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We investigate special types of solutions of the hydrodynamical version of a generalized Schrédinger-
Langevin equation (GNLSLE), derived in an earlier work, via stochastic mechanics. Within the same
scheme of stochastic differential equations, we decompose the stochastic process associated with the
GNLSLE into two independent processes: a classical Langevin-type process and a pure quantum Nelson-

type process.

It has previously been demonstrated that logarithmic non-
linear Schrédinger equations (LNLSE’s) possess many at-
tractive and distinct features.!"'®* Two types of LNLSE'’s
have been extensively investigated.

(1) For the description of conservative quantum systems,
Bialynicki-Birula and Mycielski (BBM) constructed a non-
linear wave mechanics,! based on Schrodinger-type and
Klein-Gordon-type equations with the nonlinear term
— blIn|y|? (BBM’s nonlinearity).2~ In both cases the most
remarkable feature is the existence of exact solitonlike solu-
tions of Gaussian shape.!™ In their heuristic considera-
tions, BBM dwelt upon the realm of the Copenhagen inter-
pretation of quantum mechanics and proposed to apply it to
atomic physics, describing phenomena in an intermediate re-
gion.! Subsequently, the physical reality of such a nonlinear
Schrédinger equation (NLSE) has been questioned as a
result of negative (neutron interferometer) experimental
results.®-® Very recently, however, Hefter® has given physi-
cal grounds for the use of the BBM’s NLSE by applying it to
nuclear physics and obtaining qualitative and quantitative
positive results (besides explaining the reason for the nega-
tive results of previous experimental tests). He argues,
then, that the only consistent interpretation of such a NLSE
is that of an equation for extended objects, such as nucleons
and « particles, and not for point particles as originally sug-
gested by BBM.

(2) For the description of nonconservative quantum sys-
tems, Kostin!® formulated heuristically a nonlinear wave
mechanics, based on a nonlinear Schrédinger-Langevin
equation (NLSLE) with a nonlinear term (fv/2i)
x [In(y/¥*)]. In this case, one finds that no solitonlike
solution exists for the damped field-free or constant-field
particle problem,!! although a solitonlike solution has been
found for the damped-harmonic-oscillator ground-state
problem.!? This NLSLE has subsequently been rederived
by Skagerstam'® and Yasue!® within the stochastic reformu-
lation of quantum mechanics, and has found extensive use
in many applications, such as in the works of Weiner and
Forman,!® Yasue,'¢ and Griffin and Kan.!? In fact, very re-
cently, Caldeira and Leggett!” have given a possible justifica-
tion for the use of nonlinear wave equations (such as
Kostin’s NLSLE) for the description of nonconservative
systems, based on their conclusion that damping tends to
destroy interference effects of two Gaussian wave packets in
a harmonic potential.

Recently, within the stochastic reformulation of quantum
mechanics, we were able for the first time to show that both
aforementioned nonlinearities appear quite naturally.!® Via
a unified approach, we have derived a generalized nonlinear

33

Schrédinger-Langevin equation (GNLSLE), for the descrip-
tion of nonconservative quantum systems, which encom-
passes both features described by BBM’s and Kostin’s
NLSE’s.18

In this paper, we investigate the possibility (or not) of
finding solitonlike solutions of the hydrodynamical version
of the GNLSLE for two cases: (1) with a stochastic exter-
nal field V= —xA4(t) (temperature dependent) we show
that no solitonlike solution exists; (2) with a nonstochastic
(constant) external field V= —gx (zero temperature) we
show the possibility of a special solitonlike solution. We as-
sociate the former case with what we call a stochastic exter-
nal field (temperature-dependent) Nelson-Langevin process,
whereas the latter is associated with a nonstochastic external
field (zero-temperature) Nelson-Langevin process. One
more remark is worth emphasizing. There are two concep-
tually different origins of stochasticity here: one due to
thermal classical fluctuations (of Langevin type) and anoth-
er due to quantum fluctuations (of Nelson type).

