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Analytical structure function of a polydisperse Percus-Yevick fluid with

Schulz (gamma) distributed diameters
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Analytical expressions for the static structure function for a polydisperse Percus-Yevick fluid with Schulz

{gamma) distributed particle diameters have been obtained. Results obtained with the expression for
selected width factors and particle densities are presented.

The structure of a fluid is a function of the size distribu-
tion, density, and temperature of its constituent particles.
In such isotropic fluids, the correlation function g(r) pro-
vides a sufficient description of the microscopic structure to
permit calculation of the variation of particle density with
distance r from a reference particle, whereas the static struc-
ture function S(k) reflects the experimentally determined
average distribution of molecular separations in the fluid.
To date, theoretical structure functions for multicomponent
systems have largely been determined by numerical
methods. We are presenting an analytical solution for the
structure function of a polydisperse Percus-Yevick (PY)
fluid with particle sizes continuously distributed according to
a Schulz, or gamma, distribution.

The static structure and the total correlation function,
h (r) = g (r) —1, and 28, the scattering angle, are related by
means of a Fourier integral,

lt 00

S(k) = I+4npk '& rh(r) sin(kr)dr

where k =4m sin8/X and p is the particle density. Through
the Ornstein-Zernike equation, h (r) is related to another
function, the direct correlation function, c(r), which also
plays a fundamental role in a number of modern theories of
fluids:

h(r) =c(r)+p& h(Ir —r'I)c(Ir'I)dr'

To obtain h (r ) or S (k ) for a given system, one can solve
the Ornstein-Zernike equation with proper closures. Im-
penetrability of particles provides one closure. This is gen-
erally reflected by setting h(r) = —1 inside the particle.
The form chosen for c(r) provides another closure. The
two common closures for c(r) are the mean spherical ap-
proximation, c(r) = pU(r) for r greater than the particle di-
ameter, where p= (kT) ', U(r) is the potential function,
and the hypernetted-chain approximation,

c(r) = —PU(r) + h (r) —In[1+ h (r)]

The potential function U(r) is a function of the system
considered. The simplest, and perhaps the most studied,
fluid is the so-called "hard sphere" fluid whose potential is
infinite when r is less than the hard-core diameter and zero
otherwise. Blum and Stell' have derived an analytical ex-
pression of the Fourier transform h(k) of the correlation
function for a discrete size distribution of hard sphere parti-
cles. We performed the analytic integration of h(k) over a
Schulz (gamma) distribution. Our choice of the Schulz dis-
tribution function arises from its widespread acceptance and
a mathematical tractability. 2

The multicomponent system structure function for the
continuous case may be written in terms of partial structure
functions ho(k) as given by Blum and Stell using PY clo-
sure as
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S (k) = p f d o; + p& d o'; d aJf ( o'; )f'( o'g ) h~g (k )

where f (a ) is the probability density function of the parti-
cle diameters, cr.

For a gamma (Schulz) distribution, the probability density
function is given by

f(c ) = (a/b)' '(e ~'/l&I (c)])

where the parameters b and c are given by h =a „„/
(z + 1), and c = z + I, where z is the Schulz "width factor. "

The partial structure functions, hj(k) are given by Blum
and Stell:

-h (k)=2( )"'
k3(X +Y )

where

Zi = I'sin(ka;, ) —Xcos(ko.„")

Z2- X sin(k a,j ) + Y

cos(kyar&)

and

Zi = Qe' —kR3

where Qtl" is redefined with respect to the definition given
for it in Ref. 1 by

Q,,"( )a= (2~/&) (I+&g3~/&),

where o IJ
- (a; + o &)/2 and 5 = I —n gi/6, and

Z4 = kQJ + kR4

Here QJ is defined as

Q;,'(a„)= (7r/A)(a, + a, +~(.r;o;(2m/4)

where g; is the product of the total particle density and the
ith moment of the gamma distribution about the origin
which can be written in terms of the density and parameters
b and cas

gi = pbc

g2
——pb c(c+ I)

g3= pb'c(c+1)(c+2)

Expressions for X, Y, 83, and A~ are given in terms of the
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x~, x2, yt, and y2, with the sign of y2 different from that given in Ref. 1 (see also Ref. 3) by

x)(a) =k '[cos(ka. ) —1], y((cr) =k '[ka. —sin(ka-)],

x3(a) = k '[kyar —sin(k&r) l, y3(a) = —k [cos(ka)+ 3 k o —1]

Then,

X =1—(27r/5)(1+ 2 m(3/A)p f (ak)x3(ok)dak —(27r/A)p akxt(ak)(1+ 4 mgzak/A)dak

—~(~p/~)'„, f(ak)dak„', [«(ak)xi(ai) y—t(ak)yi(ai)](ak —al)'dal,

oo woo

Y= —(24r/5)(1+ 2m'/h)p ' f(o~)y (3a)l—2(n p/5)& okf(ok)y, (o„)(4m/3/A)do„
ra oo ra oo

