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The critical potential parameter T, =(Z, )' expressed as a biquadratic function of the nodal and

orbital quantum numbers is incorporated into two analytic eigenvalue formulas. The first uses an

explicit modification of the Morse-potential eigenvalue formula. The second uses an analytic simpli-

fication of the zeroth-order approximation of Imbo, Pagnamenta, and Sukhatme. Both procedures
are validated with large sets of eigenvalues obtained by numerical solutions of Schrodinger s equa-

tion for three related short-range potentials whose shapes differ widely.

I. INTRODUCTION

Previously we observed a simple regularity in the criti-
cal potential parameters Z, of the Yukawa potential asso-
ciated with bound states at zero energy. ' Essentially
T, =(Z, )' is approximately bilinear in the nodal quan-
tum number U and the orbital quantum number I and very
accurately biquadratic. This regularity at the interface be-
tween bound and scattering states was useful in develop-
ing approximate analytic expressions for eigenvalues' and
phase shifts of the Yukawa potentials. The present work
began in an effort to extend and generalize this earlier
work. We used the exponential potential as a simpler
representative of short-range potentials since it is well
behaved at the origin and at infinity. We adapted a
framework provided by the Morse potential eigenvalue
formula which we modify further in this work to handle a
greater range of potential shapes.

To test our formulas and adjust their parameters we
utilize large collections of eigenvalues for a family of
short-range potentials of the form u "e ". The case
v= —1 is the Yukawa or the Debye potential which is
highly attractive at short ranges. The case v=O is the ex-
ponential potential which is weakly attractive at short
ranges. The case v=1 is a molecularlike potential which
is weakly repulsive at short ranges. The three potentials
can also be written Y(p, ,r), ( a/did ) F(p, r), —and
( —t)/BrLt)zF(tu, r), where F(p, r) =[exp( pr)]/r, all-
evaluated at p = 1. Such short-range potentials are
representative of those used in models of nuclear forces,
nuclear shell structure, negative atomic ions, superlattices
in semiconductors, and quark-antiquark bound states. As
test "data" for the Yukawa potential (v= —1) we use 489
eigenvalues of Rogers, Graboske, and Harwood. 4 For the
exponential potential (v=O) we use 347 eigenvalues gen-
erated by Green, Schwartz, and Suh. For the molecular-
like potential (v=1) we use 335 eigenvalues generated in
connection with this work.

During the course of the above effort the work of Imbo,
Pagnamenta, and Sukhatme ' (IPS) came to our attention
and the zeroth-order approximation (OIPS) seemed to pro-
vide a more systematic framework for our original pur-
pose. The present work also modifies OIPS by incorporat-

II. CRITICAL STRENGTH PARAMETERS

We consider potentials of the form

V(r)= —2ZEof(u), f(u)=u "e ", u =rla .

Here a is the range, Eo =fr /2mai is the natural unit of
energy, and 2Z is a dimensionless magnitude parameter.
The radial Schrodinger equation then takes on the form

d G/du +[2Zu "e "—l(1+1)u ]G=( E„t/Eo)G . —

(2)

In this work we utilize our previous observation' that
T, =(Z, )' is approximately bilinear and very accurately
biquadratic in the radial quantum U and the orbital quan-
tum number I. Thus the Z values leading to E„~——0 con-
form to

QZ, =T, =to+t&l+t2u+t&l +t4lu+tsu (3)

Figure 1 illustrates this relationship for the three poten-
tials.

III. MODIFIED MORSE POTENTIAL
EIGENVALUE FORMULA

Of the many variations and modifications of the Morse
potential eigenvalue formula which we have examined the
simplest one which does well is

ing the biquadratic behavior of the critical potential pa-
rameter T„near which the leading IPS approximation
breaks down. In addition, we simplify the problem of
determining the equilibrium distance by replacing their
iterative method by an approximate analytical method.
The results are also tested against the same eigenvalue
sets.

Formulas which successfully organize the energy levels
of a particle in variously shaped potentials can be useful
in the following ways: (1) the development of independent
particle models, (2) the approximate inversion of experi-
mental binding energy data, (3) inputting eigenvalue
guesses for refinement with a Schrodinger code, and (4)
communicating large data sets in a compact way.
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FIG. l. Cetic» -lu. T, (U, I)=(Z. )
values of the nodal quantum number U. The points are deter-
mined by numerical solutions of the Schrodinger equation. The
solid curves represent our biquadratic 6t with the parameters in
Table I. The long-short dashed curves are T, (U, O) for compar-
ison with T, (O, I), the lowest solid curves. The dashed curves
are the reduced potentials f{u) relative to the right and upper
scales. (a), Yukawa; (b), exponential, "(c),molecularlike.

M4QNITUDE (Z)

FIG. 2. Illustrative reduced eigenvalues and analytic fits with
(solid curves) the modified Morse-potential eigenvalue formula
and with (dashed curves) the modified OIPS formulas. (a), Yu-
kawa ( —E,i /Z E )' (b), exponential; (c), molecularlike
( —E~/2Zeo )
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TABLE I. Parameters for analytic formulas. Numbers in parentheses denote powers of 10.

