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Hamiltonian systems with three degrees of freedom, singular-point analysis, and chaotic behavior
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The singular-point analysis for two Harniltonian systems with three degrees of freedom is performed.
The connection with their chaotic behavior is discussed. To characterize the chaotic behavior we have cal-

culated the one-dimensional Lyapunov exponent.

In the present Brief Report we perform a singular-point
analysis (Painleve test) for Hamiltonians with three degrees
of freedom. %e compare our results with numerical stud-
ies, i.e., we calculate the maximal one-dimensional
Lyapunov exponents which serve to characterize chaotic
behavior. The models under investigation are the Hamil-
tonian

3

H(x p) = g 2 p, +
2 (xix2 +xgxi +x3xi'),

which arises in connection with Yang-Mills equations and
the Contopoulos Hamiltonian"

3

H(x, p) = $ (o);/2)(p +x(')+xi'xi+xi'x, (2)

(~i = I, ~i = 2' ', ~i = 3't'), which arises in an astronomical
context. The equations of motion for the Hamiltonian (I)
are

xi = xi(xi +x3 ),

xi= —xp(xi +xi ),

x3 = x3(xi +xi ),

and for the Hamiltonian (2) we find

xi = ~i ( —Oiixi —2xixq —2xix3),

xp = rll2( cupxp xi ),
~ ~ I
X3 OJ3 ( O)3+3 Q] ),

(3a)

(3b)

(3c)

(4a)

(4c)

To see what new aspects enter when Hamiltonians with
three degrees of freedom are studied let us discuss the case
with two degrees of freedom. The behavior of nonlinear
Harniltonian systems with two degrees of freedom of the
form H(x, p) = —,

'
(pi + p2 ) + U(x) has been widely dis-

cussed in literature (compare Ref. 4, and references
therein). In the following we assume that U is a polynomial
with rational coefficients and the associated equations of
motion are similarity invariant. ' %hen we perform a
singular-point analysis " (the equations are considered in
the complex domain) and determine the resonances
(Kowalevski's exponents) we find that r = —I is always a
resonance and represents the arbitrariness of tl. Another
resonance is related to the Hamiltonian (which is a first in-

tegral). ' Since we have assumed that U is a polynomial
and the system is similarity invariant, one of the resonances
must be a rational number. For the remaining two reso-
nances we have to solve a quadratic equation with rational
coefficients. The following cases can arise: (i) The reso-
nances become complex (complex conjugate pair). (ii) The
resonances are irrational numbers. (iii) The resonances are
rational numbers. Yoshida' showed that the appearance of
at least one irrational or complex resonance means the
nonexistence of another algebraic (and analytic) first in-
tegral independent of the Hamiltonian (theorem of Yoshi-
da). Adler and van Moerbeke' proved, assuming certain
technical conditions, that the Painleve property (a necessary
condition that an ordinary differential equation has the
Painleve property is that it passes the Painleve test) is a

necessary condition for algebraically complete integrability in
terms of Abelian functions. On the other hand, it is not
necessary for a Hamiltonian system to pass the Painleve test
in order to be completely integrable. For example, let
U(x) =xi'/5+2xi'xq'+xixi. Besides the Hamiltonian we
have the first integral h (x p) = pipq+xi xi+ 2xixi +x2/5.
The Painleve test leads to the dominant behavior
xi(t)~ (t —ti) 't' and xi(t)~ (t —ti) 't'. The resonances
are —1, T, T, and ~. The essential point is that we find

a psi-series' without logarithmic terms. This is called the
"weak Painleve property. "'

For a Hamiltonian with three degrees of freedom the situ-
ation becomes more complicated because the number of the
resonances is six. As described above r = —1 is related to
the arbitrariness of tl and another resonance must be a ra-
tional number (associated with the Hamiltonian being a first
integral). We continue to assume that the potential U is a
polynomial. Thus we must discuss the remaining four reso-
nances. Among other possibilities we can find that (i) all
remaining resonances are complex (complex conjugate
pairs), (ii) there is a pair of conjugate complex resonances
and the remaining two are rational numbers, and (iii) all
remaining resonances are rational numbers.

This motivates us to perform a singular-point analysis for
the two Hamiltonians given above, since Hamiltonian (I)
leads to case (iii) (at the resonances we must introduce log-
arithmic terms for the present case) and Hamiltonian (2)
leads to case (ii). Then we compare the results with numer-
ical studies.

First let us perform the singular-point analysis for system

33 2131 Qc1986 The American Physical Society



2132 BRIEF REPORTS 33

TABLE I. Maximal one-dimensional Lyapunov exponent for sys-

tem (4). The initial conditions are q; (t = 0) = 0 and

p;(t=0) = (2E;)' (i =1,2, 3) with E=E&+E2+E3 0.15.

