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First-passage times for non-Markovian processes
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First-passage time statistics for non-Markovian processes have heretofore only been developed for
processes driven by dichotomous fluctuations that are themselves Markov. Herein we develop a new

method applicable to Markov and non-Markovian dichotomous fluctuations and calculate analytic mean
first-passage times for particular examples.

The difficulties encountered in obtaining first-passage
time results for even the simplest non-Markovian processes
are well known. ' In great part the subtleties arise from the
fact that the first-passage time problem for non-Markovian
processes cannot in general be formulated in the traditional
way of a Markov process, i.e., as a boundary value prob-
lem." In this Rapid Communication we present results
based on a procedure that avoids this difficulty.

To illustrate our method, we consider the simplest
dynamical system driven by external fluctuations with a fi-
nite correlation time, Our system is defined by the variable
X(t) whose dynamical evolution is specified by the dif-
ferential equation X=F(t). The random variable F(t) is a
dichotomous (not necessarily Markov) process, alternately
taking on the value of a and —b, with a, b & 0. The times
that the variable F(t) retains the value a and —b are,
respectively, governed by the distributions g, (t ) and

ps(t) 'If F(t.) is a dichotomous Markov process, then
these distributions are exponential, p, (t) = X&exp( —X,t),
j= a, b, where ~, ' and A. b are the average residence times
in the states F(t) =a and —b. Thus, X, ' and A.s

' are
average times between s~itches, and a A, b = bk, Our first-
passage time theory is the first not to be restricted to these
forms. %e assume that successive switches are independent
of each other, i.e. , that the s~itching sequence defines a
renewal process. ' %e note that this assumption in no way
restricts the form of the distributions p, (t) and gs(t) that
govern the time intervals between switches. ~'

The random process X(t) can take on all real values
—~ ~ X(t) ~ ~, and we wish to calculate the distribution
of times for X(t) to first cross the levels + z. In particular,
we are interested in the mean value of this distribution, i.e.,
in the mean first-passage time to ~X(t) ~

=z. Let us begin
the process at X(t =0) =xo. Our procedure is based on the
fact that the process evolves from this initial state in a series
of steps that can be used to construct an actual trajectory by
direct integration for any particular realization of F(t).
Suppose, for example, that F(0) =a. Then we have the
following trajectory:

p(t) = X p, (t)
n= 1

The probability densities p„(t) can be constructed explicitly
from the trajectories (1). To illustrate this construction, let
us consider a realization that begins with F(0) = a, as de-
tailed in Eq. (1). We wish to ensure that no crossings of
+ z occurred in the first (n —1) intervals and that a cross-

ing does occur during the nth interval. During the first in-
terval X(t) =xo+at, and level z is not crossed if the switch
to F (t ) = —b occurs sufficiently early, i.e., if X ( t ~ )
=xo+att ( z or, equivalently, if tt ( (z — )x/oa. The prob-

Xp
~t, —, tq~

s s

The time intervals t„are governed by the distributions
p, (t) and pb(t). One such trajectory is shown in Fig. 1,
where the levels + z are also indicated.

Our goal is to calculate the first-passage time probability
density p(t) defined as follows: p(t) dt =probability that
the process X(r) crosses z or —z in the time range
t ~ 7 ~ t+dt without ever having crossed either of these
levels during the time span 0~r ( t. To calculate p(t), it
is useful to denote each time range t„between switches as
an "interval" and to define the auxiliary probability
p„(t) dt = probability that the first crossing of z or —z oc-
curs during the n th interval and in the time range (t, t + dt ).
Clearly,

X(t) =xo+at,
=xo+att b(t ti),
= xo+ at/ —bt2+ a (t —t2 t/ ),

~ t ~

O~t ~ti,
ti ~ t ~ t)+t2,
ti+t2~» t ~~ti+t2+t3,

FIG. l. A typical trajectory with F(0) = a. The first crossing of z
or —z occurs during the seventh interval.
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ability that this inequality holds is

z xp
Prob t) &

0

f (z —xp)/a
=

J~~ Ti). (t)) Ch, (3)

Z +Xp+ Qf&
Prob t2&

2

p (z+xp+at))/b
(lib (t2) dh2 . (4)

Similar conditions can be written for the probability that
each successive interval up to and including the (n —1)st
does not lead to a crossing. To proceed with our explicit il-

lustration, we must choose the parity of n: If it is even,
I

In writing (3) we have assumed that a switch frotn
F(t) = —b to F(t) = a occurred exactly at t =0, i.e., that
the switching sequence is an "ordinary renewal process. "
Other initial states can be considered and ~ould require a
distribution (b, {t) for the first interval that is in general dis-
tinct from that of subsequent ones, leading to a so-called
"modified renewal process. " To ensure that the second in-
terval does not lead to a crossing of level —z, we must re-
quire that X(t2) = xp+ at( —bt2 ) —z, i.e., that t2 ( (z
+xo+hht))/b. The probability that this inequality is satisfied

1S

then a crossing can only occur at —z during the n th inter-

val, while odd n can only lead to a crossing at z. %e select
the former and note that the level —z will be crossed during

the n th interval if X(t„)= xp+ Qt( —bt2+ + at„
—bt„& —z. The probability that this inequality is satisfied

1S

(

Prob t„&

T

Z +XQ+ ' ' +Qtn —1

P OO

Finally, we must specify ~hen during the nth interval the

crossing actually occurs. For the crossing to occur at time t,

it is necessary that X(t) xp+ hhtt
—bt2+ + at„

—bh„ 2
- —z, where b,„-t —(t(+ t2+ ts+ + t„).

