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A natural oscillator subjected to periodic forcing with adjustable frequency and amplitude may behave
aperiodically or be entrained to oscillate with an integer multiple of the forcing period. Entrainments occur
in subsets of the frequency-amplitude plane and are well understood for very small forcing amplitude. We
investigate the mechanisms by which entrainments are terminated at moderate amplitudes and support our
theory by numerical experiments on a model chemical oscillator.

Models involving forced oscillators arise in many fields of
science and engineering. Here we study a periodically
forced, autonomously oscillating chemical reactor. The
dynamics of such systems are known to be very rich in
phenomena, but realistic models are often far too complex
to analyze either analytically or numerically. To understand
and classify some of the basic phenomena it is therefore
useful to examine simplified models (perhaps even carica-
tures) which are designed to isolate some particular aspect
of the behavior. In this spirit, Kai and Tomita' (KT) stud-
ied entrainment in a periodically forced Brusselator
described by the equations

X=A+XY~BX—X+acoswt, Y=BX-XY , (1)
where a and o are parameters. The constants are taken to
be A=0.4 and B=1.2 so that the unforced Brusselator
(a=0) has a limit cycle with natural frequency
wo=0.3750375. This limit cycle is an asymptotically stable
periodic orbit enclosing a source.

For a > 0 it is natural to investigate the behavior of (1)
by studying the stroboscopic map induced by sampling solu-
tions of (1) at integer multiples of the period 27/w of the
forcing term. A periodic point for the stroboscopic map cor-
responds to an entrainment of the underlying oscillator by
the forcing term. KT computed the entrainment regions in
the (w/wg,a) parameter plane for periods =<4 and their
results are shown in Fig. 1. For a =0 the stroboscopic map
restricted to the limit cycle is conjugate to a rigid rotation of
a circle and it follows from the standard theory described
below that there is an entrainment region, also called an
Arnol’d horn or a resonance region, entering the first quad-
rant from every rational point on the w/wg axis.

A rather curious feature of the KT calculations is the ap-
parent smooth closing of the two- , three- , and four-period
entrainment regions. We investigate this phenomenon both
numerically and mathematically. Our computations indicate
that the three-period resonance regions do indeed close off
smoothly, but that they each contain in their interior a point
of Hopf bifurcation. Moreover, our computations indicate
that at least some of the four- and five-period regions do
not close off smoothly, but seem to terminate in a cusp at
which a Hopf bifurcation occurs. We give an explanation of
these phenomena based on mathematical arguments and
state some conjectures inspired by the computations and the
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arguments.

The stroboscopic maps form a two-parameter family of
diffeomorphisms x — f,(x), where x € R?, u=(o,a) €R?,
and f, is a C™ function of x and u. For a =0, f(,,0) has a
hyperbolic attracting C* invariant circle S(,,0) on which the
map is C*™ conjugate to a rigid rotation with rotation
number p=1/0. We choose the reciprocal of the rotation
number as a parameter to conform with the notation of KT.
Standard perturbation theory for invariant manifolds? im-
plies that, for small a, the map has a hyperbolic attracting
invariant circle S, which is smooth but not necessarily C*.

The map f, restricted to S, yields a two-parameter family
of circle diffeomorphisms. We let o vary in a neighborhood
of a rational number o= ¢/p and seek the Arnol’d horn cor-
responding to rotation number po=p/q, i.e., we seek the set
of points w= (a,a) for which there are periodic points on
S, with period g and rotation number po. Under generically
satisfied hypotheses on a finite number of Fourier coeffi-
cients of f(,,,o),3 in the neighborhood of the o axis the po-
Arnol’d horn is a wedge-shaped region emanating from
(a9, 0), as illustrated in Figs. 1, 2(a), and 3. Under the
same generic hypotheses and for u in the interior of the
horn with a sufficiently small,* S, contains exactly two
periodic orbits with period ¢, one consisting of sinks which
we label sy,s;, . . ., 5, and the other consisting of saddles la-
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FIG. 1. Two-parameter bifurcation diagram for the forced