E) E2 E3 ~max

Q.05
0.01
0.02
0.02
0.03
0.04
0.01
0.02
0.03

0.05
0.13
0.11
0.10
0.08
0.06
0.09
0.08
0.07

0.05
0.01
0.02
0.03
0.04
0.05
O.Q5

0.05
0.05

0
0.19
0.19
0.23
0.29
0.25
0.28
0.25
0.22

(3) (compare also Ref. 11). Putting xk = pk we find that the

resulting Hamiltonian equations of motion are similarity in-

variant. Determining the dominant behavior we find the
branch «k(t)~ akp(t —t1) ' (k =1, 2, 3), where a1'0+a2p
= —2, a ~p + 030 = —2, and a20 + a30 = —2. Since the
Hamiltonian equations of motion are scale invariant under
t a 't, x; axi, p; a p; we obtain H(ax, a p)
= a H(x, p). Consequently, r = 4 is a resonance. 5 6 For the
main branch" the resonances are given by —1, 1, 1, 2, 2,
4. At the resonance r =2 (twofold) we have to introduce
logarithmic terms. This means the general solution of sys-
tem (3) (considered in the complex domain) is expressed as
logarithmic psi-series. " On the other hand, if we put

«3 (t) = 0 in system (3) and study the remaining system we

find complex resonances, " namely, ~ +i7'i'/2 (besides —1

and 4). Due to the theorem of Yoshida" Eq. (3) is not
algebraically integrable.

The singular-point analysis can give only a decision that
there is no further algebraic first integral besides H. How-

ever, the system can admit transcendental first integrals.
With the help of the Lie theory of extended vector fields we

have proved that besides H there is no further first integral.
The approach has been described by Leach'4 for n degrees
of freedom and has been applied to the Henon-Heiles sys-
tem. In our case only the symmetry generator S =8/Bt
arises which is associated with the conservation of energy.
The constants of motion are obtained from the symmetry
generator and the Cartan form a = $, pidx, +H(x, p)dt. "

Let us now perform our numerical studies. We solve the
Hamiltonian equations of motion numerically. The integra-
tion has been performed with the help of Lie series. ' The
maximal one-dimensional Lyapunov exponent X,„ is calcu-
lated using an approach described by Contopoulos, Galgani,
and Giorgilli. ' This means we integrate directly the equa-
tions of motion and the variational system. For the initial
conditions we put x;(0) =0 and p;(0) = (2Ei)' 2 for given
values Ei, E2, and E3. Consequently, E=Ei+E2+E3. In
Table I we give the maximal one-dimensional Lyapunov ex-
ponents for E =0.15. Due to the initial conditions the orbit
1 is periodic. Consequently, ),„=0. This coincides with

our numerical results. Orbits 2-9 are chaotic, since the
maximal one-dimensional Lyapunov exponent is positive.
We have also calculated the autocorrelation functions. We
find for the orbits 2-9 that the autocorrelation functions de-
cay.

Now the Hamiltonian equations of motion and the associ-
ated variational system are invariant under

cl t, x; 0!x,, p; (x p; (5a)

and

y; —ay; (i =1, 2, 3), y; —a'y; (i =4, 5, 6) (Sb)

y +2= —2«'(y1+y2+y2), (6b)

where x(t) is the solution given above. It is known that a
solution to system (6) is of the form y; (t) = g„
&&exp(akt)Sk(t), where the quantities Sk denote periodic
functions of t with the period 2E. The three quantities nk
are constants, which are called the characteristic exponents
of the periodic solution. A necessary condition for stability
of the periodic orbit is that all the characteristic exponents
must be purely imaginary. ' Since system (3) does not
depend explicitly on t and, moreover, H is a first integral;
two of the characteristic exponents are equal to zero. Let
y =y1+y2+y3. Then we find y + 6x2(t)y = 0, where
x+2x =0. A solution is given by y(t) =x(t) and another
independent solution is obtained by quadrature, both of
which show no exponential instability [x(t) and x(t) are
periodic functions]. To prove the instability we put
«3 ( f) = 0. Then we perform the canonical transformation

x1+ ix2= exp( —i 7r/4) (X1 + iX2) (7a)

p1+ ip2 = exp( —i vr/4) (P1+iP2) (7b)

and find H(P X) = ~(P1 + P2 ) + T(X1 +X2 —2X1'X2 ).
The periodic solution x1(t) =x2(t) =x(t) with x = —x is

(scale invariance). For the Hamiltonian (I) we have

H (ax, a2p) = a H (x,p). The one-dimensional Lyapunov
exponent is not scale invariant but X nX. This means the
following: Given two sets of initial values («10,«20, «30,

p 10 p 20 p 30 y 10,y 20 ~ ~ y 60 ) and (X 10 X 20 X30 p 10 p 20 p 30

ytp, y20. y60) W"ere XO=a«O, P O=a PO y 0=ay, O

(i =1, 2, 3), y;p=a y;p (i =4, 5, 6). Then it follows that

E = a'E and k = a i1., where E = H (x;0,p; 0) Due. to the scale
invariance we have to do our calculation only for one ener-

gy shell.
Let us now discuss our results for the system (3). Let

«2(t) -0. In this case the numerical investigations" strong-

ly suggest that there is no regular region and that the
motion is always irregular except for special orbits, like the
orbits that form a set of measure zero. This coincides with

the result from the Toda Brumer criterion. ' From our nu-

merical investigations we conjecture that the same holds for
system (3). This means the "motion of a particle" in the

potential U(x) = —,
' (x1'x2 +«2«2 +«1'«2 ) is irregular except

for a set of measure zero. Notice, however, the region
which can contain regular motion can be very small.

