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Coherent states for the Morse oscillator are constructed using generalized coherent states associat-

ed with the SO(2, 1) noninvariance group for this potential. By using the path integral over these

states, it is shown that the Morse oscillator may be vie~ed as a harmonic oscillator evolving in a fic-
titious time. To show that this picture is mathematically consistent, we compute the path integral

for the Green's function and recover the bound-state spectrum.

I. INTRODUCTION

Recently there has been much interest in the construc-
tion of coherent states for systems other than the harmon-
ic oscillator. One approach is that taken by Nieto and col-
laborators' which is to adopt the requirement that gen-
eralized coherent states are minimum uncertainty states.
However, the observables in the uncertainty relation are
not necessarily the usual x and p but rather a new set of
variables, say X and P, which need not be related to the
old by a canonical transformation. X and P are chosen so
that the transformed Hamiltonian looks like a harmonic
oscillator. The coherent states are then obtained by find-
ing the set of states that minimizes the uncertainty rela-
tion in the new variables. Another way to produce gen-
eralized coherent states is associated with irreducible rep-
resentations of Lie groups, s in particular, those groups
which are noninvariance or spectrum generating groups.
The noncompact group SO(2,1)-SU(1,1) is well known to
be a noninvariance group for a number of systems such as
the Coulomb problem, the isotropic harmonic oscillator,
some many-body problems, ' and the Morse oscillator (s
states only). "

In this paper we consider the problem of constructing
SO(2, 1) coherent states (CS) for the Morse oscillator and
also the related problem of writing the Green's function as
a path integral over the SO(2,1} CS. In doing this latter
problem we find it convenient to introduce a fictitious
time variable. The introduction of a fictitious time pa-
rameter is not new. It was done some time ago by Kus-
taanheimo and Stiefel" for regularizing the Kepler prob-
lem in celestial mechanics. It was introduced into quan-
tum mechanics by Duru and Kleinert' in their path in-
tegral calculation of the Coulomb Green's function, a cal-
culation which was much improved by Ho and Inomata. '

The present author has also used the fictitious time pa-

rameter in a SO(2, 1) CS path integral calculation of the
Coulomb Green's function. ' Now upon introducing the
fictitious time parameter we find that the classical
mechanics is such that the Morse oscillator appears as a
harmonic oscillator evolving in the new time on a curved
phase space. In order to demonstrate the consistency of
this picture we follow through the path integral calcula-
tion of the Green's function and recover the bound-state
spectrum. Previously the Green's function for the Morse
oscillator has been calculated by path integral tech-
niques'5' where changing local coordinate variables as
well as the time parameter is used to obtain a harmonic-
oscillator —type short-time action which yields the Green s
function in terms of Gaussian quadratures. In the present
calculation, only the time parameter is modified.

The plan of the paper is as follows: In Sec. II we re-
view the SO(2, 1}formulation of the one-dimensional ana-
log of the Morse oscillator; in Sec. III we give the SO(2, 1}
coherent states, a functional form of the Green's function
in terms of these states, and the equivalent classical
mechanics; in Sec. IV we carry out the path integration
and calculate the resolvent; and in Sec. V we conclude the
paper with some brief remarks.

II. SO(2, 1) AND THE MORSE OSCILLATOR

In 1929, Morse' proposed the potential

(2.1)

to model the short-range forces of diatomic atoms. For
the s states or equivalently, the one-dimensional analog,
the Schrodinger equation is exactly solvable. Here we
present an algebraic solution, in terms of the SO(2, 1) Lie
algebra, as given by Cordero and Hojman. 'o

%e write the Schrodinger equation as
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The above operators provide a realization of the SO{2,1)
Lie algebra

[ICi,K2]=—iXo,

[K2,Kii] =iXi,
[ICo,Ki]=iX, .

(2.6a}

(2.6b)

(2.6c)

The Hamiltonian of Eq. (2.3) may be written in terms of
K0 as

Here we have set x=r ro—. Now we define a set of
operators

The coherent states associated with SO(2, 1) [or SU(1,1)]
and the associated formulation of the path integral with
them have been developed elsewhere' so will not be
presented here in great detail. We give below only essen-
tial definitions and results.

We adopt the definition of Perelomov's of generalized
coherent states which gives states generated by a
displacement-type operator acting on the ground state
~O, k) of the irreducible representation of the group.