The probability density for this crossing event is the delta

function

p(t:X(t) = —z) =b8(z+xo+at( —bt2

+ + at„)—b hT(„( ) . (6)

Collecting the results (3)-(6) immediately gives us the fol-
lowing integral form for the density p„(t):

h (z -xp)/u

p. «) IF(o)=.=b J
n even

h (z+xp+at1)/b
dt2 Tbo (t2)

t {z-xP-at1+bt2+ ~ +bt„2 )(a
dt„ t Q (t„ t)

x
( +, b, )h

dt„TI(o(t„)S(z+x()+at( —bt2+ +ah„, —bg„))
2 n —1

(7a)

for n ~ 2, where we have explicitly indicated the initial value F(0) = ht and the parity of n For od.d n, the density p„(t) Is
found by similar arguments to be given by

t {z—xp)/a T (z+xp+ut1)/b fp (z +xp+ut& b12+ ' ' ' +a( 2)/b

p„(t) IF(o)=,= a J dt(TI(, (t() J Ch2 Tbo(t2) J Ch„ l Tb&(t„()

P OO

J ( ) dh„(I(, (tw )8(z —xo —at( + bt2 + + bt„)—Q EN ) ) (7b)

for n «2, and

p((h) IF(o)= =a „(, „)t dt( Til, (t))5(z —xp —htt)) =5 t—
4 (z-xp)/a

T

Z —Xp

a " p~ (z-x )/a 1 ~a 1Ch l (h). (7c)

Similar expressions can clearly be obtained for F(0) —b.

The next step in our procedure is to Laplace transform Eq. (7) and to establish an integral recursion relation to connect
the nth and (th+2)nd densities. The recursion relations for even hh and for odd hh must thus be constructed separately
Upon summing the resulting relations over n we obtain an integral relation for each of the functions,

Kl(s x0 z (2) $ P2n+l(s) IF(0) u
0

(8)

where I = 1, 2, and where the dependences on the initial values of F(t) and X(t) as well as the barrier height z have been
indicated explicitly. Since the integral relations for E1 and for E2 turn out to have the same form, we can sum them and ex-
hibit a single relation for the combination K(s;xp, z;a) =K((s;xp, z;(2) + K2(s;xp, z;hh). We obtain

K (s;xpz;a ) =p((s) +p2(s) +
(z- xp}/a

dt1
t (z+x()+at()/b

dt2(thy(h))(tip(t2)8 K(s;xp+ hht) bt2, 2;hh) (9)

Finally, in terms of these functions and the probabilities wp(aIxp) and wp(bIxp) that F(t-0)- a and F(t-0)- —b given
that X(0)= xp, the Laplace transform of the first-passage time probability density p(t) then is

P(s) = K(s;xo,z;ht) wo((2 Ixo) + K(s;xo,z;b) wp(bIxp) {10)

Thus the entire problem has been reduced to the solution of integral equations of the form (9). These equations can in
general not be solved exactly for arbitrary forms of Tb, (t) and Tl(o(t), but they lend themselves to aPProximation schemes
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appropriate to specific forms of these functions. There are, ho~ever, situations when the integral equations can be solved

exactly for certain forms of Q, (r) and Qb(t), and we here give two such examples.

I. DICHOTOMOUS MARKOV PROCESS F(r)

A dichotomous Markov process F(r) is characterized by exponential distributions of switching times as given earlier and

depicted in Fig. 2. In this case the integral equation (9) can readily be converted to a second-order differential equation.
For the particular example considered here, ~e obtain

t

d' ' ~b+s ~a+s d s+ (S + ilz + jEb } EC (S;Z,xo', 0 }=
b a dkp ah

t

Ab+s ~, +s
2+

dxp2 b dxo

(z. +s)(zb+s)
ab p] s +p2 s

The boundary conditions for (11) are deduced directly from (9) and are given by E (s;z,z;a ) = 1 (ensuring that a process
that begins at xo= z with positive velocity escapes with certainty), and the integral relation

A., A. t, t" -(~~+ )(.— )/~
K(s;zxoa)~x =z= [Pt(s)+pz(s)]„,— '

J du e K(s;z u;a)Xp 2 (12)

