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Exact formulas for multipole moments using Slater-type molecular orbitals
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A triple infinite sum of formulas expressed as an expansion in Legendre polynomials is generated by use

of computer algebra to represent the potential from the midpoint of two Slater-type orbitals; the charge

density that determines the potential is given as the product of the two orbitals. An example using 1s orbit-

als shows that only a few terms are needed to obtain four-figure accuracy, Exact formulas are obtained for

multipole moments by means of a careful study of expanded formulas, allowing an "extrapolation to infini-

ty.
" This Ldwdin alpha-function approach augmented by using a C matrix to characterize Slater-type orbit-

als can be readily generalized to all cases.

I. INTRODUCTION II. DERIVATION OF THE POTENTIAL

In a recent article' the author expanded the electrostatic
potential due to the product of two separated 1s Slater-type
orbitals (STO's) in a series of Legendre polynomials. By
use of a computer algebra implementation of the Lowdin
alpha-function method with a "Cmatrix" to characterize an
orbital, exact formulas were generated for each radial func-
tion associated with the Legendre polynomials. However, in

that paper the origin of the coordinate system was placed on
one of the nuclei. For problems of electron scattering2~
and molecular interactions the coordinate system should be
placed at the center of mass. Here this case will be con-
sidered for 1s orbitals and furthermore, exact formulas for
multiple moments will be generated.

A STO is represented in its local coordinate system by

ggN 1e-(11yM(O„-$)

where A=(2$)N+''[(2N)!] '2 is the normalization fac-
tor, N, L,M are the quantum numbers of the orbital, and ( is
the screening constant. If this orbital is centered at the
(x,y, z) point (0, 0,a) in the reference coordinate system
(r, 8, iti), then in this system an expansion in spherical har-
monics is as follows
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Ie '[( —1)'e' —e '], r1 ) a.Let us immediately specialize to the case of 1s orbitals
with screening constants of 1. Take X, to be centered along
the z axis at a distance of —a from the origin and Xb to be
centered along the z axis at a distance of a from the origin.
~e seek the potential at an arbitrary point (r2, 82, @2) due
to the charge distribution x, (1)x&(1). Thus x, = X u„g(e, y),2

0 2n+1 (5)
Xa Xbv(r2) =„(x.xi, lr12) d~i or J, du, (3)

where

Note that the multiplication by ( —1) moves the orbital to
the negative z axis. Also, we have

Now we may write
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The Laplace expansion for 1/rt2 ls
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where r) is the larger of r2 and r1, and r & is the smaller of I1 and r2.

Substituting in the equation for potential and using the orthogonality rules for spherical harmonics, we get

V(r, ) =4~ X X g Y„'(8,, y2)(2g+1)-'
2m+1 '" 2n+1 '"

dr& r) a~a„„+, dQt d8t stn8t Yz (8t, p&)" Y~(8&, @&) Y„(8&,pt)

It is more convenient to work with Legendre polynomials obtained by using the identity
' 1/2

YI (8, @)= PI(cos8)
21+ 1

(8)

After the qh integration we get

V(r2) X Pg(cos82) $ X Vk ("2) ~

with

r I A,

Vq~(r2) =2J d8stn8PqP P„„drt r(( —1) a a„ r) (10)

In this paper we only consider the case r2 & a.
The radial integration naturally divides into three regions. We consider in detail the inner region. To be explicit, we write

the expression for that part of the potential V&"„due to the charges enclosed in a sphere of radius a:
fit —20

V' ' =2„d8sin8P P P 2m+1 2n+1
X ( —1) C (' ')C„(p,q)a' +
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Our computer algebra simply keeps track of the powers of r2 and a which form polynomials that are to be multiplied by
obvious functions of r2 and a that are added to represent V& . For instance, we find that, dropping subscript 2,

V = 2.5a + e 2'( —2.5a 2 —5.0a ' —4.0a —4a/3) + [a 2( —1.25/r —0.25) + a '(1 5/r ) + ao(. —0.5/r) ]e2'e

+ [a (2 5/r+05)+a ( —1/r)]e 2'+ [a ( —1.25/r —0 25)+a '( —1.2/r)+a ( —05/r)]e 'e

+(—a 2+2a ' —ao)e2'Ei( —2r)+(2a 2 —2ao)Ei( —2r)+( —a ' —2a ' —ao)e 2'Ei( —2r). (12)

Similar formulas result for various values of A. , m, n. For a numerical comparison we take the case a =1, r2=1.5, and
82-0'. Letting m and n range from 0 to 8 such that m+n & 8 in the summations, we obtain A. =O, 0.326974; ~=1, 0.0;
&=2, 0.012494; ~=3, 0.0; ~=4, 0.001357; A. =5, 0.0; X=6, 0.000207; A. =7, 0.0; X=8, 0.000073. The sum of these
values is 0.341107. This compares well with the exact value' of 0.341021.

III. EXACT FORMULAS FOR MULTIPOLE MOMENTS

For values of r2 essentially beyond the charge distribution, an expansion of the potential in multipoles is appropriate. In
this case the r2 limit on the integrals may be replaced by infinity. The monopole (h. = 0) is composed of an infinite number
of terms as m and n take on all values. We write a few terms, dropping the subscript 2, as follows:

V000= —[2.5/a2+ e 2'( —2.S/a2 —5.0/a —4ao —4a/3) ]

Vo11=0 Q

V022 = —[52.5/a4 —7.5/a2+ e 2'( —S2.5/a4 —105/a2 —97.5/a2 —20ao —4a ) ]
I'

~o33= 0 0

V~ = —[2362.5/a6 —262.5/a~+ 12.5/a2+ e 2'( —262.5/a6 —4725/a5 —4462.5/a4 —2625/a2 —1062.5/a2

—305/a —60ao+ 20a/3) ]
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%e may factor out e 2' from the first part of the terms by multiplying by e2', using computer algebra. Then we obtain

Vooo= (1.000+ 2.000a + 1.666a'+0.666a'+ 0.222a + 0.063a'+ . )

Vo» = —-- (0.000+ 0.000a —0.333a' —0.666a' —0.333a4 —0.116a'+ )
r

V~ = (0.000+ 0.000a + 0.000a2 + 0.000a'+ 0.111a4+ 0.068a'+ . )

Addition gives us
—2r

Vaaa+ VM2+ VO44- ( 1.000+ 2.000a + 1.333a'+ 0.000as + 0.000a4+ 0.0154as+ )
r

The addition of more and more m, n values simply pushes the line of zeros further and further out, but leaves the formulas
intact (the overlap integral). Hence we may "extrapolate to infinity" and obtain exact formulas for the multipole moments.
%e have thus obtained the following multipole expansion:

V(r, H) - e '(1+2a+4a2/3) Ps(cosH) + e '(a /5+ 2a /5+4a4/15) P2(cosH)
r r

+ e "(3a4/35+ 6as/35+ 4a6/35
P4(cosH) + e '(a /21+ 2a /21+ 4a /63)

P6(cosH ) +r' (13)

As a confirmation of this formula, we calculated the poten-
tial for r-9 and 8=0' to be 0.065323; this is identical to
the value found by using the Hirschfelder and %eygandt
able s

I

formulas may be made exact. The technique of "extrapo-
lating to infinity" should be generally useful when dealing
with partial wave expansions by means of computer algebra.

IV. CONCLUSION

The methods shown here are readily generalizable to
orbitals with higher quantum numbers because only the C-
matrix elements and dimensions of the C matrix need be
changed. Because the C-matrix elements are integers, all
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