Brusselator from KT (Ref. 1). Integer labels indicate regions of en-
trainment calculated by KT. The detailed structure in the shaded
region is unresolved in Ref. 1.
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0 " 0.45 " sinks so that the bifurcation at the left-hand end point of /g
L Bgﬁrcotion ] \/‘\ involves the pairs (sy,u1), (so,u2), . . ., (sq,4,). Generical-
| Line - u‘2\~~-“1_ -3 ly, the pairing induced by the bifurcation at the right-hand
| 'SZ'Q:;:» end point of /o must be different.* In particular, the labels
L= 'ghe Xg “E——-- can always be chosen so that the pairing at the right-hand
o5k poin: - end point is (si,u2), (sp,u3), ..., (sg-1,4g), (sq,u1). The
’ fact that the saddle-node bifurcations occur between dif-
a [ ferent pairs of saddles and sinks along the two different
i 03 sides of the Arnol’d horn is of critical importance in the ar-
r 325 guments given below. The computed structure of the sad-
(a) 06 dles and sinks and their interactions with the saddle nodes is
ol—— . L i shown in Fig. 2(b) for the KT model with g=3 and
28 wiwy 32 ao=0.005.
0.451 () B We computed® (by implementing contraction mappings
T ud L for boundary value problems and not through initial value
Saddles U1 Xg . . 3 3
X o \S - N problem simulation) the resonance horns for w/wo= T, ¥,
- %f and %— in the KT model. These regions are shown in Figs.
- U3 i 2(a) and 3. Except for the tip (i.e., the vertex on the w/wg
0.35 . 1 L . 3 axis) each of the horns appears to be bounded by smooth
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FIG. 2. (a) The Arnol’d horn for w/w0=%. The Hopf bifurca-
tion line is indicated by — — —. (b) One-parameter bifurcation di-
agram across the horn at @ =0.005. (c) One-parameter bifurcation
diagram across the horn at @ =0.09. (d) One-parameter bifurcation
diagram for a vertical line through the bifurcation locus at the 1Y/3
bifurcation point S. At S the period-3 saddles collapse on a fixed
point.

beled uy,uz, . .., u,. Furthermore, these sinks and saddles
come together along the boundaries of the horn to form
saddle nodes, i.e., fixed or periodic points with exactly one
eigenvalue equal to 1. A generic condition on the second-
order term in the normal form together with a condition on
the dependence of the map on the parameters ensures that
the saddle nodes occur along curves in the parameter plane.
In particular, for each sufficiently small ag > 0 the intersec-
tion of the po-Arnol’d horn with the line a =ay is a o inter-
val which we denote by /.

The saddle-node bifurcations which occur at the end
points of /o induce pairings of the saddles and sinks. Sup-
pose, for example, that we have labeled the saddles and
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curves corresponding to elementary saddle-node bifurca-
tions. Moreover, we found no evidence of any saddle-node
bifurcations involving the period-three orbits occurring in
the interior of the horns.

The relationships between the saddle nodes for the
Arnol’d horn corresponding to w/w0=% are shown in Fig.
2(b) for a =0.005 and in Fig. 2(c) for @ =0.09. The ob-
served changes in the connections can occur if there is a
point of Hopf bifurcation with a third-order resonance locat-
ed in the interior of the horn. Numerically we found a
curve of Hopf bifurcation running through each 3 horn as
shown in Figs. 2(a) and 3. On each of these curves there is
a point where the eigenvalues of the corresponding fixed
point are cube roots of unity.

The structure of the Hopf bifurcation for the third-order
resonance is given by Arnol’d.* For all parameter values in
a punctured neighborhood of the bifurcation point there are
saddle points forming a period-three orbit. These saddle
points coalesce at the bifurcation point. The structure is il-
lustrated in Fig. 2(d).

Consider the set

I={(x ) €ER* fI(x)=x]

Let 4, denote the Arnol’d horn emanating from (oo, 0)
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FIG. 3. The Arnol’d horns for (a) w/wo=% and (b) w/wy= %
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and let 'y denote the component of I' containing the period-
ic orbit corresponding to 4,. Note that A, is just the projec-
tion of I'y onto the parameter plane, i.e.,

Ao={u €R% (x, n) €T}

An Arnol’d horn Ay is said to be a simple disklike resonance
region if (i) A, is bounded and topologically a closed disk,
(ii) except for the tip, the boundary of 4, consists only of
elementary saddle-node bifurcation points, and (iii) there
are no other saddle-node bifurcation points in I'y. As we
observed above, the three-period Arnol’d horns in the KT
model appear to be simple disklike resonance regions.

Our numerical observations can be explained by the fol-
lowing conjecture which could be promoted to a theorem if
the hypotheses were clearly stated and if the details of the
proof were provided. We shall return to this matter on
another occasion.