Q(%p/5) f(ok)dok [xt(ak)yt((J()+yt(ak)xf(al)]dal

It turns out that the analytical solution for Eq. (1) is a function of 14 integrals. In all cases it is desirable to define func-
tions to express these integrals as the product of G = b'I(c) 'and a function of b, c, and k to avoid calculating I'(c) for large
arguments as follows:

e a' 'do. = I (c)/b '= GlJp
fo oo

e a'do = I'(c+ l)b'+' = I (c)b'(bc) = G('
4 p

where ('= bc; similarly for r = c + 1, c + 2, and

e 'o.'+'da =I (c+2)b'+'=I (c)b'[c(c+1)b']=6("
4 p

e ~'a'+'da. =i (c+3)b'+'=I (c)b'[c(c+1)(c+2)b']=G("'
~J 0

The remaining ten integrals involve sine and cosine.

e ~~a' ' sin(k o ) = I (c ) b'v[~3 sin[c tan '(bk ) ] = G P4 Q

where v„= [n'+ (bk)'] ', and P is defined by P= v[~'sin[c tan (bk)]. Similarly for r = c+ 1 and c+2,

e ~ a'sin(ka)da = I (c)b'(bcvI'+" ') sin[(c+1)tan '(bk)]= GP'
Jp

ra oo

e a'+'sin(ka)do =I (c)b'c(c+1)b'vI'+" 'sin[(c+2)tan '(bk)1= Gp"
4 Q

Solutions involving half-angles also needed are as follows:

e ~~a' 'sin(ka/2)da =I (c)2'b'v2~'sin[c tan '(bk/2)]= Gp, ,

e ~o'sin(ko/2)da=I'(c) '2'+'bcb)v'+"~'si [n( c+)Itan '(kb/2)]=Gp, '

40

Analogous integrals are needed which are the same as for the above with cosine substituted for sine. Analogous functions
for cosine are ~, X', and ~"; and A. and X' for the corresponding half-angle integrals, respectively. The integrated form of
the second integral in Eq. (1) using these functions is

h (k) = —2p [ X[X(YS(— 56) + X'(Y53 — 54) + p, ( 5)+ Y56) + p'(:53+ Y54) ]

+ z'[x(Y53 —-54) + x'(Y53 —=53) + p, (:-52+Y54) + p, '(:"53+Y55) ]

+ JIL [ X (:"5]+ Y56) + h. '(:-53+Y54) + p (:-56—Y5 1 ) + p'(:-54 —Y53) ]

+p [x( 53+ Y54) + x ( 53+ Y55) + p ( 54 Y52) + p ( 55 Y53)]}/[k'(:"'+Y')]

where

= 1 —(2m/5) (1+~mg //3)(pk ') (k(' —p) —(~/&)pk [(x' —f') + (7~$3/&) (x —(")]

—(~/&)'(p/k')'[(x —1)(x"—g") —(x' —(')' —(k(' —y) (k("' —y") + (k g" —y')'] .

Y = (2~/A)(i+Tv(3/b)(pk ) (x+ Tk g" —1)—(2mp/5k ) [k("—Q'+ (Tn'g3/5) (k('" —p")]
—(m/&)'( p/k')'[(k(' —y) (x"—(")—2(k ("—y') (x' —$') + (k ('"—

4 ")(x —1)],

(2)
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FIG. 1. Polydisperse structure functions calculated for selected
Schulz width parameters z and a packing fraction, q-0. 1,

FIG. 3. Polydisperse structure functions calculated for selected
Schulz width parameters z and a packing fraction q = 0.5.
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g6= (~/a)'(p/k) (x" f.") . -

Computed values of S(k) =1+h(k) via Eqs. (1) and
(2) are presented in Fig. 1 for a particle distribution with a
mean diameter of 50 A, packing fraction q = 0.1, and select-
ed degrees of polydispersity: z-104, 101, 12.03, 1.618, 0,
and —0.5. A width parameter of z-10 corresponds to an
essentially monodisperse system. The values for z = 101 are
basically coincident with those obtained for z =104. Similar
calculations for samples having packing fractions of 0.3 and
0.5 are shown in Figs. 2 and 3. The effect of polydispersity
is to smooth the oscillations in S (k ), as previously noted by
Vrij, while dramatically increasing its low-k region due to
an increase in the thermodynamic limit of the structure
function. The wide range of particle sizes available in-
creases density fluctuations which, in turn, increase S(k) in
the low-k domain.

For PY fluids, the calculation method presented here can
be extended to compute the compressibility and the scatter-
ing intensity of a polydisperse fluid. This appears particular-
ly useful in permitting a rigorous evaluation of the intensi-
ties obtained in small angle scattering experiments on
nonionic micellar fluids, as will be described in a forthcom-
ing paper. In that paper, we will provide a detailed compar-
ison between structure functions derived by Vrij as a factori-
zation of scattering intensities with our analytical solution.
Vrij, of course, was the first to assess the effect of po-
lydispersity on the structure function, deriving an effective
S(k) by factoring the scattering intensity with the particle
form factor.=—a0.0-
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FIG. 2. Polydisperse structure functions calculated for selected

Schulz width parameters z and a packing fraction g=0.3.
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