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R. E. Robson and K. F. Ness*
Physics Department, James Cook University of North Queensland, Townsville, Queensland 4811, Australia
(Received 15 July 1985)

The multiterm spherical-harmonic representation of the velocity distribution function of “react-
ing” charged-particle swarms in a gaseous medium is discussed from a general viewpoint, using
spherical tensors throughout, in contrast to the traditional mixed spherical-Cartesian notation usual-
ly employed in analysis of the hydrodynamic regime. The resulting hierarchy of kinetic equations
generated from the Boltzmann equation has a universal validity, applicable to all experimental ar-

rangements, as do the associated transport and reaction-rate coefficients.

The structure of these

equations and the nature of the eigenvalue problem associated with them are discussed generally, in-
dependently of any numerical technique adopted for their solution, of which the moment method of
Lin, Robson, and Mason [J. Chem. Phys. 71, 3483 (1979)] is just one possibility.

I. INTRODUCTION

Low-order truncation of the spherical-harmonics repre-
sentation of the velocity distribution function f(r,c,t) of a
swarm of electrons in a neutral gas generally reflects the
belief (or the hope) that f is nearly isotropic in ¢ space or
at least that it has this property over the range of veloci-
ties ¢ which controls the transport coefficients of the
swarm. The physical basis for this can be seen from ele-
mentary mechanics: An electron of mass m and a neutral
molecule of mass mg exchange a fraction ~2m /mgy<<1
of their energy in an elastic collision and thus, even if the
swarm is driven through the gas by a strong electric field,
energy and momentum gained from the field are efficient-
ly distributed in all directions through the agency of such
collisions, which have the effect of randomizing directions
of electron velocity vectors c, without significantly alter-
ing their magnitude. The same cannot be said for an ion
swarm because of the generally comparable masses of an
ion and a neutral molecule and the associated large frac-
tional energy exchange. Neither is it generally true for
electron swarms in which inelastic collisions play a signi-
ficant role. Whereas the anisotropy of f for ions has long
been recognized, and various methods developed over the
years for solving Boltzmann’s equation, mostly within the
framework of the conventional kinetic theory of gases, the
importance of an anisotropic electron distribution func-
tion has only attracted serious attention in recent years.
The physics of charged-particle swarms has been recently
reviewed by Kumar ez al.! and Kumar? and the reader is
directed to these for further references and for a general
overview. The theory of electron transport in gases has
tended to evolve quite separately from ions and, indeed,
almost in a conventional kinetic theory vacuum, this in
spite of the fact that the spherical-harmonics representa-
tion

flr,c,t)= 2 2

=0m=-1

wir,e, ) YH@) (1
usually forms an integral part of both electron and ion
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transport theories, although in the latter case only impli-
citly so. For practical purposes, it is necessary to make ei-
ther the truncated representation

max

fire,n=3 2 fre,ny@), ¥)

1=0m=-1

that is, to assume f4' =0 if I >y, OF to assume some
other property of these higher-order expansion coeffi-
cients. For electrons, it has been traditional® to set
Imax=1, the so-called two-term or P; approximation.
With this approximation, the Boltzmann equation

(a,+C'V+a‘ac)f=—J(f) ’ (3)

where J(f) denotes the linear charged-particle—neutral-
molecule collision operator,4 can be solved in a relatively
straightforward manner, if J is also approximated by a
low-order truncation of an expansion in m/m,. We do
not require an explicit expression for J for present pur-
poses. [See, however, Eq. (158), (159), (164), and (175) of
Ref. 1.] This procedure is clearly invalid if f departs sub-
stantially from spherical symmetry in ¢ space, and then
one has to systematically investigate solutions of (3) by
successively incrementing I ,, until some convergence
criterion is met. The complexity of the problem is there-
fore then similar to ions, except that the simplifying ap-
proximation of J is still possible. Much effort has been
devoted in recent times towards obtaining “multiterm”
solutions (i.e., I, >2) of Boltzmann’s equation, and this
is discussed below. The first accurate systematic mul-
titerm solution, valid for arbitrary cross sections and elec-
tric fields and furnishing all measured transport coeffi-
cients, was given by Lin, Robson, and Mason® (LRM),
who extended previous ideas of Robson and Kumar® for
electrons and ions and the then recently developed theory
of Viehland and Mason’ for ions, to provide a comprehen-
sive treatment involving a conjunction of ideas from the
two historically different approaches. Since then, LRM,
as Ref. 5 has become known, has been used in a wide
variety of circumstances,® including cases of anisotropic
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differential cross sections and negative differential con-
ductivity. Kleban and Davis’ had earlier developed an
iterative technique for solving Boltzmann’s equatxons, but
this, unfortunately, is of questionable accuracy.”~!! Oth-

