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Dehmelt’s proposal for an ultimate laser-frequency standard based on a single trapped ion is examined.
Density-matrix calculations are developed for a double-resonance scheme which, under favorable cir-
cumstances, amplifies a highly forbidden and narrow electronic transition. The advantages of a pulsed exci-
tation scheme are discussed, and the limitations of cw excitation are exposed.

In a series of provocative papers,'”* an ultimate laser-

frequency standard, perhaps with a resolution of 1 part in
10'®, has been proposed. The concept is based on bringing
a single isolated ion nearly to rest by localizing it in a quad-
rupole trap and by optically cooling it. Optical line broaden-
ing arising from the Doppler effect, collisions, or transit-
time broadening are thereby minimized. The clock transi-
tion is assumed to be a highly forbidden electronic transition
(which we label 2+— 3), but to detect it, a strong transition
(1+ 3) sharing a common lower level is to be monitored in
spontaneous emission, each transition being driven by a
resonant laser field (Fig. 1). The argument proposed rests
on the assumption that a single ion, in contrast to an en-
semble, occupies but a single state at any instant; the possi-
bility of a superposition state appears to be excluded. Ac-
cording to this reasoning, the occupation of the metastable
state (level 2) or shelving of the ion extinguishes the spon-
taneous emission of the strong transition, signifying that the
weak transition has occurred in absorption. The weak-
transition signal is thus amplified.

Beyond these ideas, however, the Dehmelt proposal'-*
does not clearly specify how the measurements are to be
performed, for example, whether the two transitions are to
be driven at different times in a pulsed sequence or simul-
taneously with cw laser sources. It is this circumstance
which has given rise to a three-level rate equation calcula-
tion of Cook and Kimble,’ where both transitions are driven
simultaneously by an incoherent source. Although their
model addresses the issue of ‘‘quantum jumps,’’ rather than
an optical-frequency standard, we wish to point out that
under cw conditions the two transitions interact in such a
way as to produce a large frequency shift and broadening
which renders the forbidden transition useless as a frequen-
cy standard. Clearly, the ion can exist in a superposition
state, and the consequences cannot be ignored.

Additional and perhaps more profound questions are
raised by Dehmelt’s proposal which have not been dis-
cussed. From the density-matrix calculations given below,
it follows that the shelving scheme and the anticipated am-
plification fail in the case of cw excitation, because the weak
and strong transitions compete to such an extent that the
population of the metastable state is reduced by orders of
magnitude. This point has not been appreciated in the ear-
lier literature. In this case, the effect of the weak transition
on the strong transition is slight, and partially populating the
metastable state does not extinguish the strong transition on
the average.

For the Dehmelt proposal to work, the two laser fields
must be pulsed so that they alternate in time, not only to
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avoid dramatic frequency shifts and line broadening, but
also to populate the metastable state appreciably. Ideally,
the amplitude and duration of the weak-transition pulse
should approximate a 7 pulse so that the population is near-
ly inverted, and then the strong-transition intensity will be
greatly diminished, but of course not extinguished.

The intriguing question of how one calculates a single
scattering event, rather than an average, is less obvious.
This subject invades the area of measurement theory, and
such questions as whether the transition occurs abruptly as
in a quantum jump, assumed by Dehmelt and by Cook and
Kimble, or gradually in time need to be answered in decid-
ing whether the strong transition is extinguished or not,
although this may not be a crucial question for a laser-
frequency standard.

To explore these questions, we first perform a three-level
density-matrix calculation for the case where the weak and
strong transitions are driven continuously and simultaneous-
ly by two coherent cw fields. We utilize the three-level
density-matrix equations of motion,

;;)13+i513(A—i71/2)=ia(P33—Pn)—/ﬁpxz , (1a)
;;)23—1523(A'+i72/2)=iB(pn—pzz)—iapzl , (1b)
puztipplA+A"=i(y;+y2)/2]=iaps—iBp1s | (1c)
pu=ialpn—pi)—puy: . (1d)
pn=iB(p3—p21) —pny: , (1e)
pn=ialpiz—p31) +iB(p—p3) +puyi+pny: , (1)

developed by Brewer and Hahn® but modified for the case
of an isolated atom having a ‘‘V”’-level structure, level 3
being the common lower level. It is assumed that a strong
cw optical field drives the (1-3) transition at the Rabi fre-
quency a = u13Eo/2% and a weak optical field the (2-3) tran-
sition at a rate 8= uy;E¢/2%, where a >> B (Fig. 1). States