With K+ ——K)+iX2 then we have

~

g', k) =exp(aK+ aK )
~

—O, k)
T ' i/2

where n =0, 1,2, . . . ,n, where n,„ is the value for
which E„ is maximum, n,„+—,

' &(2mD)'~ /a. The cut-
off excludes unbound states. This agrees with the spec-
truro given by Morse. '

Before closing this section a remark is in order. We
note that through Eq. (2.12} k depends explicitly on E
and thus through Eq. (2.13) on n T. hus we see that each
level of the Morse oscillator corresponds to one state out
of different &+(k) representations of SO(2, 1), one repre-
sentation for each value of E„. Apparently the number of
representations needed to cover the states is n,„+1.

III. COHERENT STATES AND PATH INTEGRAL
FOR THE GREEN'S FUNCTION

a 2h (x) K
(2mD)'/2

0
2m 0

so that the Eq. (2.1) becomes

azh(x} (2mD)'/tE0-
2m a

(2.7)

Q.8) I= f dIik(k) I r k) &C k
I

(3.2)

where a= ——,'re '~ and g= —tanh(r/2)e 'r. r and y
are group parameters similar to the Euler angles, but r
has the range —ao &r& Do. Important properties pos-
sessed by these states are that (a) they satisfy a complete-
ness relation

Ko i n, k) =(n+k)
i n,k), Q.9)

where n =0,1,2, . . . , and k is the so-called Bargmann in-
dex, k & 0. With C=Koz IC2i —Kzzas—the Casimir oPera-
tor, one has

The operator ICo, which generates a compact subgroup of
SO(2, 1) has a discrete spectrum in a &+(k} representa-
tion such that

where

2k 1 d
m' (1—

i
g'/ 2)

and (b) there exists the reproducing kernel

Wk(g', g) = (g'k
~
gk )

=(1—
~

g'
~

')"(1—
~ g ~

)"(1—P'g)

(3.3)

(3.4)

C
i n, k ) =k(k —1)

i n, k) .

For the operators of Eqs. (2.4) one has

C= —2mE
Q

2

so that

Q 10} such that

(2.11}

~k(r f) f dPk(k )~k(k r )~k(g

We now consider the resolvent operator

G(E)=(E H)—
(3.5)

1/2

k = —,
' +&C+1/4= —,

' +
0

(2.12)

e-'"' — 'dT
0

(3.6)

Then the Green's function in terms of SO(2, 1}CS is given
by

a (2mD}'
2771 8

(n+ —,
')—(2.13)

Thus from Eqs. (2.8), (2.9), and (2.12) we determine the
energy levels as Gk(g", P;E)={@,k

~

G(E)
~

g', k)

i f PE(g—",g', T)dT,

where

(3.7)
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Ps(g",g'; T)= (g",k
I exp[ i—T(H —E)]

I f,k )

= (g",k
I
exp

lTa h(x)(K g) Igg k}
2771

(3.8)

We have set A, ={2mD)'~ /a. We may consider Eq. (3.8)
as a propagator for the modified evolution operator
U(T)=exp[ —iT(H —E)]. This propagator will subse-

quently be written in path integral form.
Before proceeding any further, however, we must dis-

cuss the role of the Bargraann index k. Note that Eq.
(3.8) does not contain the energy E explicitly but rather is
contained in k via Eq. (2.12). We stress at this point that
E is not taken to be one of the energy eigenvalues of Eq.
(2.13) but as simply a parameter. Later we recover the
bound-state spectrum from the poles in G (E).

Now we write Eq. (3.8}in the usual fashion' as

N —1 N 2

PE(f' j T}= »m f f g dpk(g, ) g (g, ,k Iexp —i «;h[x(t;)]
N~~

1 j=l 2pFl

where T=g. ,b tj.„g"=g'z, and g'=go. At this point we introduce a new local time variable cr as

—ux(t )
ho J ——ht)e

Thus we have

Ps( f',g', tr) =Ps(g",g'; T),
where

To= dte-
0

Then we have

(3.9)

(3.10)

(3.11)

(3.12)

Gt, (f',g';E) = ——f PE(f', g', T)dT

PE ", ",o

where

f e' K{/",f;o)der,
der

I

(3.13)

N —1 N

K(g",g'; )= ll f f ff dp, (g ) g (gj,k
I p( —'5 2coK ) I g „k),

N~oo j=1 j=1
J

(3.14)

and where for later purposes we have set co=a /4m. The factor dT/do is just exp[ax(t")] where t" is the time at the
endpoint.