er methods have been proposed.'>~2° Extension of LRM
to include nonconservative processes is discussed in detail
in a subsequent paper (referred to as II). In this paper we
indicate formally how the spherical-harmonics decompo-
sition should be done when such processes are operative.
This is necessary, because there is a fundamental change
in the structure of the hierarchy of equations and the ex-
pressions for transport coefficients themselves, as indicat-
ed by Kumar, Skullerud, and Robson.!

Before doing this, however, we wish to offer some ob-
servations on the work represented in Refs. 12—20 and to
respond to criticism and mlsunderstandmg10 1421 of
LRM. In Ref. 5 the tensor coefficients f’ were further
expanded in a set of basis functions &,/(c) spanning ¢
space,

=S F e, @

v=0

these functions being essentially products of a Maxwellian
function of arbitrary temperature and a Sonine (Laguerre)
polynomial of degree v. Explicit expressions are given in
II but are not needed here. Equations (1) and (4) combine
to give the well-known Burnett-function expansion! and
when substltuted m (3) furnish a doubly infinite set of
equations for FY which in turn are related to moments
of f(c). For practical purposes, truncation of these mo-
ment equations in both / and v indices is required,
through specification of [/, and v,,, respectively. Con-
vergence in these two indices can generally be treated in-
dependently.! Our comments on LRM and other work
are, then, as follows.

(i) While the choice of basis functions &,,(c) is of cru-
cnal importance for determining the best representation of

D(¢) and therefore the most efficient computatlonal al-
gorlthm it is questionable whether many of the various
methods are really fundamentally all that different, since
this choice is essentially the only difference in most cases.
The designation “theory” should certainly be avoided.>?!

Thus, {£,/(c)} could be a set of cubic splines,'*!” each
spline being nonzero only in a specified interval ¢, <c
<cyp1 w=0,1,2,...), or they could be a set of constant,
but different, values in these intervals, as in the usual fin-
ite element technique. Approximation of f,(,,” by restrict-
ing the number of these intervals to a finite value (say
Vmax) i not much different, at least in principle, from
truncation of an expansion in orthogonal functions, which
span the entire range of ¢, to a finite number, as was the
case in LRM. The latter approach may not be favored in
“conventional” approaches® to solution of the differential
equations characterizing electron transport, but it is quite
common in many other problems in kinetic theory.?? In
any case, there is a common mathematical basis, as dis-
cussed above. The remarks of McMahon!® are interesting
in this regard, especially taken in the context of his own
very promising iterative procedure for solving
Boltzmann’s equation.

(ii) It is obvious that knowledge of the expansion coeffi-
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cients F,(,,"“ is equivalent to knowing £\ and thus f itself.
Thus, the moment theory of LRM is capable of furnish-
ing the electron distribution function, if so desired. It is
evident that remarks of LRM in this context were quite
misleading.!* The rationale of applying a convergence cri-
terion to the distribution function itself or merely to a few
low-order experimentally measured moments, as was done
in LRM, is another question entirely. We have generated
distribution functions for several cases of current interest
using Eq. (17) of LRM and the results® are generally in
agreement with Pitchford et al.!*!