-

FIG. 1. Energy-level diagram where the Rabi frequencies satisfy
a>>f.
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[1) and |2) decay to |3) by spontaneous emission at rates
v1 and vy,, respectively, where y; >> y,. The tuning param-
eters of the strong and weak transitions are defined by
A=—Q,—wy and A'= Q,+w;,, respectively, Q,, being
an angular optical frequency, and w; = (E;— E;)/k is a level
splitting. The tilde denotes the transformations pi;
=pe  Vand p23=[me_'n’l to a double rotating frame.

To obtain perturbative solutions of (1) under steady-state
conditions, we first derive to zeroth order in 8 the well-
known two-level solutions,

PP =a(A+iy/2)/(A2+y}/4+2a4?) ,
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for the strong transition, where p$} +p{{’ =1.

We then require that the steady-state population of the
metastable state

p§%)=;—€(ﬁ§%)—ﬁ§§)) , (3)

which follows from (le), be evaluated perturbatively to
second order in B, as this quantity signifies whether the
weak transition has occurred or not. By means of (1b) and

pp=alt _F

‘ ) (1c¢) and the zeroth-order terms (2), we find that
pff) = (A2+yH/4+ad)/ (A2 +yH/4+24) ;
141—(*y1+~/z)+ﬁaz2 142—(y1+yz)+a2 +A” —7‘4ﬁ+ 1+ 02]
Y1 Y1
v (yi+8ad) 2 2 ‘ @
1
Alz—az“l‘%()’l"’)’z) +A7 72+121‘

In simplifying the above equation, we have assumed
without significant loss of generality that the strong transi-
tion is driven on resonance (A=0).

The line shape of this expression reveals that the weak
transition has not one but two resonances located at

A= i[a2+(72/4)(‘y1+'y2)]l/2 . (5)

In other words, the Rabi sidebands of the strong transition
are implanted on the weak transition through the common
level 3, which is a dressed state. Since we assume that
a >y, >>vy,;, the frequency shift (5) is essentially
A’'= * «. With the above inequalities, Eq. (4) can be sim-
plified in the high-field limit to yield

(y1/2y2) BHA? + (ya/y1)a?]
Q-

(6)

lim p}3 =

a— oo

which shows rather remarkably that the weak-transition
linewidth (full width at half maximum) is

Awyp=y1/2 , @)

and not vy,. This result may be counterintuitive, since one
might expect, naively, that the strong transition would
power broaden the weak transition. In any event, since
y1 >> vy2, the weak-transition linewidth is totally dominated
by the strong transition.

According to Eq. (6), the magnitude of the level-2 popu-
lation at resonance A’ = * « is

p%%J(A/= ia)=2,32/‘)'1’)'2 , (8a)
and also the corresponding change in the population of state
lis

piP(A'= ta)=—3p (A= ta) . (8b)

Equation (8a) is to be compared with the corresponding
Cook-Kimble result’ o¥/m, which in our notation takes the
form

(5 lex ~ 287 /%3 . 9

Assuming 1/y,= 50 msec and 1/y, =20 nsec, numbers used

Iby Dehmelt'™* to illustrate the shelving principle for T/%,
we see that the Cook-Kimble result disagrees with (8a) by
the large factor y,/y,=2.5x10°. Equation (9) disagrees,
because the three-level problem has been reduced to a two-
level problem, which cannot include the competition of the
two transitions. According to (8b), the change in intensity
of the strong transition due to the weak transition generates
the signal Al,=vy,;Ap,; =pB%y,, whereas in the two-level
problem the weak transition generates the signal [,
=vy,01=28%v,. Therefore, in this case there is no ampli-
fication.

