily
intended for the computation of wave functions for excit-
ed states and in the continuum. The results of our
analysis and of the preliminary calculation of the helium
ground-state energy suggest that it is possible to achieve a
degree of precision such that one should be able to make
reliable determinations of observables in scattering pro-
cesses which are particularly sensitive to the details of the
wave functions. Our computer codes were written for
eigenstates of total angular momentum I. =0 and L =1.
They are readily available for the computation of parame-
ters in the density matrix of excited states of He+ in pho-
toionization processes. A calculation of the alignment of
the first excited state of He+ by photoionization is in pro-
gress.
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