(iii) Several apparently different forms of collision
operator J are used in some of the works,>!%!1419.20
without any attempt to relate them to the original
Boltzmann operator or to one another. Although the
overall picture is somewhat confusing, large discrepancies
probably arise for quite different reasons.’~!!

In LRM the original Boltzmann collision term?? was
used for elastic collisions plus the Wang-Chang and
Uhlenbeck term?* to represent inelastic processes. Matrix
elements with respect to Burnett functions are found
which are subsequently approximated by using the small-
ness of m/mg. This is known to be consistent! with the
standard  Frost-Phelps, differential—finite-difference
form?® of J, but contrary to the impression which could
easily be gained,'* LRM did not start with a differential
form, which essentially involves only leading terms in an
expansion of J in powers of m /m,. Equations (35) and
(41) of LRM indicate the general decomposition of the
matrix elements of J as a power series in m /m,.

(iv) There appears to be some misunderstanding'* of
basic physical properties of swarms and even definitions
of transport coefficients.'> We feel that Ref. 1 portrays
the situation accurately. Axial symmetry exists in velocity
space only if the electric field E and density gradient Vn
are collinear, and only then is it permissible to use an ex-
pansion in  Legendre polynomials Pi(cosf), where
cos§=¢-E, in place of (1). If the density gradient has a
component transverse to E, the distribution function de-
pends upon the azimuthal angle ¢, as well as 6, and there
is no axial symmetry—the spherical harmonics expansion
must be used An expansion in associated Legendre poly-
nomials!* is not adequate. It is important to distinguish
between this and the symmetry which exists in configura-
tion space, as evidenced by a single diffusion coefficient in
directions transverse to E. Indiscriminate interchange of
spherical harmonics and Legendre polynomials is particu-
larly undesirable in the far more complicated case in
which nonconservative processes occur, where second-
order terms in the density of gradient expansion must be
retained (Sec. 4 of Ref. 1).

Another point of confusion has arisen'’ in connection
with identification of transport coefficients in the pres-
ence of non-particle-conserving collisions (ionization, at-
tachment, reactions). Drift velocity and diffusion coeffi-
cients are defined! as coefficients of Vn and V Vn, respec-
tively, in the equation of continuity (25). For a given
value of field and for a specified neutral gas, these coeffi-
cients are independent of the particular experimental ar-
rangement. The latter are accounted for entirely by boun-
dary and/or initial conditions imposed in solution of the

12
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equation of continuity. To assign different drift velocities
and diffusion coefficients to time-of-flight, pulsed and
steady-state Townsend experiments is misleading.'> The
same can be said regarding ionization or attachment rate
coefficients.

Likewise, the kinetic equations for f,(,f) and related
quantities have a universal validity. Equations (47)—(53)
below, which generalize the particle-conserving equations
(184), (186), and (189) of Ref. 1, determine distribution
functions and transport coefficients under all cir-
cumstances where a hydrodynamic description is valid. It
is not necessary to rederive them in connection with any
particular experiment or new method by making a Vn ex-
pansion and, as has already been pointed out in (i) above,
it is arguable whether different numerical algorithms real-
ly constitute different physical “theories” as such.

(v) The aim of a multiterm theory must be to provide
accurate values for experimentally determined quantities
by successively incrementing /,, in Eq. (2) until satisfac-
tory convergence is achieved. Sometimes this means tak-
ing l,.x=7 or higher. Any procedure which does not
have this flexibility is of limited value. Likewise, a con-
tender for serious consideration must be capable of han-
dling all types of cross sections, including those for which
scattering is anisotropic. At the time of writing, the
choice is rather limited within these constraints, with only
Refs. 5, 14, and 17—19 being developed to such a sophisti-
cated level.

(vi) The recent work of Phelps and Pitchford!” also ad-
dresses the problem of “reacting” electron swarms and
deserved special comment. They neglect certain terms in
the expressions for transport coefficients (effectively the
second integrals on the right-hand sides of our equations
[(53b)—(53d)] below), and while this greatly simplifies the
mathematics and the computational effort, it is our ex-
perience? that this procedure will often involve signifi-
cant error. The need for a general discussion, as reported
in the present paper, remains.

