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Hartree-Fock calculations of atoms and molecular chains in strong magnetic fields
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%e calculate the binding energies of atoms and molecular chains in 10' G magnetic fields using the
Hartree-Fock method. For Z ) 2 (4} at 1 x 10 {5x 10'2} G, the isolated atom is energetically favored
over the molecular chain.

Atomic structure in very strong magnetic fields
(8 =—10tzBtz = 10"-10"6) is of relevance to neutron star
studies. ' ' Of particular importance is the question of
whether the surface matter is a solid or isolated atoms. For
example, if the cohesive energy of the solid is & 3 keV per
atom, the surface matter will not support a finite electric-
field boundary condition. ~ Models of surface heating by im-

pact of solid matter also depend on whether material will

solidify in strong magnetic fields. '
In this paper we report the results of variational

[Hartree-Fock (HF)] calculations for matter in strong mag-
netic fields. %e calculate the energy of both isolated atoms
and linear chains. Our calculations are the first self-
consistent ones treating exchange properly for atoms
heavier than helium in high fields, and are therefore partic-
ularly important for neutron star surfaces, where the dom-
inant material is believed to be iron.

Previous studies of this problem include restricted varia-
tional and density-functional calculations; the isolated
atom case was also studied using the Thomas-Fermi-Dirac
method. However, a more exact treatment is needed to
obtain quantitative results, because the errors introduced by
these methods are of the same order as the cohesive energy
(a few percent of the total energy). The lack of correlations
in the Slater determinant that we assume probably underes-
timates the absolute binding energies by less than 1%.'
Moreover, since we are interested in the energy difference
between the isolated atom and the solid, the deficiencies of
the Hartree-Fock method partially cancel.

%e assume an isolated linear chain of regularly spaced
stationary nuclei (charge Z, spacing a) oriented along the
magnetic field (strength 8). The magnetic field confines
the Z electrons per unit cell to Landau orbitals around the
chain, awhile motion along the chain is governed by the elec-
trostatic interactions among the nuclei and the electrons.

The corrections due to chain-chain interactions are estimat-
ed to be less than 1%,' and relativistic corrections have
been sho~n to be unimportant for these field strengths. "
The Hamiltonian therefore can be written as

0=0,+ V,„+V„+ V

~here H~ is a one-body Hamiltonian describing the motion
of independent electrons in the magnetic field, and V,„, V,
and V are the electrostatic electron-nucleus, electron-
electron, and nucleus-nucleus interactions, respectively.

%e seek to estimate the lowest eigenvalue of 0as a func-
tion of the spacing a for a given field strength 8. To do so,
we assume a determinental trial wave function formed from
spin-aligned single-particle wave functions of the form

p „=L e(p, p)e~u „(z)ls,= —~) (2)

Here, (p, $,z) are the usual cylindrical coordinates, the
non-negative integer quantum number m specifies the z
component of orbital angular momentum, and v is the
quantum number of motion along the field. The Bloch fac-
tor e with lkl ~ rr „rr/a is a consequence of the periodici-
ty of the chain. Here, 0» 0. „«1 is the occupation of the
mu band. L 0 is the Landau orbital that is an eigenstate
of Hq with eigenvalue 0

L e(p, g)=(2nm!) t~2e '~ee r ~4

where we measure all lengths in units of
p= (tc/eB)'~'=2. 566x10 ' Btzt~' cm and where Btz is 8
measured in units of 10' G. %e approximate the periodic
functions u „as independent of k and will determine them
variationally.

With the wave functions (2), the various terms in the
variational energy per unit cell, E, can be written as

(4a)

( V,„)= — '
X~.„„V.(z) l u „(z)l' dz,

P m, s

~ .JI ) D .(z —z') lu „(z)I'lu ~ .(z') I'dz dz'

—„g E,(z —z')u „(z)u,(z')u' ~ (z)u'„(z') dzdz'

Z2e2 1(v, ) =
QP g l J

(4d)
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with the periodic nuclear, direct, and exchange kernels:

2
e

—p /2 2m+1
V(z)= g J 2 m. p +z„

e
—(p2+(p )21/2 2m( ')2m'

D .(z)= X, P P dpdp',p=--" " 2m+ m!m'!j(p —p')'+(z„)'
sin(o „z„m/a ) sin((r „z,~/a ) ~ ~ i ~ e-[pz+ (p')2V2(pp ) + '+(e i(m-'-)(y-e')

E (z)=
(z„m/a)(z„m/a) 2 + mim' J( — ')'+ (z )'

(Sa)

dp dp'd$ d(ti'

(Sc)

Here the integrals in Eqs. (4) run over the unit cell
( ~z ~

~ a/2) and z„=z —na in Eqs. (5). Note that
(V,„),(V„„), and the direct part of ( V ) are formally
divergent, but can be canceled analytically to give the finite
energy of interest. '

The Hartree-Fock equations are obtained straightforward-
ly by varying E with respect to u „. To account for degen-
eracies in the higher Bloch bands, we determine the a
self-consistently by requiring

BE/B&my KF

for the partially occupied bands, where ~q is the Fermi ener-
gy. The isolated atom is obtained as a becomes large, in
which case our approximation of u „as independent of k
becomes exact.