Let us begin by reformulating the GNLSLE through
Nelson’s stochastic mechanics:!%-2* a stochastic formulation
of quantum mechanics in terms of subquantum random
fluctuations, resulting from the action of a stochastic invari-
ant thermostat. The basic assumption here is that the sys-
tem under consideration consists of a quantum extended
particle in a viscous medium subject to an external potential
¥ and that to each quantum state with the wave function

v(xt)=1[p(xt)1V2expliS(x1)] , 6))

there corresponds a stochastic process ¢ (t) satisfying the
stochastic differential equation

qg()=v,(q(t),0)+n(t) , )

where v4 (g (1),t) is the forward velocity field, and n(¢) is
a Gaussian white noise with expectation values

(n(t))=0,
(n(n())=E/m)s(t—1) .

The dynamics of the stochastic process ¢ (¢), correspond-
ing to the GNLSLE, is determined through the hydro-
dynamical coupled set of equations!®

(3)

du_ _ 8 () F 8

ot ax("“) 2m 9x? ' @
and

dv_ 13V 8v_ du '

ot “moax Vox T Mt om0 ©
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where v=5(vy+v_)=(#/m)dS/dx is the current veloci-
ty, u=5(vy—v_)=(%/2m)d1np/dx is the stochastic ve-
locity, v+ (v_) is the forward (backward) velocity, and p is
the probability density of the corresponding process. The
term —vv accounts for the external dissipative force (p.m.)
corresponding to the nonlinear term (fv/2i) In(y/¢*) in
Kostin’s NLSE, whereas Au is the internal nondissipative
stochastic force (p.m.) corresponding to the nonlinear term
— bIn|y|? in BBM’s NLSE. Notice that in our interpreta-
tion of the BBM nonlinearity, b is an £-dependent constant
(b=kA/2) such that in the Newtonian limit Au — 0.1

Inasmuch as v and u are gradients, we rewrite Eqs. (4)
and (5) as [V=xF(1)],

%1;—+—(pv)— ©
and
%l;+ 31;+Vv__ffn_t)=___1_6 (Vau+ Veam) , (D

where F(t) is a time-dependent arbitrary external force and
V= — (£¥2m)p~Y2(8%"%/9x?), Vaem= — (1\/2) Inp are
the Madelung-Bohm and the BBM quantum potentials,
respectively. The corresponding GNLSLE of Egs. (6) and

M is
.__(E ﬁz _a_z_!p_ f[_y —ql_ __)‘_ -
ik Y 2m ax? + 2 In 'b* > lnldll xF()|w

The time development of the quantities p and v (the solu-
tion set of the problem) is uniquely determined from the
above system of equations if initial conditions are imposed
on them: v(x,0)=vg and p(x,0)=p,.

Next, by following Hasse?* and Roy and Singh,? we look
for solitonlike solutions of the form

p=p(e) , (8)

with e=x—gq.(¢), where g.(¢) is the center of gravity of
the soliton, which will appear to travel along the respective
classical particle path in a viscous medium.

From (8), we have

a = — g ! .QE.: Liﬂ. =7’

ot 4cp and 3x de ' - ®
Inserting Eq. (9) into Eq. (6), one obtains

v=4g. (10)

where the constant of integration must be zero to ensure
that v stays finite as p — 0.
Substituting Egs. (10) and (8) into Eq. (7), we arrive at

lIc+V‘Ic"£%“—71n‘dd (Vaut+ Vi) (11)
which can be split into?*2

Getvq.—F(t)/m=0 , (12)
and

£ ;;%;+Eimk -0, (13a)
with

R=p!? (13b)
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A solution of Eq. (13) is given by?*
p(x—gq.)=(mrmr)2expl— (x— g)¥ (E/m\)] ,
(14)

which can easily be verified by substitution.
The associated stochastic process g (t) is then, with the
help of Eq. (2),

g () =1{lp:(t)/m1=Nlg(1)=q. ()} + () . 1s)

Following Ruggiero and Zannetti,?® we write the stochastic
process q(t)=gq.(¢t)+€(t) as the sum of two independent
components: the classical (Langevin) solution ¢.(¢) and
the pure quantum (Nelson) fluctuation €(¢) owing to the
zero-point motion. In terms of the three-dimensional
representation process [¢.(¢),p.(¢),€(¢)] we have

g.(D=p()/m , (16a)
pe(t)=—vp.(t)+F(t) , (16b)
e(t)=—re(t)+n(r) . (16¢)

Viewed through Eq. (16b), the Kostin nonlinear term
[(&v/2i) In(y/¢y*)] is a precise quantum transcription of a
phenomenologically classical dissipative and irreversible pro-
cess. On the other hand, the BBM nonlinear term
[— (&\/2) Inly|?] is an intrinsic quantum component (with
no classical counterpart) and can be identified only through
the stochastic differential equation for the pure quantum
fluctuations [Eq. (16¢)].