(vii) Braglia?! correctly points out that the original
computer code of LRM was inadequate under some cir-
cumstances, but his has been remedied.?* This, of course,
does not impinge in any way upon the theoretical work of
LRM, which remains intact. We cannot agree, however,
with the labeling of LRM as “less conventional” by Bra-
glia et al.?® If anything, the opposite is true, when viewed
in the context of traditional kinetic theory.”> We feel that
(i) above is the best way to consider all these apparently
different approaches.

It is with these remarks as background that we have
written the present paper. In Sec. II we give a formal dis-
cussion of the spherical-harmonics and density-gradient
expansions of the distribution function of electron swarms
in which particle number is not conserved, e.g., through
ionization or attachment processes. The equations
developed are quite general and can be used in connection
with any representation (4) in ¢ space. In II we specialize
to the Sonine polynomial representation and thus general-
ize the results of LRM.

Finally, we note that Monte Carlo simulation continues
to play an important role in electron-swarm theory, both
in its own right and as a means of resolution of discrepan-
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cies between the results of other work. For an up-to-date
discussion on the state of the art, the reader is referred to
Ref. 21.

II. SPHERICAL-HARMONICS EXPANSION,
DENSITY-GRADIENT EXPANSION,
AND NONCONSERVATIVE PROCESSES

A. Spherical tensor properties

It is now widely recognized that nonconservative pro-
cesses such as ionization and attachment alter the funda-
mental structure of the kinetic equation hierarchy and the
expressions for transport coefficients (Ref. 1, Sec. 4). The
overriding consideration is that second-order terms in the
density-gradient expansion

f(r,c,t)=n(r,t)f(0)+£(1)-Vn+£(2):VVn + - - - (5)

must be retained in order for diffusion to be correctly
represented. The use of spherical notation in Eq. (1) on
the one hand and Cartesian notation in (5) on the other is
not satisfactory, and we employ spherical tensors ex-
clusively in what follows, following the conventions of
Kumar?® and Fano and Racah.?’ This is not merely a
matter of elegance. Cartesian tensors become extremely
cumbersome in the higher orders and the motivation for
use of spherical tensors derives from considerations of
practicality. Some general tensor properties are discussed
before we embark upon the rather lengthy procedure of
decomposition of Boltzmann’s equation.

1. Basic definitions

The spherical harmonics of Eq. (1) are defined with the
phase convention of Fano and Racah:*’

172
Q2+ 1)(I — [ m | )
anl+ |m | )

Y,[,,l](9,¢)=il( —1)m+Im|r2

X P/ ™(0)eim¢ (6)

with
d1+ [m |

(=1 m 29)!
(sin8)! (1—cos“6)" . (7)

2in dcos@tIml

In Eq. (1) we have written Y}(€) for Y1),(6,¢), where
0,9 are the polar angles of ¢, i.e.,

Pi™l(6)=

¢x=csinfcosd , c,=csinfsing , c,=ccosf .

We define

4 172
clll= [—3— cYiN@)
so that
. 1 _.
c&”:zc cos@ , c[_+11=—‘/—_2—(+1c,+cy) . (8)

A contrastandard, irreducible tensor of rank [/ is a set of
2141 objects fI1 (m=—1,...,+D which transform
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under rotations of the coordinate frame like the spherical
harmonics (6). The corresponding standard tensor is sim-
ply the complex conjugate and is denoted by a superscript
in parentheses:

f (f“]

We may also have tensor operators, for example, the gra-

dient operator defined below
)
Any two tensors f,,, ,g,,,

another tensor accordmg to

may be coupled to form

1 I
3 (mibmy |Im)fm gm? . ©)

my,m,

( 1,)
(£ ’)»E( 2 )5711)=

where (I;ml,m,|Im) denotes the Wigner or Clebsch-
Gordon coefficient, well known in angular momentum
theory.?® These vanish unless I, +/,>!> |l;—I,| and
m =m,+m, and have the following orthogonality and
symmetry properties:

2 (l1m112m2 ‘ lm)(11m112m2 lllm')=81'18m'm s

my,m,

S (imyLymy | Im)(ymilLmy [Im)=8_, 8 , , (10)

' '
mym, mym
1, 171 272

(Lymylymy | Im)=(—1)"1 27"

(12m211m1 | Im)
=( —1)']+12_I(ll —m112—m2 [l—m)
(=1 "™ —mlym,y |1, —m))

2l+1 1/2
2 +1

Lower-order coefficients are tabulated in Condon and
Shortley.?’

2. The gradient tensor Gyl

We often distinguish between tensors of the same rank
by insertion of another index in the superscript. Thus in
(4) we have F? (v=0,1,2,...). The gradient tensor de-
fined below also features the additional superscript. We
wish to convert the density-gradient expansion (5) into
spherical tensor notation and we obviously need the coun-
terpart of V and VV in the appropnate notatlon Thus,
we define the gradient tensor operator G ' by

G0 =1, MW=Vl (m=+1,0)
G =(v)D (n
=G, (m=—1,...+D.

We have G{'” =0, G\2"'=0, and, in general, G"=0 if
I>sor |m|>lL

Higher-order operators with s >3 could be defined
through suitable coupling of lower-order tensors, but this
is not required for the purposes of this paper. Table I
shows the relationship between GY D and Cartesian opera-
tors.

TABLE 1. Gradient operator of Eq. (11) written in terms of
Cartesian operators.

K 1 m GY"
0 0 0 1
1 1 0 —id,
1, ..
1 1 +1 ——(+i8,+9,)
V2 ’
1
2 0 0 —V?
V73
0 (1) 1(32 +82)—2?]
£1 (£3,—id,)d,
2 +2 (200, +3,)?

3. Expansion of [\

There are two independent directions defined in any
swarm experiment, determined by the electric field E and
Vn, respectively. We can form tensors of any rank from
these vectors, either md1v1dua11y or by coupling them to-
gether. Thus, any tensor f m can be represented quite gen-
erally by a sum over all possible couplings of tensors
formed from E and the gradient operator which produces
a tensor of rank /:

W_ 3 S 3 FUsMG MYV E e, (12)

s=0A=0A'=0

where f(/ |sAL') are scalar coefficients which vanish un-
less

[+A+A'=even,

a result which follows from parity considerations.

It is convenient to choose a system of coordinates in
which the z axis lies along the field E, for then it can be
shown that

172
(A 2041
Y, (B)=(—i* yyn 8,0 5
and hence (12) becomes
D= 2 zf(zm [sAMGEMn (13)
s=0A=0
where
fUm |sh)= zf(llskk' (AmA'O | Im)(—i)*
W1 172
X 4

The Clebsch-Gordon coefficient here requires that

fI—m [sA)=f(m |sA) (14a)

and
fUm |sA)=0,

|m | >min{L,A} . (14b)

Combining (1) and (13) gives the counterpart of (5) writ-
ten entirely in terms of spherical quantities (the upper
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limit on the s summation is restricted to 2):

finen=n(rn) 3 £10]00)Y§@)
1=0

o

S fuminY @Gl n(r,e)
—ll=|m|

+

m

M_

£10120| YR @G n(r,1)

Ms

0

S fum |22)Y@)GiPn(r,1) .

—21l=|m|
(15)

Explicit expressions for the G,‘,f“n could be substituted
from Table I, if desired, to enable comparison with Carte-
sian expansions, but this is not done here. Instead, we
concentrate on some of the more general aspects of (15).

It is helpful to write down the following explicit expres-
sions for spherical harmonics:

+

MNJL

]

m

1/2
Y@= 214;{;1 Py(cosf) ,
1/

U an —o | QL1 —1)! L g1, £id
YR @®=+" = P’(e)e ’
@ +nu—2x |
{1 el I —2 ) 2 +2i¢
Yei@ am(l +2)! Pit6)e="% .

