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The intrinsic linewidth of a cw free-electron laser is calculated, and the result compared to the ordinary
atomic laser. A classical (i.e., nonquantum) linewidth is obtained for a free-electron laser operating in the

classical regime.

Free-electron lasers are more and more being established
as a source of highly coherent light alternative to conven-
tional atomic or molecular lasers. At first glance it would
not be surprising if the two had very different features:
While all conventional lasers vitally rely on the fact that the
gain medium (i.e., the atoms) is a quantum-mechanical sys-
tem, this is not so in the case of free-electron lasers
(FEL’s). All existing and almost all proposed FEL’s allow
for a classical treatment of the electrons for all purposes
relevant to their operation. In spite of this fundamental
difference the characteristics of the light emitted by conven-
tional lasers and FEL’s (viz., monochromaticity, photon
statistics below and above threshold) have been found to be
very similar. However, there is one problem that does not
appear to have been addressed in the literature yet: This is
the question of the ultimate linewidth achievable with an
FEL. For the conventional laser, this limit is determined by
quantum mechanics. For # — 0, no ultimate limit would ex-
ist. The question arises as to whether the FEL being a clas-
sical system might not be subject to such a limit or, in any
event, what that limit might be.

This question may have appeared academic thus far. All
FEL’s to date have operated on a pulsed mode, so that the
width of their frequency spectrum was determined by the
finite duration of the laser pulses (typically of the order of
picoseconds), and was therefore so large that ‘‘fundamen-
tal’’ limits were not really relevant. In the last year, howev-
er, an FEL has been operated at University of California,
Santa Barbara (Ref. 1) making use of an electrostatic ac-
celerator which produces electron pulses lasting several mi-
croseconds, which leads to laser pulses about six orders of
magnitude longer than the typical ones mentioned above.
Such an FEL may have a very narrow bandwidth (less than
1 MHz), and it is not ruled out that one could eventually
operate a cw FEL with an electrostatic accelerator. Under
these circumstances, the question of just how narrow the
linewidth of an FEL can ultimately be is no longer academ-
ic. It is this question that we want to address in this Rapid
Communication.

The laser linewidth can be calculated from the decay rate
of the ensemble average of the laser electric field amplitude.
A decay law of the form

(E(t)) =(E(0))e D2 )]

(arising from randomization of the phase) gives a Lorentzi-
an spectrum of full width at half maximum equal to D.
This decay rate may be calculated in a quantized field pic-
ture from the decay rate of the off-diagonal elements of the
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field density matrix (see, e.g., Ref. 2). One has, in general,
1

<E(z)>=[”—“;,

€0

/2
E“n+1pn,n+l(t) s (2)

and so the ansatz?
pn.n+1(t)=e_D’/zpn,n+l(0) ’ (3)

gives Eq. (1). Accordingly, we will derive the intrinsic
linewidth of a free-electron laser by solving for D in Eq. (3),
using the evolution equations for the density matrix of the
FEL. We will also use the fact, known from ordinary laser
theory, that the decay rate D of the off-diagonal elements of
p, at steady state, may be obtained from just the linear
theory, provided that the number of photons at steady state
is assumed to be known.

In Ref. 3 the change in the density matrix for the system
of the field and a single electron was written in the form

8pef(T/2) =Spes(— T/2)S" = p (= T/2) , 4)

where S is the time evolution operator (this is the change
over the time 7 that an electron interacts with the field).
We shall use here, for simplicity, the single-particle formal-
ism,>* which is probably best known; the many-particle
theory’ is found to give the same results to zeroth order in
the quantum recoil [see below, Eq. (8)], although one ex-
pects many-particle corrections (related, for instance, to am-
plified spontaneous emission) to arise in higher orders.
Also to facilitate comparison with Refs. 2 and 4 we shall use
the notation appropriate to the moving (Bambini-Renieri)
frame. It has been shown in Ref. 6 how essentially the
same description may be obtained in the laboratory frame;
we shall go to this frame at the end of the calculation.

The operator S may be expanded® with respect to the
quantum recoil, viz.,

S=S+S1+ -, Q)

where S, is independent, and S; is of first order in the
quantum recoil. (Note that Sy already contains multiphoton
transitions of arbitrary order.) By the term ‘‘quantum
recoil’”’ we mean the parameter

2
e=% (62)
hv L
=2r—=L | =, 6b
ﬂ)'omcz{)&q (6b)

where Eq. (6a) is written in terms of moving-frame quanti-
ties, and (6b) in terms of laboratory-frame quantities (see
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Refs. 3 and 6, respectively; in Ref. 6, € is written as gL). In
Eq. (6a), kis the magnitude of the laser wave vector (equal
to the wiggler wave vector in that frame), m the mass of the
electron, and T the interaction time. In Eq. (6b), v is the
laser (angular) frequency, ygmc? the energy of the elec-
trons, L the wiggler length, and A, the wiggler spatial
period. The size of € determines the magnitude of quantum

effects: When € << 1, one is in the classical regime, in
J

dpan+1
dt
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which case the expansion in Eq. (5) is appropriate and gives
the linear (small-gain) theory. We shall briefly comment on
the quantum-regime results (e > 1) at the end of this Rapid
Communication.

