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Stochastic and regular motion in a four-particle system
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Two anharmonic (harmonic) oscillators ~ere coupled by an exponential nonlinearity. The temporal

development of the phase-space distance indicates alternating regular and stochastic motion as a function of
the coupling parameter and the energy.

Recently, there has been much interest in the onset of
chaotic motion of nonlinear Hamiltonian systems with a few
degrees of freedom. ' Since it was also found that in
many-particle systems nonlinear interactions may support
heat currents as a sign of thermodynamiclike behavior3 4 it
seems to be important to understand the transition from
regular to chaotic behavior in Hamiltonian systems. This
question has a long history5 and quite recently it was
found for two coupled oscillators that stochastic and regular

motion may alternate as a function of an internal coupling
parameter. ' In this Communication we present results for a

four-particle system, namely, two anharmonically coupled
nonlinear Toda oscillators, each of which represents an in-

tegrable two-particle system. For comparison we have stud-
ied two harmonically bound oscillators coupled by the same
nonlinearity. The general question is how this coupling
changes the integrability of the constituents.

For the classical calculation we start with the Hamiltonian

Hi = (pJ +p/ +p$ +p$ )/2m + A {cosh[ b (qi —q2) ] + cosh [ b (q3 —q4) ] + C cosh[ b (q2 —q3) ] 2 C]

which reads after a transformation to dimensionless variables:

H, - (p„'+p2+ p„' —p„p„—p p„)/2+ coshx+ coshy+ C coshu —2 —C

The transformation is accomplished by introducing

x = b(qi —q2), y- b(q3 q4), u = b(q2 —q3), Q = m(qi+ q2+ q3+ q4)

(2)

ap„= pi —mP, ap„=pi+ p2+ p3 —3mP, ap„=pi+ p2 —2mP, 4rnP =pi+ p2+ p3+ p4

where the following abbreviations were used:

a (Am/2)', r' br(2A/m)' (4)

This transformation also means that we may neglect the
center-of-mass motion and only describe the remaining de-
grees of freedom. The following equations of motion are
easily found:

x - —sinhx+ C sinhu/2,

y' sinhy+—C sinhu/2

ii = —C sinhu+ (sinhx+ sinhy)/2

x - —x+ C sinhu/2

y'- —y+ C sinhu/2,

ii = —C sinhu+ (x+y)/2

It is interesting to note that in this case another "normal"
coordinate is easily found in the difference coordinate x —y,
while this is not possible for the Toda oscillator. Both sys-
tems are nonintegrable but the harmonic one has one more

The dot indicates a time derivative and the parameter C
describes the coupling between the two identical oscillators
with relative displacement x and y, respectively. The corre-
sponding dynamics for harmonic oscillators are given by

[

constant of motion: They have different degrees of nonin-

tegrability.
Of special interest is the dynamical behavior as a function

of the coupling parameter C and also of the total energy F.
in the system. The dynamical behavior is studied by look-

ing at the temporal development of the phase-space distance
of two nearby initial points in phase space. In a first inves-
tigation the energy E is held fixed and the coupling constant
C is varied over several decades, making sure that the same
initial condition is always used. The results for the Toda
system are indicated in Table I. It shows those representa-
tive values of C ~here we found linear or exponential tem-
poral behavior of the phase-space distance, which means
that in the surroundings of these values the indicated
behavior can be observed. (We do not refer to those
parameter values ~here there is an onset of linear or ex-
ponential behavior, since these are hard to define by an in-

tegration over a finite time interval. ) The comparison with

the calculations of the harmonic oscillators sho~s some in-

teresting differences for the higher-energy case, where this
system seems to be more "integrable. " The main result is
the alternating behavior between stochastic and regular
motion. This result was also found quite recently in work
on coupled nonlinear oscillators with two degrees of free-
dom by Deng and Hioe, 7 although here the energy was not
kept fixed while the coupling parameter was changed.

Even more interesting is the fact that for a constant cou-
pling strength C there is also an alternating stochastic and
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TABLE I. The increase of the phase-space distance with time is
linear (L) or exponential (X) for various representative coupling
constants C and Wo different energies E. The initial conditions for
the moments and coordinates are p» -ps - (2E/3) 'i2, p„-0,
y n-0, coshx-1+E/3 (for the Toda oscillators, upper part),
and x (2E/3)'/r (for the harmonic oscillators, lower part).

C 00&0 0.084 0.090

TABLE II. Temporal development of the phase-space distance as
in Table I for three different coupling constants as a function of the
energy E.

E 4 E 8

10.000
1.000
0.700
0.600
0.500
0.300
0.195
0.100
0.085
0.080
0.077
0.074
0.070
0.030
0.010

L
L
L
X
L
X
L
X
L
X
L
X
L
L
L

X
L
X

X
X
X
X
X
X
X
X
X
X
L

10.000
1.000
0.500
0.200
0.113
0.108
0.105
0.102
0.100
0.090
0.070
0.050
0.040
0.010
0.001

L
L
L
L
X
L
X
L
X
X
L
L
L
L
L

L
L
L

L
L
L
L
L
L
L
X

L
L

regular behavior with increasing energy E. In Table II the
results are shown for a definite initial condition. For vari-
ous parameters C at least three different energy regions
were found with a transition from a stochastic to a regular
motion and back to a stochastic one. The same initial con-
dition was chosen for the harmonic case and again the typi-
cal alternating behavior was found. Note, however, that
there are broader energy regions with a definite characteris-
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4.0
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5.0
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tic motion. These results were confirmed by calculations
with other initial conditions. It seems, therefore, a general
fact that in systems with two or more degrees of freedom
the dynamics may change from regular to stochastic and
back to regular motion as a function of total energy and
coupling parameter C.

Although the phase-space distance is best suited to
discriminate between regular and stochastic behavior, it
does not seem to be very sensitive to the differences
between systems of various degrees of nonintegrability.
The two coupled harmonic oscillators behave similarly to
the two nonlinear Toda oscillators in this respect. Further
discussions on this problem will be published soon.
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