We discretized the Hartree-Fock equations on a uniform
mesh spanning the unit cell and solved them by iteration;
typically between 64 and 256 points were used. The set of
initial single-particle wave functions was obtained from vari-
ational calculations, " but we checked that the final solution
was invariant to wide variations in the initial wave func-
tions.

The kernels (5) are all periodic in z and so are best dealt
with in Fourier space using the fast Fourier transform. The
Fourier transform of the electron-nucleus interaction (Sa) is
proportional to a Whittaker function, '4 which we calculate
by Taylor expansion for small q and by numerical integra-
tion for larger q. The double indexed electron-electron in-
teraction kernels [(Sb) and (Sc)] can be expressed in terms
of a finite sum of the nucleus-electron kernels. However,
one complication arises from the Bloch factor in the ex-
change kernel. We therefore calculate the Fourier

transform of the exchange kernel by convolution in Fourier
space using the fact that the Fourier transform of the Bloch
factor in Eq. (Sc) is a tent function. This allows us to ex-
press the Fourier transform of E as a finite sum of terms of
the form

Vi(Q —q)dq „Vi(Q —q)qdq

where the integration limits are linear functions of cr „ando, , We calculate these integrals by evaluating

! k

V((q) dq, Vi(q)qdq

for a sufficiently fine grid of values of k and interpolating
for each pair of bands m~, m'v'. Numerous checks on our
numerical procedures give us confidence in the precision of
our results for the total energy to better than 10

Table I shows the energies of isolated helium, carbon,
and iron atoms at two magnetic field strengths, together
with a comparison to previous calculations, and Table II
displays some properties of our iron atom solution. Our
results reproduce the helium calculations of Ref. 6. For
Z=26 and Bi2=5, a combination of the Hartree energy
with the exchange energy from variational calculations' yield
an approximate Hartree-Fock energy of —106.18 keV (Ref.
8), in agreement with our result, —106.09 keV. Our binding
energies are slightly lower than those in the density func-
tional calculations. This difference might be attributed to
the fact that the exchange functionals in the latter method
are approximated using plane ~aves, which are more ap-
propriate for 8= 0, while the Landau orbitals for the
present case are actually well localized in the plane perpen-
dicular to the field and do not resemble plane waves.

TABLE I. Absolute values of the ground-state binding energies of atoms as calculated in the Hartree-Fock
scheme are compared with density functional (DF) (Ref. 8), density functional with correlations (SIC) (Ref.
8), Thomas-Fermi-Dirac (TFD) (Ref. 9), and restricted variational {RV} (Ref. 7) calculations. Energies are
given in keV.

8
(10» 0) HF DF SIC TFD RV

0.575 32
0.958 1.040

0.545
0.913

4.230
7.668

4.14
7.73

55.10
106.09

56.1

108.18 108.85
56.21

105.89
53.13

101.7
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( I ! TABLE IJ.. Ionization and K-shell energies, and the kinetic [Eq.
(4a)j, nuclear-electron, direct electron-electron, and exchange con-
tributions to the total iron atom energy at 8&2=1 and 5. The ener-

gies are given in keV.

8
(10I2 6)

( V„) ( V~, )
( V,„} direct exchange

-O.I— 0.12 —7.23 10.6 —95.4
0.25 -13.86 19.78 -181.7
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61.3

—3.06
—5.41
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The energy per unit cell of a chain as a function of the in-
ternuclear spacing is sho~n in Fig. 1. For helium, we have
binding, in agreement with the results of Refs. 7 and 8; our
binding energies are 25 and 150 eV for Bi2=1 and 5,
respectively. However, for carbon and iron, we do not find
binding. Repeating our calculations for Z=3-5, we find
that atoms with Z ) 2 (4) are unbound at Bt2=1 (5). The
shapes of the curves agree approximately with the density
functional results the differences again can be attributed to
the approximate treatment of the exchange interaction in
Ref. 8. However, these differences are of no physical
consequences for neutron stars, as they are smaller than 1

keV.
In summary, we have used the Hartree-Fock method to

calculate properties of helium and iron in the magnetic
fields characteristic of neutron star surfaces. For helium,
we find molecular chains energetically favored over isolated
atoms, in agreement with previous studies. ' In contrast,
for iron we find no binding of the solid. Thus, even if our
physical treatment of the problem is not valid in all details,
it is difficult to believe that the cohesive energy of iron is
large enough in 10"-G fields to affect neutron star surfaces.
%e expect that our results resolve the confusion surround-
ing this point. "

FIG. 1. The ground-state energies per unit cell of infinite linear
chains of (a) helium, (b) carbon, and (c) iron are shown as func-
tions of the internuclear separation, a, for B&2 1 (dashed lines)
and Bt2-5 (solid lines). The energies are relative to the isolated
atom values. The unit of length for a is 2.566X10 'OBi2'~ cm.
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