In order to describe the oscillator FEL, losses have to be
added to Eq. (4). This was done in Ref. 4. A ‘‘coarse-
grained’’ time average allows one to write the differential
equation

=r 3 (p+ik(N=n),n|SIBN)pyn+1 (BN +1S'|p+hk(N—n),n+1)
N

—-'-/é(n+1l-)pm+1+—vQ-[(n+1)(n+2)]l/2p,+1,,,+2 , 7

for the field part of the density matrix, i.e., p=Tr.ps,
where the trace is over the electron variables. In Eq. (7) r
is the rate at which electrons are injected in the FEL, p is
their momentum, and v/ Q are the cavity losses. An impor-
tant difference between this equation and the analogous one
for the ordinary laser is that in the latter the term p,,+; is
coupled only to itself and to p,—1,, and p,4+1,,+2; this is due
to the fact that in the atom only two levels are considered,
and so the field can only change by absorption or emission
of one photon, whereas in the free-electron laser the energy
spectrum of the electron in the wiggler has an infinite
]

- %D 2Pn.u+1= ’{EPMN+1
n N

where we have dropped the reference to the electron
momentum in the S-matrix element. The sum over the ma-
trix elements of S may be evaluated using Eq. (5) and the
explicit expressions given in Ref. 3.

In order to determine the linewidth we are interested in
the real part of the quantity D [cp. Eq. (3)]. The result is,
in the notation of Ref. 3,

2 .
= lﬂ+l’_-1_+ I i 9
ReD=r s Y 0t T 58D
2 )2 2
+0|-+| +o|-& )
ss Ngg

Here the first term is the ratio of the number ng, of spon-
taneously emitted photons per electron [jz(T)=nsp; cp.
Ref. 3] over the steady-state photon number, multiplied by
the rate of injection. This term is classical. The second
term is quantum mechanical (ngs~#~!) and is much small-
er (see the discussion below). The third term comes from
S; and the remaining terms are higher-order contributions
from S, which are all exceedingly small. Hence the dom-
inant term is

1

r
ReD=—-2% | (10)

2 ng
where rg=ngr is the rate of spontaneous emission

(photons/time). It is worth noting that in this form the
result is identical to that obtained for the ordinary laser
(see, e.g., Ref. 7). It therefore lends itself to the well-

I
number of levels, and multiphoton transitions couple in

principle p,,+1 to all the other pyy+1; N =0 to oo.

We now substitute the ansatz (3) into Eq. (7), and sum
over n. We may exploit the fact that the photon-number
distribution in steady state is sharply peaked at a value ng
by approximating

Zf(n)pn,n+1:f(nss) Epn,n+1

We then have

S, (nlSlns,)(nss+1|S*|n+l)——V—(nss+§1—)2p,,_,,+1+L[nss(nss'#l)]l/zzpn,nﬂ , (8)

Q Q

[
known intuitive explanation in terms of phase diffusion
caused by the random emission of the spontaneous pho-
tons.?’

We should here add a remark on our usage of the notion
of ‘‘spontaneous emission.’”” In analogy to the atomic laser
terminology we refer by ‘‘spontaneous emission’’ to the ra-
diation emitted when no photons of the respective modes
are present. This does not imply that spontaneous emission
be genuinely quantum mechanical. In fact, it is not in the
case of the FEL. A more precise characterization might be
as ‘‘bremsstrahlung (in the wiggler field)”’ or ‘‘spontaneous-
ly scattered radiation.”’

The crucial difference with the ordinary laser is that in the
latter, spontaneous and net stimulated emission are simply
proportional (the proportionality constant being ng). In the
FEL in the classical regime, instead, one has different ex-
pressions for them. In laboratory-frame variables,® the gain
per time « is

L

Aq

sin’x
X2

In (1D

a=rylm

v |_d
yomc? dx

I"=“OL/2

(where the detuning parameter u is defined in Ref. 6, for
instance). Near the point of maximum linear gain
(oL =2.6) the term in brackets in Eq. (11) is approximate-
ly equal to 1. If the laser is not too far above threshold,
one expects the small-signal gain per unit time to be of the
order of magnitude of v/Q, i.e.,

L

Q

a= << rsp -
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This is the reason of the dominance of the first term in Eq.
(9). Using this, and introducing the laser output power
P=ngkiv(v/Q), the linewidth Eq. (10) may be written as

RCDFELz%—zl;‘ Q - 5 (12)

L P
to be compared to the result for the ordinary, atomic laser?

2
_,,_] Ay Yomc?

2
kv

P (13)

1
Dyiomic = 'i' [ —VQ—

We can see that Eq. (12) is classical (i.e., independent of #)
while Eq. (13) is not. Indeed, ‘‘spontaneous emission’’ in
the FEL is an essentially classical phenomenon, arising from
density fluctuations (shot noise) in the otherwise un-
bunched electron beam. (This may be easily derived from,
e.g., the classical model in Ref. 8; the only essential feature
is the discrete nature of the electrons.) It is important to
notice that for fixed v, Q, and P, Eq. (12) always gives a
broader linewidth than Eq. (13), in the classical regime.
This is easily seen from the fact that the ratio Dgomic/ DreL
is precisely the quantum-recoil parameter € of Eq. (6b),

which is much smaller than 1 in the classical regime.

In the quantum regime (that is, when € > 1), one cannot
use the expansion (5), but the probability of multiphoton
transitions is substantially smaller and straightforward per-
turbation theory may be used (at least in the single-particle
theory). The result is a linewidth identical to the atomic
laser, i.e., Eq. (13).

An interesting interpretation of (12) may be also obtained
from the estimates in Ref. 6 of the order of magnitude of
nes. One can see then that while Dyomic~ (v/Q)/ ng,
Dger —~ (v/Q)/N., where N, is the number of electrons in-
side the cavity.

Finally, as a numerical example, let v/Q=10% s~ 1,
L/\y=100 periods, yomc?=10 MeV; with an output (con-
tinuous) power of 1 W, the linewidth turns out to be
D =2.5x%10"3 Hz. This is an extremely small value, which
shows that potentially a cw FEL could be a coherent source
of great monochromaticity.
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