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By considering afresh the three-dimensional diffusion of an asymmetric top molecule, new statistical
cross-correlation functions are reported using computer simulation. Off-diagonal elements exist directly in
the laboratory frame (x,y,z), of the tensor cross-correlation function between a molecule’s Coriolis accelera-
tion, 2w X v at time ¢ and its own angular velocity @ at t=0. Here v is the molecule’s center-of-mass linear
velocity. This is the first clear evidence that the historically popular theory of rotational diffusion is in need
of development at a fundamental level to involve directly the linear velocity v.

INTRODUCTION

This Rapid Communication presents firm evidence that
the historically popular theory of rotational diffusion’ is fun-
damentally incomplete when applied to the diffusional
dynamics of dipolar molecular liquids. It is incomplete be-
cause there exists, directly in the laboratory frame of refer-
ence (x,,z), a large number of different statistical cross
correlations involving the angular velocity w of the diffusing
dipolar molecule, and its own linear velocity v, i.e., that of
the molecule’s own center of mass. This Rapid Communi-
cation establishes the nature of these direct, laboratory-
frame correlations using molecular dynamics computer
simulation?® of the liquid-state three-dimensional diffusion of
the dipolar asymmetric top, dichloromethane. The existence
is also established for the first time of a large number of
other types of hitherto unknown cross-correlation functions
involving the diffusing molecule’s position vector r, v
(=1), and @ both in frame (x,y,z) and a moving frame
(1,2,3), defined by the principal molecular moments of in-
ertia. These cross-correlation functions show that the wide-
ly used purely rotational approach is fundamentally incom-
plete and is not, therefore, a valid approximation in any
frame.

ANALYTICAL

The existence of these cross-correlation functions can be
deduced by using a rotating frame of reference (1,2,3)’ in
which to write the translational Langevin equation.! This
frame has its origin fixed at that of the laboratory frame
(x,y,z), but rotates at an angular velocity w, that of the
diffusing asymmetric top. In this frame, the translational
Langevin equation becomes®*
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where B, is the scalar translational friction coefficient which
is the same in any frame of reference, and [W]“,“), is a
statistical process generated from the laboratory-frame
Wiener process' [Wl(,, by the frame transformation
(xy,z)— (1,2,3)".

The angular velocity w is the same in frames (x,y,z) and
(1,2,3)" (because it is the angular velocity of one frame
with respect to the other) and also driven in the frame
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(1,2,3) of the principal moments of inertia by the standard
Euler-Langevin equations®

Loy — (L= 1)wws + 11 Bioy = LW,
Loy — (I3 — 1wy + LBywy= LW, )
136)3—(11—12)w1m2+13ﬁ3w3=13W3 .

Essentially speaking, the original Debye theory of rotational
diffusion only uses® Eq. (2) in describing the dynamical
evolution of @ in a spherical top (/,=1,=1;), leaving out
the angular acceleration terms of the left-hand side (lhs) of
Eq. (2). In this equation, I, I, and I; are the three princi-
pal molecular moments of inertia, and B8;, 8,, and B8; are the
rotational friction coefficients diagonalized in frame (1,2,3)
with the rotational Wiener processes"® W, W, and W,.
The theory is therefore incomplete because Eq. (1) is miss-
ing, and consequently v and r are undefined.

With contemporary analytical methods®’ Eqs. (1) and (2)
are probably insoluble, but the technique of conventional
computer simulation can be used to construct cross-
correlation functions chosen by inspection from among the
terms on the lhs of Eq. (1). These do not seem to have ap-
peared in the literature of asymmetrical top diffusion, but
are well known in elementary dynamics** to be (i) the
Coriolis acceleration, 2w X v, (ii) the centripetal acceleration,
X (wxr), (iii) the ‘““nonuniform” acceleration, @ Xr, and
(iv) the linear velocity w Xr.

All these terms exist both in frame (1,2,3)’ and frame
(x,y,z) because of the fully reversible nature of the frame
transformations

(1,2,3)' = (xp,z2) . 3)

The existence of these cross-correlation functions directly in
the laboratory frame (x,y,z) is confirmed in this Rapid
Communication by constructing tensor cross-correlation
functions of time and, clearly, therefore, this also confirms
the need to extend the theory of rotational diffusion with
Eq. (1).

COMPUTER SIMULATION METHODS

The dynamics of 108 CH,Cl, molecules were simulated®?®
at 296 K, molar volume of 5.0x107% m?*/mol for E=0,
where E is a z-axis, uniaxial, electric field of force. At
field-off equilibrium the correlation functions were calculat-
ed over segments of roughly 3000 time steps each (1000
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FIG. 1. Normalized off-diagonal elements of the tensor cross-correlation function (CCF) C3(#) in the laboratory frame (x,y,z). The sym-
bol x,z, for example, denotes

((@()x V(1)) 1w, (0))
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The hatching denotes the difference between results from two different segments of about 3000 time steps each. This is, therefore, a rough
measure of the ‘‘computer noise.”” Note that the (x,z) and (z,x), (,z) and (z,y), and (x,y) and (y,x) pairs seem to be mirror images.

records, each separated by three time steps of 5x 10713 sec and
each). The computation was repeated at field-on equilibri-
um, where the molecules are aligned by the field!” so that
the Langevin function is effectively saturated. In this con-

C)=(2v()xw(t) - w(0)) .