These expressions show that the first and third terms on
the right-hand side of (15), together with the m =0 con-
tributions from the second and fourth summations, de-
pend only upon 6, the angle between c and E, that is, they
represent the axial symmetric parts of the velocity distri-
bution function. All other terms contain a dependence
upon the azimuthal angle ¢ and are not axially symmetric.
Thus, while a density gradient parallel to E, 3,n =iG{'"n,
mamtams axial symmetry, a transverse gradient 3 n

( G(1 +G'Y) destroys it. It is therefore incorrect to
try to analyze transverse diffusion through an expansion
of f which depends only upon 6.

4. Wigner-Eckhart theorem (Refs. 26—28)

If A,[,” is an irreducible tensor operator which depends
only upon ¢ and d, then the following expression holds
for the matrix elements of the operator:

(Im | A | I'm"y = [ Y@ ANy @)de
=(U'm"A [ Im)(1)[ A1), (16)

where (I||A})||I') is a “reduced matrix element.” The
significance of the theorem is that it shows that all m
dependence is carried by a Clebsch-Gordon coefficient.

B. Decomposition of the Boltzmann equation

1. Matrix elements

Substitution of the expansion (1) into the Boltzmann
equatlon (3) followed by multxphcatlon on the left by
Y P(€) and integration over all ¢ yields
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2 (Im |3, +c-V+a-d,|I'm')fiL)
__2 (Im | J|I'm" ). (A7)

The matrix elements may be partially evaluated by appeal-
ing to the Wigner-Eckhart theorem (16). Thus, since J is
a scalar operator for central forces,

(m | J | I'm’)=I'm'00 | Im){I||J||I")
=81’18m’m‘ﬂ ’ (18)

where we have written J' for the reduced matrix element
(1]|J||1}. Notice that this is still an operator in ¢ space,
although we do not require the explicit expression here.
Since 3, does not depend upon ¢ we have as a trivial ap-
plication of (16)

(Im |9, |I'm’) =818,,:n0; - (19)
Matrix elements of the gradient and field terms in (17) are

(Im|cV|I'm)=3 (Im|c | I'm" )G
u

=3 (I'm'1p [ Im)1||cV||I') G,
I3

(20)
(Im |a-d.| l'm’)=2a:‘”(lm |a£;1 [I'm')
I
= a'm 1| Im)(1|[38]|17)
M
=—ia(I'm10 | Im){1|[d1[|1') 8
21

respectively, where we have used the fact that the field lies
along the z axis and set

(1 .
a, =—iady

Substitution of (18)—(21) into (17) then gives

dtfm + 3 (I'm'lu|Im)1|[cM[I)V GV f?
I'm'p
—ia 3 (I'm 10| Im)1| M) |1y 1 = =T L 22)
<
The reduced matrix elements required are
i [1] 1—1)= ___l_ _.d__,il_“_l_)
EIIESY 711 i |, %
1+1 1 a  u+2
1M +1)= | =T Syt
CIjoe I +1) TS ldc |, @
M1y =0 if I'sel+1
172
Yl —1)=c TS| , (24a)
I 1 172
et +1)=c 21“_:1 } , (24b)

™M I'y=0 if I'stl+1 .
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Some simple cases rcquired for later are

2

o[;3tM|1)y = —+— (23c)

and

O]|cM1)=c . (24c)

2. Egquation of continuity

The equation of continuity! provides the link between
theory and experiment. In the usual notation it is

dn=—an—Wo,n+Dr(d;+3;)n+D dn, (25

where a is an attachment rate coefficient, W is the drift
velocity, and D;,D; denote diffusion along and trans-
verse to the field, respectively. Equation (25) can be
solved for a particular experimental arrangement once the
boundary and initial conditions are specified. It is not
necessary in this discussion to assume any symmetry
properties for density in configuration space.