Case 1. For F(t)=A(t), where A(t) is a Gaussian
white  noise with expectations (A4(¢))=0 and
(A()A(t")) =2vmkgT3(t—t'), we call the process q(¢)
[as viewed through Egs. (16)] a stochastic external field
(temperature-dependent) Nelson-Langevin process. In or-
der to obtain the probability density solution of this process
(p), where quantum and thermal effects compete, we must
take the convolution of (14) with W(q,,t) — the probability
of some value of ¢, at time ¢ for given initial conditions:
g.(0)=0 and ¢.(0)=v.2"2 It is found, with the help of
lemma I of Chandrasekhar,? that

W(q.,t)= (ﬂ'(fr)“lnexp{— lg.— (vo/V)(l—e_”)]z/UT}

(17a)

where
or(t)=2kgT(vt—3+4e "'— e~ )/ mp? (17b)
= (4kgT/mv)t (for large times) . (17¢)

Hence
+oo
p(x1) =f_°° p(x—q) Wig,t) dg.
=(m2) " V2exp{—[x— (vo/v)(1—e~*")]¥53)

(18a)
where
S()=F&/mA\)+ QkgT/mv?) (vt —3+4e~v'— e~ 1) |

(18b)
and

v=icD=e oot [ e 4 (1)/mlds (19)
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are the probability density and velocity of the quantum
Brownian fluid particle. Thus, when a stochastic external
force [4(¢)] is present, the center of gravity of the fluid-
particle wave packet travels along the respective Brownian
classical path in a viscous medium, with its breadth spread-

ing out as the time goes on (the motion undergoes friction
]

p(x,1)=(mo) 2 exp

where o =#/m\, and
v=g.(t)=e""[vo+ (g/v)(e”—1)] . (¥3))

Thus, in this case, the Gaussian wave packet has a shape in-
dependent of time, and its centroid follows the motion
which a damped classical particle in constant field would. In
other words, this is a damped-solitonlike solution of Gauss-
ian shape (the motion undergoes friction without disper-
sion).*®

This result answers in a very simple way the question of
whether friction ought or ought not to operate on the (zero-
temperature) lower-bound energy-state set by the ‘‘(f\/2)
nonlinearity’’: Frictional forces do not apply to this ‘‘zero-
point” energy.’! In fact, this question has been addressed
and answered previously by Griffin and Kan,'? whom we
refer to for a rigorous and complete analysis of this point.
Although their entire conclusion relates to the case of the
damped harmonic-oscillator ground-state problem, it still
holds true here, inasmuch as we have shown that the
““(£\/2) nonlinear potential’’ has striking similarities to the

—[x—%—{gt+[vo—-(g/v)](l—e“”)}
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with dispersion). Therefore, no solitonlike solution exists in
this case.

Case 2. For F(t)=g (a constant), we call the process
q(t) [as viewed through (16)] a nonstochastic external field
(zero-temperature) Nelson-Langevin process.

Hence

2

/o] , (20a)

|
harmonic potential as far as setting a lower-bound energy
state [see Egs. (16), and compare with those analogous in
the work of Ruggiero and Zannetti?®].

In conclusion, we believe that our GNLSLE may be used
as a clue to a deeper understanding of important nuclear
physical processes where friction (nuclear viscosity) plays a
fundamental role,'*3* e.g., in scattering of heavy ions on
each other with distances of smallest approach that are com-
parable to their spatial extensions, that is, for overlapping
systems, such as nucleons bound together within a nucleus.?
Thus, further study in this direction is of immediate in-
terest.
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