To answer this conjecture it ~ould be helpful to study the
stability of periodic solutions. A periodic solution of system
(3) can be found by setting x1(t) =x (t2) = «(t2) = (xt).

Then we have the equation x = —2x'. The solution to this

equation is given by x(t) = 2 'i'A cn(A (t —tp), 2 'i'),
where A and t11 are the constants of integration and cn( ) is

the elliptic function. To study the stability we have to solve
the variational equations (i = I, 2, 3)

Pt =3't'+3 (6a)
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related to X~=0. Then Xq= —Xq/2 and the variational
equations are y'~ ——[Xq (r)/2]y~ and y'q= [ —3Xq (t)/2]yq.
By a simple change of time scale t = 2' 't we obtain
yl = X2 (r)y& and yq' = —3Xj (r)yq. Calculating the index
of stabihty' ' TrM(T) we find ~TrM(r) ~ & 2 for
y&' -Xj (r)y&. Now the solution is stable if ~TrM(T) ~ ( 2

and exponentially unstable if ~TrM(T)
~
) 2. Consequently,

X2 iS unStable.
Consider now the Contopoulos Hamiltonian (2). The

Hamiltonian equations of motion are not similarity invari-
ant. Performing a singular-point analysis we find the branch
xk(t)~ akp(r r~), where

Qio Cdi(Qlg + CU3) 18

agog, (cup+ cu3) - —3cog,

~3oi(~&+~3) - —3~3

The system with the dominant terms is

x
&
~ 2'�)(x]xp +x)x3)

~ ~ 2X2 —aO2Xi

~ ~ 2X3 ~ —(d3Xi

(ga)

(8c)

(9a)

(9b)

(9c)

3

H(xp) = X (ca,/2)p +xt'x~+x~'x3 (10)

Then we find H(a'x, a'p) =a6H(x, p). Hence, r =6 is a
resonance. For the resonances we find —I, 2, 3, 6,
~+ (i/2)23'~'. Due to the theorem of Yoshida'6 we con-
clude that the system cannot be algebraically integrable. To
find out the behavior at the resonance r = 2 we insert the
Laurent expansion

x„(r)=(r —r~) ' X a~(r —r~)
g~o

Putting x; - ~1@& we find that the Hamiltonian equations of
motion are similarity invariant (t a 'r, x; a x;,
p~ a p, ). The Hamiltonian is given by

(k - 1, 2, 3) into Eqs. (4). e find that a ~ ~
= aq~ = a3t = 0

and

—2mia io
—2cvia io

0 0 a22-
1 0 a32

gaia io
1

~2~2~ iO

1 2~co30 iO

(12)

Since co'qW~q it follows that the ansatz (11) does not work
and we find a logarithmic psi-series.

The search for symmetry generators with the help of the
theory of extended vector fields has no success. Only the
symmetry generator S = 8/Br arises which is associated with
the conservation of energy.

A detailed numerical analysis for the system (4) has been
performed by Contopoulos et al. 2 and Pettini and Vulpiani. 3

At least three disjoint regions with a different "degree of
stochasticity" have been observed. The escape energy for
system (4) is E, =0.097. Thus the numerical calculations
are performed for E=0.090. The (at least) three disjoint
and invariant regions for system (4) are (i) an ordered re-
gion with A, ,„=0, (ii) a large stochastic region with

A. ,„=0.03, and (iii) a stochastic region with h, ,„=0.002
and 0.005, respectively. In our singular-point analysis for
system (4) we find complex resonances and at the integer
resonance r =2 we have to introduce logarithmic terms.
Both the logarithmic terms and the complex resonances can
indicate chaotic behavior. System (4) is not scale invariant.
Thus different energy shells can show different behavior.

For system (3) we have only to study one energy shell.
For the special case x3(t) =0 the distribution of the singu-
larities in the complex t plane has been calculated. " For the
nonlinear oscillator x +x' = 0 the periodic solution is
described by Jacobi elliptic functions. Its singularities (in
the complex plane) are characterized as simple poles of or-
der one and are distributed doubly periodically in the whole
complex t plane. Such a regular distribution of the singular-
ities reflects faithfully on periodicity of the solution. When
a system sho~s chaotic behavior the singularities are dis-
tributed at random.
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