Equation (13) applies to any tensor, in particular to a
scalar:

0 5
= 2 Zf(oo |sMG M n
s=0A=0

Since d,n is a scalar, we can express it in this way:

2073

where we have used the explicit expressions for Gﬁ,’”
shown in Table I. Comparison of (25) and (26b) allows us
to make the following identification of the quantities
w(sA):

0(00)=—a,
w(ll):—'W,
w(22)=(+% 1/Z(DT D;),

or equivalently,
a=—w(00), W=io(ll),
1
=L [00)-v3
D, 73 [w(20) 20(22)], (27)
1
Dr= e w(20)+ ‘/_ w(22)

In what follows we shall explain how to obtain the w(sA)
from Boltzmann’s equation. The procedure is formally
equivalent to Sec. 4 of Ref. 1 but the results are expressed
entirely in terms of spherical tensors rather than the
mixed spherical-Cartesian notation.

3. The hierarchy of equations

] 5
dn=3 I olsMGMn (26a)
$=0A=0 We substitute the expansion (13) into the Boltzmann
1 equation (22) and equate the coefficients of G, M thereby
=w(00)n —iw(11)d,n +-‘7_3—w(20)V2n generating a hierarchy of coupled equations for
f(Im |sA). The time-derivative term in (22) also requires
the use of the equation of continuity (26). After some
24122 1092 4 a2 2
+(5)70(22)[7(3; +8,)—0; ]n + ’ (26b) algebra we find the following:
J
s =A=0
[J'4+(00)1£(10]00)—ia 3, (1010 | 10){!||8L"||1") £(10]| 00)=0 ; (28)
g

[V 4+@(00)1f (Im | 1) —ia 3(I'm10 | Im){1||3LM)|1') f(I'm | 11)
<

=—38,,0f (10| 00)er(11) —

s=2,A=0

[J'4+©(00)1f(10]20)—ia 3, (1'010| 10){!||3L")||1") £(1'0 | 20)
<

- _ b _ L Ly
£(10]00)(20) ‘/gf(10|11)w(11) ‘/3;<1||c -

s=2,A=2

> ('0tm [ Im){1||c 1)) £(I'0| 00) (m =0,+1); (29)
<

010 10)£(1'0 | 11) +2(I' 11— 1| 10)£(I'1 [11)] ;
(30)

[V'+0(00)1f(Im | 22)—ia 3, (I'm 10| Im){1]|3L)|1") f(I'm | 22)
<

= —8maf(10]00)w(22)— f(Im | 11)a(11)(1m 10 | 2m)

—g MY Ao 1DW'01m [Im)(1m 10 | 2m) +£('1 [ 1D[("11m —1 | Im)(1m —111 | 2m)

+('—1m +1[Im)(1m +11—1|2m)}

(m=0,+1,%2). (31)
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The first equation of the chain, i.e., (28), is an eigen-
value equation, with »(00) as eigenvalue. The remainder,
(29)—(31), are inhomogeneous equations, with material on
the rhs obtained by solving the previous equation of the
chain, although the w(sA) with (s,A)£(0,0) have to be
found in a self-consistent manner, as explained below.
For each eigenvalue of (28), ©;(00), there will be a unique-
ly determined solution of this hierarchy which we write as
fj(Am |sA),wj(sA), with j=1,2,..., and the most gen-
eral solution will be a linear superposition of these
“modes.” The solution of the equation of continuity (26)
can be written formally as

nr,n=3 "' ;(x,0) (32)
J

and the solution (13) of the Boltzmann equation will be of
the form

D=3 33 fitm [sMe”" GEM R0, (33)
j s A

where 7;(r,?) is given by the solution of
A+ X' w(sMGEMA; =0 (j=1,2,...), (34)
s,A

where the prime indicates no s =0=A term. One is nor-
mally interested in the asymptotic time regime t— oo, in
which case there will usually be one dominant term in
each of (32) and (33), provided that the spectrum of eigen-
values ®;(00) has certain discreteness properties as ex-
plained below.