Now consider the low-field limit of (4). By comparing
terms in the numerator, we see that when a << %\/y,yz,
(4) reduces to

2 _ B
pﬁ; A+ (10)
This result displays the expected linewidth of y,/2 when
both transitions are driven weakly. Note that the crossover
point a~71—\/ylyz between high- and low-field limits is
more restrictive than the crude approximation o ~ y,/2.

To summarize, the large frequency shift (5) and line
broadening (7) and the smallness of the population change
in state 1, Eq. (8b), makes the cw excitation scheme unat-
tractive.

In considering the time-dependent solutions, we treat a
case more appropriate to Dehmelt’s suggestion,'™* where the
two fields are applied alternately in time, and the effects of
superposition are eliminated, as in recent microwave experi-
ments.” Assume that the 2-3 transition is driven by an ini-
tial pulse of duration 7, and then a second pulse beginning
at time T excites the 1-3 transition. Ideally, the first pulse
is a 7 pulse so that the population of the three-level system
resides totally in level 2 at time 7 and thereafter feeds state
3 by spontaneous emission. The problem then reduces to a
two-level calculation which can be treated exactly using a
Laplace transform technique.® At short times, the nutation
oscillation damps out in a time — 1/y,, whereas the long-
time behavior is given by

2a%p22(T)
4o+ (1/2)7%

pul(n) = (= 7277 (11
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For o?>>y!, the population will be distributed equally
between states 1 and 3, and the fluorescence signal will
have grown in a time —~ 1/y; from 0 to 50% of the max-
imum value. This case represents the maximum amplifica-
tion possible or %—yl/yz. A relevant point is that if the
strong and weak transitions are excited by pulses of duration
1/y1 and 1/v,, respectively, then the intensities required to
achieve the w-pulse condition are related by I,=1,y,/y1,
i.e., rather interestingly the weak transition requires a far
weaker pulse intensity than the strong transition.

As an alternative, assume that the initial or preparative
pulse is sufficiently long ( > 1/y,) such that the steady-state
population

B?
282+ A2+ (1/4) 3

pn(T) = (12)

is essentially reached. Application of the second or probing
pulse then yields the long-term behavior

2a?

-—72(1—7')
4o+ (1/4))/%

pn()= [1-pn(De . (13)

Thus, if the two-pulse sequence is repeated many times, Eq.
(13) predicts that the strong transition faithfully monitors
the spontaneous decay of the weak transition. For each
photon emitted in the 2-3 transition, -lfyl/yz photons are
radiated in the 1-3 transition, and in the relevant case of
T!*, the amplification? is about 10°. From (12), we also see
that the clock transition can exhibit power broadening.

It should be stressed that the density-matrix solutions as
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presented here pertain to averaged quantities, for example,
to the average fluorescence intensity over many observa-
tions of a single ion or equivalently to a single observation

of an ensemble of independent ions. Furthermore, the time

dependence is smoothly varying rather than discontinuous.
If the preparative and monitoring pulses are repeated, there
will be a statistical distribution in the measurement of the
fluorescence intensity from one pulse sequence to the next
because of the fluctuations associated with spontaneous
emission. On the average, as demonstrated above, it is pos-
sible to observe a significant reduction in the 1-3 fluores-
cence rate when the weak transition 2-3 is partially saturat-
ed. This is in contrast with the steady-state scheme, where
on the average only a negligible change in the fluorescence
signal can be obtained, which is expected to escape experi-
mental observation because of the statistical nature of the
emission process.

Compare now the proposal of Dehmelt and the subse-
quent work of Cook and Kimble who resort to an intuitive
picture where the individual quantum event of spontaneous
emission exhibits a discontinuous jump between a strongly
emitting and a nonemitting state. Whether these fluctua-
tions switch the strong transition completely on or off is a
fundamental question itself and will be reported subsequent-
ly in a detailed quantum statistical calculation.”!'® More-
over, if these discontinuities do occur, it can be shown in a
simple calculation that the time-averaged emission over the
‘“‘on’’ period 1/y; and the “‘off”’ period (1/y;)(1—p2)/pn
is I=9,(1—p2)/2, in agreement with the density-matrix
calculation. Of course, for an ultimate laser-frequency
standard, it is the average quantity that is of importance.
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