We note that the constants of integration in the solution of (11) can be found either from these boundary conditions or
from a substitution of the solution back into the integral relation (9). The solution of (11) when substituted into (10) with
the initial choice F(0) = a [i.e., with w(a ~xo) = 1 and w (b ~xo) = 0] gives the result

p(s) = [(a+r)e (a ——r)e ] ' e [(a+r)e —(a —r)e ]

p(z+xo), r(z xo) —r(z-xo-) }'+ e (e
a

t

Using Eq. (13) in Eq. (16), we obtain

(13)

a Ab+ b h., + .(a + b )S

2ab

1

1 S+hz
2 g

s+Ab
b

, (14)
z' —xo z —xo a/h. , +z(a +b) b/

T] zxo = +
2D a a/ti +2z

r = [4P +4s (s + h,, + ),b)/ab ]' (15)

The distribution (13) yields analytic expressions for arbi-
trary first-passage time moments. In particular, the mean
first-passage time is given by

where D = a'b/h„(a + b ). This result was also obtained by

Hanggi and Talkner' using an entirely different procedure
restricted to dichotomous Markov processes F(t). For the
special case a =b and A., = Aq, the mean first-passage time

fI OO d
T~(z, xo) = J dt tp(t) = ——p(s) I =o

0 ds
(16)

O.S—

0.6—
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0
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0-0.5 0 0.5

t

FIG. 2. Distribution II/t(t) of time intervals between switches of
F(t) from one value to another. The mean time between switches
is unity (A. =1). Solid curve: exponential Itr(t) corresponding to a

dichotomous Markov process F(t ). Dashed curve: a P(t ) corre-
sponding to a non-Markovian F(t ).

Xo

FIG. 3. Mean first-passage time T] to +0.99 vs initial position xp
for a process that begins with positive slope. Dotted curve: dichot-
omous Markov fluctuations ~ith P 1 and a -1. Solid curve: di-

chotomous non-Markovian fluctuations ~ith A. - 1 and a - 1.
Dashed curve: diffusive process with 2D = 1.
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(17) reduces to the simpler form

Z Xp Z Xp
2 2

T((z,xp) = +
2D a

(18)

where now D =a /2)(., The first term in (17) or (18) is

the mean first-passage time in the limit of Gaussian white
noise in which b, a ~, A.b, X, ~, and D=constant.
The remaining contribution in (17) and (18) gives the devi-
ation from this limit and leads to a jump in the mean first-
passage time at xp= —z. This finite value of T((z, —z) is
the reason why the first-passage time problem in the pres-
ence of colored noise cannot be described in terms of a
standard boundary value problem. Equation (18) is shown
in Fig. 3 as is the Gaussian white noise result for compar-
ison.

II. A NON-MARKOVIAN PROCESS F (t )

As an example of a non-Markovian dichotomous process
F(r), we choose the distributions p, (t) and p(, (t) to have

I

d ~2 —4s2
z +, E( sxp, z;a)

'

dxp2 4a
r

[P)(s) +P2(s)]d s
dx2 a2 (19)

where we have taken a/X, = b/), b ) z. The boundary condi-
tions can again be found directly from (9), or alternatively,
the solution of (19) can be substituted into Eq. (9) for the
determination of the constants of integration. For the case
a =b and )(., =)(.(, = h. and with the initial choice F(0) =a,
we obtain for the Laplace transform of the first-passage
time distribution

the form shown in Fig. 2, i.e., for j = a, b we take

(ir/(r) )(//2 if 0~/ ~2/k/, and re/(r) =0 otherwise. The
mean times between switches are A., and A.b, and again
a Xb = b X, . With this choice of s~itching distributions, it is
again possible to convert the integral equation (9) to a
second-order differential equation:

r

p(s) s +p ezsz s
p e

—2pz

a a
r r

p(t xp) p(x zp) & s p($+zp) s /r(s xp) $(x xp)/I s $(1 xp)/u
X (e —e )+ —+ e e +e +4—e

2Q a a
(20)

where p =i ()r.' —4s')'/'/2a. Once again all first-passage time moments can be obtained analytically from (20). In particular,
we obtain for the mean first-passage time

I'

(2g —)(z ) . A. (2 —xp) h. (z +xp)
T$ z(XQ sin +cos

a )r. cos )(z a 2a 2a

r

1 4a —Z —Xp
a

(21)

Again we note that, whereas T((z,z) = 0, T((z, —z) has a
finite value. Further comparisons between the results (21)
and the Markov results (18) are shown in Fig. 3.

We find that in general for a given value of X (i.e., for a
given mean time between switches) the mean first-passage
time for the process to reach a boundary is longer (shorter)
for a process driven by the non-Markovian F(t) if the ini-
tial state is very near the lower (upper) boundary and the
process begins with a positive slope. The differences in the
mean first-passage times of the processes driven by Markov
and non-Markovian dichotomous fluctuations are most pro-
nounced when the mean distance a/)( covered in one inter-
val is comparable to the distance 2z between the boundaries.
When a/)( is very small, the process becomes diffusive,

I

while a larger value of a/)( leads in either case to
a mean first-passage time T) = (z —xp)/a, representing a
direct arrival at the boundary during the first interval.
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