Critical magnitude parameters
Yukawa Exponential Molecular

tI
f2

t3

t5

Do
Pf
P2
P3

2

82
V'2

9.242( —1)
1.189
8.730( —1)

—1.689( —3)
—9.799( —3)

1.200( —3)

Z/2n
1.891

—1.072( —1)
1.750( —1)

Z'"/n
—1.256
—7.683( —1)
—8.162( —1)

1.0
1.0
1.0

8.502( —1)
1.017
1.106

—8.041{—3)
—2.632{—2)

2.416{—4)
Modified Morse parameters

1

1.128
4.044
3.567( —1)

Modified OIPS parameters
1

—2.214
1.764

—2.232
1.570
9.064( —1)
2.105

6.974( —1)
5.499( —1)
8.755{—1)
7.135( —3 }

—1.002( —2)
1.366( —3)

3.651
2.665
1.962( —1)

1

0
5.781{—1)
1.320
3.033{—1)
8.918(—1)
3.229( —1)

~ ~

T, P31
E I = —2ZEoao & — +T T

P31
and

w (u) =[3+(uf"/f ') ]'

T+P)T,
T+P2 Tc

where T, is given in Eq. (3), Do, is the limiting reduced
eigenvalue as Z~ oo, and P]„P2, and P3 are adjusted pa-
rameters. The solid curves in Fig. 2 show fits obtained to
numerically determined eigenvalues for a number of
representative states. The values of Do and the numeri-
cally adjusted parameters are also given in Table I.

IV. THE MODIFIED ZEROTH-ORDER IPS METHOD

The zeroth-order IPS approximation5' (OIPS) works
exceedingly weil for power-law potentials. However, in
application to the Yukawa and exponential potentials, this
approximation breaks down near the critical values of the
potential magnitude parameter Z. We have attempted to
improve the OIPS approximation phenomenologically: (1)
to incorporate Eq. (3), and (2) to be analytically solvable.

The OIPS eigenvalue equation which follows algebrai-
cally using Eq. (1) is

E„i=V(r)+ = 2ZEp[f—(u)+ —,uf'(u)]r V'(r) 1 p

2

1/2

3+ v(v —1)u" ' —2vu+u "+'

VQ —Q

T = /P+ u8+ r,
r=(/+8)/2,

where

(10)

We next define a critical dimensionless distance param-
eter u, as the location of the zero of E„i, which for the
class of potentials given by Eq. (1) is u, =2+v. The van-
ishing of q(u) also sets up a restriction on the range of u.
When v is negative q(0)=0. When v is positive q also
vanishes at uo ——v. For uniformity we define a new
equilibrium distance parameter

z =(u —uo)/(u, —uo), 0&z & 1 .

Thus z =1 constitutes the maximum (critical) equilibrium
distance associated with zero binding and z=0 consti-
tutes the minimum equilibrium distance. It is also con-
venient to transform Eq. (6) by division by q which leads
to

= —2ZEou "e "[1—( u —v) /2], (5)
P = 1/q(u (z)), (12)

(I+ —, )+(u+ —, )w(u)=Tq(u) .

Here T =v Z,

q(u)=( —u f')'r =[u
"+ e "(u —v)]'

(6)

where the dimensionless equilibrium distance (u) must
satisfy

8=w(u (z))/q(u (z)) .

After considerable experimentation we found accurate an-
alytic representations for P and 8 of the form

4=4'0+0 jf'+4zf'

where
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T, =1/, +u8, +r, ,

Tl lfi+u81+rl

Tz lyz——+ u 8z+ 1.z,

0.=No+Pi+((lz

8, =8o+8i+8z

+c %0+7 J + T2 ~

(17)

(18)

(19)

(21)

(22)

Inverting Eq. (9) to relate u to z and inserting the result
into Eq. (5) we obtain the energy eigenvalue formula

E„i= 2ZEpE—[z(u —up)"]
T

1 Z —z(Q —Qo) —Qo
X 1+—,(v—up) ——(u, —uo) e

(23)

where E is a parameter to make up for the trucation of
the IPS series.

Rather than fix the parameters if Eqs. (17)—(22) in the
above way we fit our large arrays of eigenvalues using the
biquadratic formula for T, [Eq.(3)], Eqs. (18) and (19) for
Ti and Tz together with Eqs. (16) and (23}. For v= 1 and
0 we adjusted six Parameters; Pi„8i, ri Pz, 8z, and rz For.
the Yukawa potential we know the strong Z limit

f 1/zi jz

We may now solve the equilibrium f using the usual for-
mula for the roots of a quadratic equation. The result
may be cast in the form

z (u, l Z) = I 2Tz/[Tz+4Tz(T —T, +Ti+ Tz)]' —Ti ]

(16)
where

E„i=Z /n, where n = l + u + 1. We can obtain this lim-
it by letting E=Z'~ /n and Pz 8——z r——z 1——. Thus we
only adjust pi, 8i, and ri parameters to the eigenvalue
data. Table I lists all the parameters for the three cases.
The dashed curves in Fig. 2 shows the fits to representa-
tive eigenvalue data obtained by these modified OIPS for-
mulas.

U. CONCLUSIONS

As Figs. 1 and 2 indicate, the formulas presented in this
work do quite well in representing the quantum-
mechanical data. These formulas might be extended into
the positive energy domain to encompass size resonances.
While intended for short-range potentials they might be
adapted to potentials with Coulomb tails by referring
eigenvalues to the hydrogen levels ( —1/n ). By making
the adjusted parameters dependent upon spin-orbit cou-
pling, nonlocality, spheroidal deformation, etc., these for-
mulas might be used to encompass other physical effects
as well.

We have examined several alternatives to the factor
(T+PiT, )/(T+PzT, ) in Eq. (4} which interpolates be-
tween the large Z and small Z limits. Several of these
lead to better eigenvalue fitting but at the cost of addition-
al parameters. Finally, it should be noted that the accura-
cy of representation of T, [Eq. (3)] is of primary impor-
tance to the success of the modified Morse and OIPS ap-
proaches.
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