Conjecture 1. Let Ay be an Arnol’d horn for a generic two-
parameter family. If Aq is bounded and topologically a closed
disk, and if, except for the tip, the boundary of A consists only
of saddle-node bifurcation points, then there must be a point
(x, u) €Tg with . in the interior of Ag such that 1 is an eigen-
value of D*f,(x).

We outline an indirect proof. Suppose for contradiction
that, for every (x, u) € Iy with u in the interior of the reso-
nance horn A, the spectrum of Df? (x) does not contain 1.
Then the implicit function theorem implies that the projec-
tion of I'y onto the interior of A, is a covering map. Since
by hypothesis the interior of 4, is an open disk, this cover-
ing must consist of a family of open disks, each projecting
onto the interior of 4. Recall that, for parameter points in
the interior of the horn near its tip, I'g consists of exactly ¢
sinks, which we can label 5,52, ...,s,, and ¢ saddles,
which we can label uy,u3, . .., u,. Therefore, the covering
must consist of exactly 2q disks, each of which represents a
continuation of one of these saddles or sinks.

Now consider a parameter point on the left-hand bound-
ary of Ao near the tip. As we observed above, the saddle-
node bifurcation induces a pairing of the saddles and sinks
at such a parameter point and we can assume without loss
of generality that it is (sy,u1), (s,u3), . . ., (s5,4;). As we
move the parameter point away from the tip and along the
boundary, we travel all the way around the horn and return
to a neighborhood of the tip on the right-hand side. Since,
by hypothesis, we have encountered only saddle nodes
along this path, the pairing we started with cannot change.
Therefore the pairing along the right-hand boundary near
the tip is also (sy,u)), (sy,u3), . . ., (s;,4;). However, this
contradicts the fact that the pairing on the right-hand
boundary must be different from the pairing on the left and
completes the proof.

The argument we have sketched shows that, for simple
disklike resonance regions there must be a point in the inte-
rior of the region where an eigenvalue of the periodic point

is equal to 1. Since there are no points of saddle-node bi-
furcations in the interior of A, we can eliminate saddle
nodes as well as some other points with co-dimension two.
Namely, neither a simple cusp® nor a Bogdanov point’ can
occur in the region, since these both have saddle nodes oc-
curring in every neighborhood.

For generic two-parameter families, that leaves only the
possibility that D?f,(x) is the identity and x is a fixed point
of fﬁ for some k which divides q. For ¢ =3, the only possi-
bility for a generic family is that x is a fixed point of f, and
Df,(x) has eigenvalues which are primitive cube roots of
unity. Arnol’d* shows that such a fixed point can occur
generically in the interior of 4o but cannot occur generically
on the boundary. Thus we are led to the following conjec-
ture which states roughly that the structure we observed in
the KT model is the generic one.

Conjecture 2. Let Ay be a three-period resonance horn for a
generic two-parameter family. If Ay is a simple disklike reso-
nance region then there must be an (x, w) in To with u in the
interior of Ao, such that f,(x)=x and the eigenvalues of
Df,(x) are primitive cube roots of unity.

For ¢ =3 the situation is not so clear. Arnol’d* shows
that, for ¢ =5 the resonance region in a neighborhood of
the Hopf bifurcation is generically a cusp and therefore a
Hopf bifurcation cannot occur in the interior of a resonance
region. However, since we want to conclude that k =1, the
argument above generalizes only for prime ¢. Thus we are
led to conjecture 3.

Conjecture 3. If Ay is a q-period Arnol’d horn for a generic
two-parameter family, where q =5 is prime, then Aq cannot be
a simple disklike resonance region.

Actually it is quite reasonable to speculate that conjecture
3 holds for arbitrary ¢ = 5. For ¢ =4, Arnol’d’s analysis is
not definitive and it appears that a Hopf bifurcation can oc-
cur generically either as a cusp on the boundary or as an in-
terior point of its resonance region.* Clearly, much more
work needs to be done on these questions.

For the KT model we computed the four-period reso-
nance regions for w/wo= ¥ and 1‘- and the five-period re-

gion for w/wg= 15— To the limit of our numerical accuracy,

we found that they are not simple disklike resonance re-
gions, but instead terminate in cusps at Hopf bifurcation
points. Thus there is some question about the accuracy of
the region shown in Fig. 1 for w/wo=+.
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