
PHYSICAL REVIE% A VOLUME 33, NUMBER 3 MARCH 1956

Possibility of quantum jumps
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A quantum-statistical theory is developed for a single-atom, three-state quantum system where a strong
(1-3) and a weak (2-3) transition are driven resonantly by an incoherent field. From a second-order corre-
lation function of the fluorescence intensity, it is concluded that a quantum jump can occur, in the sense
that the single atom can undergo large fluctuations between a state of full emission in the strong transition
to a state of no emission when the electron is shelved in the metastable state (2).

Quantum mechanics is an inherently statistical theory that
describes the behavior of microscopic systems in a proba-
bilistic way. For example, one cannot predict the result of a
single event or a single measurement such as the instant in
time that a single excited atom decays to a lower state or
when a detector will observe the emitted photon. Ho~ever,
it is possible to predict the average time an atom spends in
its excited state or the average time it takes to observe the
photon after excitation. In the case of a single atom, these
averages are realized experimentally in a series of repeated
measurements, where each time an atom is prepared in an
identical way. For a large ensemble of independent atoms,
a single measurement also yields an average of the individu-
al atomic emission signals which follows the well-known ex-
ponential decay law.

Now that a single atom or ion can be observed spectro-
scopically, either in a faint atomic beam or in an electromag-
netic trap, "a fundamental test of an atom's quantum sta-
tistical behavior is at hand. An important example is the
observation of antibunching in resonance fluorescence —an
effect that is based on the properties of a single atom and
that is erased by the presence of other excited atoms.

Another one-atom effect, "shelving, " has been proposed
by Dehmelt, ' and is the subject of this and the preceding
article. It involves, for example, the three-level quantum
system of Fig. 1(a), where a strong (1«3) and a weak
(2«3) transition are coupled, each being driven by a
resonant field. Many photons wi11 be scattered in resonance
fluorescence by the strong transition, but occasionally this
scattering will be suppressed, or perhaps even extinguished,
when the weak transition shelves the atom in the metastable
state (2). Thus, the strong transition registers the presence

FIG. 1. Energy-level diagrams for the case where (a) the transi-
tions 1-3 and 2-3 are driven by two resonant fields and (b) only the
1-3 transition is excited.

of the weak transition, and because the weak transition
linewidth may be exceptionally narrow, this scheme has
been proposed for an ultimate laser frequency standard. '

Consider now the case of a large ensemble of atoms
where one subgroup undergoes spontaneous emission in the
strongly driven 1 3 transition, the events occurring ran-
domly in time, while a second subgroup does not con-
tribute to the 1~ 3 scattering because they are shelved. An
individual atom may fluoresce randomly in time and be
shelved for other periods, but the time average of the
number in each subgroup is a constant. Therefore, for an
ensemble, the fluorescence intensity of the strong transition
~ould merely be slightly reduced due to the shelving effect.

%e now ask the following questions: How is the reduction
of the fluorescence intensity realized for the case of a single
atom? Does the single atom emit light continuously, but at
a reduced rate, or will the fluorescence intensity undergo
large fluctuations between a state of full emission, while the
1 3 transition is driven, to a state of no emission when
the electron is shelved? If the second possibility is correct,
then the single atom would display an individual quantum
jump, not by the emission of a single photon, but by the
turning on and off of the strong fluorescence of the 1 3
transition. While a forbidden transition may have a feeble
rate of emission (say 1 photon/sec), which would be diffi-
cult to detect, the presence or absence of fluorescence from
the strong transition could be of macroscopic order, say 10'
photons/sec, and easily detected.

The potential of the shelving principle to indicate individ-
ual quantum events through a macroscopic signal has been
discussed recently by Cook and Kimble. ' Indeed, their dis-
cussion adopts the intuitive view that quantum jumps occur,
whereas in this paper ~e predict their existence. The answer to
whether quantum jumps occur or not can only come from a
detailed quantum statistical calculation. %e acknowledge,
however, that for a single atom such a theory will never
describe any single event including a discontinuous quan-
tum jump, or an individual time trajectory of the fluores-
cence intensity. On the other hand, a calculation of the
average fluorescence intensity ~ould clearly be insufficient
in deciding whether the intensity is continuous in time or
widely fluctuating between periods of emission and dark-
ness. Detailed statistical information about the dynamics of
the emission process is required, and that follows from the
hierarchy of correlation functions of the emitted field. As a
cautionary note, we mention that the more intuitive classical
statistics can be misleading, since it can differ substantially
from a quantum statistical approach.
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EI = I 0& 03, i=1 2

Et = I ]03 Qt

where all unimportant factors have been absorbed in the re-
normalization and I » 2 are the spontaneous decay rates.
The retardation, due to the propagation from the source to
the detector, is not displayed explicitly either. We assume
that detectors can spectrally resolve either Ei or E2- and
that quantum beats, characteristic of spontaneous emission
from multilevel systems, need not be considered.