The equivalent tensor cross-correlation functions'>!® are,

dition, the overall Hamiltonian is no longer invariant to par- therefore,

ity reversal,'! and this affects the symmetry properties of

the tensor cross-correlation functions. Ci(1) = Qu(t)xv()oT(0))
and

CROSS-CORRELATION FUNCTIONS
ON FUNCTION Ca(1) = (2v(1) x @ (VT (0))

By inspection, (1) and (3) reveal the existence of several

possible vector cross-correlation functions typified by where T denotes vector transposition.

The original result of this Rapid Communication is that
Ci(t)=QRu(t)xv(r) v(0)) the off-diagonal elements of the C;(t) are shown to exist
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FIG. 2. As for Fig. 1 with a strong electric field E applied in the z axis of the (x,y,z) frame. The overall symmetry of C3(¢) is changed.
(x,») and (y,x) are still mirror images, but two elements, (y,z) and (x,z), have disappeared in the noise. In contrast (z,y) and (z,x) have
increased in amplitude compared with Fig. 1.
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TABLE I. Symmetry patterns for single molecule tensor cross-correlation functions.

Correlation matrix Frame of reference

(x,y,2) (x,y,2) +E (1,2,3) (1,2,3)+E
5 6 & 5 5 & + 5 5 + 5 8
(v() xw(t)vT(0)) 5 8 8 5 5 & 5 + & 5 + 8
5 5 8 5 6 & 5 5 + 5 5 +
5 + + 5 + & 5 5 & 5§ 5 &
(@) xv()w(0)) + 8+ + 8 8 5 5 & 5 5 +
+ + 5 + + 5 5 5 8 5 + &

directly in the laboratory frame (x,y,z) (see Fig. 1). This
means that there always exists in condensed molecular
matter direct statistical correlation between a diffusing
molecule’s Coriolis acceleration 2w X v and its own angular
velocity @ at time ¢ earlier in the evolution of the trajectory.
This means, clearly, that the theory of rotational diffusion is
Jfundamentally incomplete because the center-of-mass linear
velocity of the molecule v is left undefined,"®” and, there-
fore, the molecule’s Coriolis acceleration is also undefined.
Equations (1) and (2) have been used in this Rapid Com-
munication to suggest this result by inspection, and there-
fore seem to be useful as a basis for extending the rotation-
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FIG. 3. The moving frame, (1,2,3), diagonal elements of C4(¢),
normalized as in Fig. 1; (a) field-off and (b) field-on equilibrium.
(a) and (b) are checks carried out with the vector (trace) CCF,

(v()xa(t)-v(0))/(v2(0)) («?(0)) /2

computed independently. It can be seen that this exists in frame
(1,2,3) but vanishes in frame (x,y,z) (see Table I).

al theory [essentially Eq. (2) alone] to include these new
effects. It will be necessary to devise analytical (i.e.,
mathematical) methods for their complete solution.” A
comparison can then be made with the computer simulation
results, exemplified in Fig. 1.

The symmetry characteristics of C4(¢) are completely dif-
ferent in the laboratory frame (x,y,z). No elements of
C4(t) could be detected above the noise of two segments of
the simulation. Therefore, no simple statistical correlation
was found between the molecular Coriolis acceleration and
the linear velocity v of the same molecule’s center of mass.

In the moving frame (1,2,3) the symmetry characteristics
of C3(t) and C,4(¢) are again different. In this case the di-
agonal elements of C4(7) exist above the noise, but all the
off-diagonal elements vanish. All the nine elements of
C;(t) vanish in frame (1,2,3).

In the laboratory frame (x,y,z) the symmetry of C4(¢) is
unchanged when the field E is applied in the z axis of this
frame. However, the nonvanishing elements of C;(r) are
significantly affected, and this is illustrated in Fig. 2. In the
moving frame (1,2,3) the diagonal elements of C4(¢) be-
come more oscillatory (Fig. 3), but the overall symmetry of
the matrix is unaffected. The symmetry of C;(z) is
changed by the application of E in the z axis, in that the
field promotes the existence of at least three off-diagonal
elements of C;(¢) in frame (1,2,3).

These symmetry characteristics are summarized in Table
I, where the symbol 8 means that no ‘‘signal’’ (i.e., cross-
correlation function) could be detected above the noise for
0 <t < o. The symbol + means that a cross-correlation
function was detected for 0 < 1 < co.

Finally, a large number of other cross-correlation func-
tions of this type can be constructed among the various
terms of Eqs. (1) and (2). The existence of these new
cross-correlation functions means that the theory of single-
particle Brownian motion must be revised accordingly.
Structures such as Eqgs. (1) and (2) can be generalized to
N-particle Brownian dynamics,'* and also to involve
memory functions’ in an attempt to link them with basic
equations of motion such as the Liouville equation.
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