K(f ',(',o) may be interpreted as a propagator in the new time parameter. It may be written, following the usual pro-
cedures' in the path integral form

N —1 N

K(Pg';o)= lim f f g dpk(gi) g exp i
j=1 j=1

ikhoj, bgj dgj
hoiP t, (gj,g—/ i) (3.15)

(g), k
I
H

I g~ i,k)
k CJ&4i —i

(g k
I g k) t (3.16}

where

~k=, (VC' N" } ~k(4 P»—
(1—141'}

(3.19)

(3.17)

is the effective Hamiltonian. In the continuum limit the
propagator becomes

and where the prime denotes differentiation with respect
to o. The Euler-Lagrange equations t:an be shown to
yield' the equations of motion

K(g",f;o)=f &yk(g)exp i f d Wok(g, g') O'= I4 ~k I

{3.18) where I, j is a Poisson bracket defined by

(3.20}
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(1—lgl~)~ aA aP
2ik ag ag'

a~ aa
ap ag

(3.21)

This indicates that the classical phase space spanned by g
and P is curved —in fact the Lobachevski plane. '

At this point the Morse oscillator may be depicted as a
harmonic oscillator evolving in the new time parameter cr.
As we have discussed elsewhere, ' *' ' the Hamiltonian
for a harmonic oscillator may be written in the SO(2, 1)
generators simply as Hp ——2cppKp where an additive con-
stant has been dropped. The motion on the curved phase
space then proceeds in real time as

g( r) =(pe (3.22)

g(cr) =/pe (3.23)

IV. CALCULATION OF THE PATH INTEGRAL

To complete the calculations of the path integral of Eq.
(3.15) we write it as

where gp is constant. As we have already shown above,
the effective Hamiltonian for the Morse oscillator evolv-

ing in the fictitious time has the same form as for the har-
monic oscillator evolving in real time. Thus the solution
of Eq. (3.20) is, by analogy to Eq. (3.22),

N —1 N

K(g",g'; )= li f . f g dp, (g ) g &gj,k l p( 6—'2coK )
l g, ,k) .

N-+ co j=1 j=1

From Eq. (3.1) we have

&4~ k
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I k~-i k &=exp( —i~~J2~k)&C, k
l (g, ie ) k &

(4.1)

(4.2)

Then with repeated use of Eqs. (3.4) and (3.5) we obtain
dT

TrG(E) = g f do exp[icr2cp(Ak —
, —q)]

der e p

K(g",g';cr) =exp( icr2c—pk )

x (I
l
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l

2)k(1
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l

2)k

X ( 1 g ogl lo2N) —2k— (4.3)

T g (A, —k —q)
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q=0
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do p 2

' 1/2 —1

2mE
0

N

where o =limN g. ihcrj. . Thus the Green's function

in integral form is

Gk(g", f',&)= ——f

Obviously poles occur whenever

a (2mD)'i
2m a

—(q+ —,
'

)

'2

(4.7)

(4.g)

y ( 1 g ogl —ltT20l) —2kd (4 4)
in agreement with Eq. (2.13).

V. CONCLUSION
To recover the spectrum we take the trace of the resol-

vent operator as

TrG(E)= f dpk(g)Gk(g, g;E)

f "do exp[i +2'(k k+ , )]——
2 do

(4.5)X [sin(cocr )]

Upon expanding the last factor in (4.5) as

1—[sin(cpcr}] '=e ' g e
2l q=0

(4.6)

we obtain

In this paper we have given a coherent state picture of
the Morse oscillator wherein the motion takes place on a
curved phase space and with the time parameter being a
fictitious time related to real time by Eq. (3.12). This may
be contrasted with the works of Nieto and Simmons'
where the Morse oscillator is made to look like a harmon-
ic oscillator by using noncanonical variables.

The group theoretical formulation we have used howev-
er is not the only one possible. Alhassid et al. have re-
cently shown that U(2) may be used to describe the bound
states while U(1,1) describes the scattering states. This
picture is attractive since the Morse oscillator has a finite
number of bound states so that one representation of U(2}
should contain all those states. However this formulation
appears to require that the well depth D be quantized.
This requirement need not be satisfied with the SO(2, 1)
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formulation.
Elsewhere' ' we have considered coherent states for

the Coulotnb problem. Again using the SO(2, 1) spectrum
generating group, the radial motion appears oscillatorlike
in fictitious time. 's Using the Kustaanheimo-Stiefel
transformation" the Coulomb problem can be rendered
into a constrained four-dimensional harmonic oscillator. 2s

Ordinary coherent states may be written for this oscilla-
tor, again evolving in a new time parameter. %hen pro-

jected back into physical space, these states are seen to fol-
low the classical Kepler orbits in real time. " Thus it ap-
pears that the introduction of a new time parameter is of
great utility in formulating generalized coherent states.
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