Some insight into the characteristics of the emitted field is

provided by the first-order correlation function'0

G, (i) = (E (r)E'(r)) =r p «) (2)

which is proportional to the average fluorescence intensity
since p;;(t) is the density matrix of the three-level system.
For long times, the stationary value

lim G, (t) = Gss r Pss i =1,2
t~ OO

is approached. The existence of the metastable state ~2)

merely reduces the average fluorescence intensity and
hence 6», but there is no indication whether the reduction
occurs in a continuous or discontinuous fashion. Insight
into the dynamics and statistical nature of the three-level
atomic emission is revealed in the stationary second-order
correlation function'

Gpss(r) = (E, (0)E, (i)E (i)E,+(0)), r & 0 . (4)

With the insertion of (1) into (4), we obtain

GP( r ) = I',I i (aq'(0) a3 (0)a, ( t ) ai ( t ) a 3 (0)a& (0) )

where we have made use of the fermion commutation rela-

tion 033033 + 033033 1 . Under the assumption that spon-
taneous emission establishes a Markov process, the above
correlation function can be evaluated using the quantum re-
gression theorem. " For this purpose, we use the time evo-
lution operator

a,'(r)a; (r) = $ Kj'„(r)a„'(0)a((0)+ noise (6)

We describe the dynamics of the atom, corresponding to
either Figs. 1(a) or l(b), by a set of fermion operators,

0, and 0;, i = 1, 2, 3

for the levels 1, 2, and 3. The amplitude of the two fields
emitted, E; —(i = 1, 2), is proportional to the polarization of
the medium

which is physically relevant for this problem, we obtain for
either Fig. 1(a) or 1(b) the simple expressions

—(3/2)y t —2y t y2Kj,' (r) =T [I+~(e ' -3e ' )]+0
, 71

(12a)

1

K3232 ( i ) = T ( I —e ' ) + 0 (12b)

The conditional probability of observing a photon E» at time
t, after having seen a photon E~ at t =0, follows from (8),
(1I), and (12a) as

tions are

Ge(r =0) =0 (Ioa)

rlrjpll pj/ (lob)

where (10a) reflects the well-known property of antibunch-
ing3, 4 in resonance fluorescence. For intermediate times,
the two-photon correlation function Gti(r) can be interpret-
ed as the probability of observing a photon at time t =0,
corresponding to the j 3 transition, and then subsequent-

ly at time t, a second photon for the i 3 transition. Since
the time origin of 6& has been chosen arbitrarily, the proba-
bility of observing the first photon at t = 0 is just
6& = F&p& Therefore, the conditional probability of ob-
serving a second photon at time t in a time window I' i is

proportional to

Pq ( r ) = Gp( r )/ (r (rqpq~s) (11)

The only quantity remaining to be evaluated is the coeffi-
cient Kli„(t), which follows from the solution of the three-
level density matrix. The level structure of Figs. 1(a) and
1(b) requires the solution of either eight or four coupled
linear differential equations, and these are amenable only to
numerical integration. To obtain analytic results and thus
insight into the properties of spontaneous emission from a
three-level system, we simplify the dynamics by assuming
incoherent driving fields as suggested in Fig. 1 . The result-
ing rate equations are solved easily, but since the solutions
are still involved, an additional simplification is introduced
in Fig. 1(a) by driving both transitions strongly, but not at
an infinite rate, so that yI =yt and y2 =y2 and in Fig. 1(b)
by saturating the 1 3 transition so that y»

=—y» and as-
suming that the relaxation rates in and out of the meta-
stable state are equal (y2=y3). These restrictions are by no
means essential for obtaining a solution, but they reduce the
complexity of the result and the number of independent
parameters. Here, yI = 4a'/rt, y, = r~+ yI, y2= 4I8 /I'2,
and y2 = I"

2 + y2. Observing the inequality

It obeys the same equations of motion as the density matrix
P~~= T[I+~(e ' —3e "')] (13)

p„(i)=
QKIJ (r )pI„(0")

GP(r) =r,r,Kf, (r)pcs .

From Eq. (7), the following properties are evident:

Kr'I(t =0) =5,.I5,„and K/3 (t = ~) = pi (9)

where p33(0) = 1. Thus, the corresponding correlation func-

except for the noise terms. Inserting this result into the
photon correlation function (5), we find

Pt[~ = ~(I - e ""), GP = ~r, (14)

Over this period, the three-level system behaves as if the
metastable state (2) did not exist, and the conditional pro-

and is plotted in Fig. 2 as curve 2. Also, the average
fluorescence intensity of the strong transition is Gls = Tl ~,

since p»»
= T in a fully saturated three-level system.

To rationalize the features of Fig. 2, we first note that for
short times, i ((y2, Eq. (13) is essentially indistinguish-
able from a saturated two-level system (curve 1), which
with the same parameters obeys the relationships
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FIG. 2. The conditional probability P&&(~) = K33 (7 ), Eq. (12a),
of a three-level system for a photon El„being emitted at time ~,
following the emission of a photon F.

&
at an earlier time v =0

(curve 2). Similar conditional probabilities for a fully (curve 1) and
a partially (curve 3) saturated two-level system, ~here the former
overlaps the three-level case for short times v ~ y~

' and the latter

for long times 7 ~ y2 '. The condition y~ /y2= 10 applies.

bability for the two- and three-level systems is the same.
For the shortest times, t (& y~, the conditional probability
drops to zero, indicating that there is no second photon
available immediately after absorption of the first photon.
This is the antibunching phenomenon. "

For times t —y2
' and longer, the three-level conditional

probability coincides with that of a partially saturated two-
level system (curve 3), which obeys

p,iI&=T(1-e "'), Gp=Tr, . (15)

We see that while the two-level solutions (a) and (b)
represent continuous fluorescence signals vyith average in-

tensities ~I ~ and Tl &, respectively, the three-level result

(13) bridges the two cases. Furthermore, at intermediate
times y~ & t & y2, the instantaneous intensity lies signifi-
cantly above the limiting average value at long times
t && y2 '. Thus, we conclude that there must exist signifi-
cant periods of darkness or extremely weak emission so that
the time-average intensity reduces to the correct asymptotic
value TI ~.

1

Additional confirmation of these ideas appears in the
cross-correlation conditional probabilities

GH(r)~(rll 2PH) KH (r) ~12(r) Pll( r)

GP ( r )/ (r &1 2P F) = KH ( r )'= ~21( r ) P22 ( r )

(16a)

(16b)

These relations correspond to the emission of photon 2

(2 3 transition), followed by photon 1 (1—3 transition)
or in the inverse order. Since K3'3 and K33 given by (12)
are different, the conditional probability depends on the or-
der of emission. This feature is summarized in Fig. 3, and
shows for P2~ that, on the average, when photon I is ernit-
ted, a long time y2 will elapse before photon 2 is emitted.
Looking backboard in time, the emission of photon 2 signi-
fies that a dark interval y2

' preceded it, since on the aver-

(b)

P. .
IJ

FIG. 3 ~ Cross-correlation conditional probabilities are shown for

P~2 and P2~, Eq. (16), where the asymmetry in the delay times of
photons 1 and 2 is evident.

age a photon 1 was not emitted. Conversely, P~2 implies
that after photon 2 is emitted, only a brief period y~ is re-
quired on the average before photon 1 appears. The slow
2-3 transition allows the fast 3-1 transition to follow almost
immediately. Then, according to P~~, a sequence of rapid
bursts of photon 1 light follows, to be interrupted again by a

period of darkness. A period of photon 1 light lasting 2y2
with an intensity of ~y~ and a period of darkness lasting

would then yield the correct time-averaged value

GP = 71'2. It should be noted that the time asymmetry in

P~2 and P~~ is a pure quantum effect, ~hereas in classical
statistics the behavior is independent of the order of emis-
sion.

One might question whether the higher-order correlation
functions, which have been neglected, are required. Since
we are dealing with a Markov process, an assumption that is
vital to the application of the regression theorem, nothing
new is learned by considering higher-order correlation func-
tions. This is because the higher-order function decom-
poses into a product of second-order correlations.

Thus, it appears that the intuitive picture of jumps in a
three-level quantum system, as initially envisioned by
Dehmelt, agrees with the quantum statistical theory
developed here. Clearly, an experimenta1 test would now be
timely, but the assumption of an incoherent driving field
should be replaced by a coherent source, and this case will

be treated in a forthcoming article.
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