For attachment, «;(00) will be negative and then the
dominant term in (32) and (33) will be that corresponding
to the eigenvalue with the smallest magnitude. (For ioni-
zation, the largest positive eigenvalue controls the asymp-
totic behavior.) These remarks apply only if the smallest,
or, for ionization, largest, eigenvalue, w(00), is distinct
from the rest of the spectrum, which may or may not be
discrete.

Thus, we have asymptotically

s (60, (35)

Dir,e,t)=3 f1llm |sMe“ "G A (), (36)
s,A

n(r,t)=e

where 7, is the solution of (34) with j=1. It is to be
henceforth understood when making the identification of
transport coefficients, as in (27), that w;(sA) is implied.

Restriction to the asymptotic regime greatly simplifies
the problem, for then only one eigenvalue and eigensolu-
tion need to be obtained from (28). It will be assumed
here that the required eigenvalue separates from the rest
of the spectrum, but we do not attempt to establish gen-
eral conditions for which this will be true. Instead, in
subsequent numerical calculations in II we verify for the
particular cases studied that the spectrum has the required
property.

C. Determination of transport coefficients

1. Normalization considerations

By definition, the number density is given by
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n(r,t)= [ fr,c,t)d’
=Var [ " fPcrde
=Var S G§Mn fo“’f(oo |sA)cdec
s5A
where we have substituted expansions (1) and (13) and
made use of the orthogonality of spherical harmonics and

the fact that Y} =1/v47. Since G{°'n =n, it then fol-
lows that

Van [ ”£(00]|00)c2de=1, (37a)
S 00| sA)c2de=0 (5,0)%(0,0) . (37b)

Another property we shall need below follows from (23c).
For any well-behaved function of ¢, say ¢(c),

d 2
— 4=
4

Sy conal D gtererde = [ "e? | =

od(c)de

_[~9 2
=)o 2 [e“@(c)]dc
=0. (38)

2. Determination of the w(s\)

If we integrate the / =0 member of (28) with ¢? and
make use of (37a) and (38), it follows that

©(00)=—Va7 [ “JR[£(00|00)]c*dc , (39)

where Ji denotes the nonconservative or ‘“reactive” part
of the collision operator. Equation (39) does not deter-
mine »(00), since f(00 | 00) is unknown. The correct way
to treat (28) is as an eigenvalue problem and to select the
eigenvalue w(00) which is appropriate to the physics of
the problem as explained in Sec. IIB3 above. [It is im-
plied in what follows that «»(00) and f(/0|00) are the ap-
propriate eigenvalue and eigensolution, respectively—a
subscript “1” is not then needed.] Equation (39) merely
serves to emphasize that (00)s40 if and only if reactions
take place. It is interesting to note, however, that in dis-
cussions of ion-molecule reactions,*® for which this theory
is still applicable, Eq. (39) is used to determine »(00), the
f(00|00) on the rhs being approximated by the solution
of (28) with all reactive effects omitted. This amounts to
treating reactions as a small perturbation on the ion velo-
city distribution function. No such approximation can
generally be made for electrons—the electron velocity dis-
tribution is often substantially perturbed, leading to ef-
fects such as “attachment cooling.”’!

To find w(11), we integrate the / =m =0 member of
(29) with ¢? over all speeds and obtain

172
4 ®©
o(11)= ~3’1 [, ¢*£(10]00)dc
—Van [ “cUR1£(00] 11)]de (40)
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where we have made use of (24¢) and (38). The second
term on the rhs of (40) contains the unknown function
f(00] 11) which is to be found from solving (29), which
in turn contains the unknown quantity w(11). Thus Egs.
(29) and (40) have to be solved self-consistently for
f(10]11) and w(11), bearing in mind the constraint (37b).
Equation (29) is not an eigenvalue equation, at least, not
in the same sense as (28). Integration of c? times the / =0
members of (30) and (31) similarly yields

©(20)= _—‘/—3;*—_1fo°°c3[2f(11 | 11)4+£(10| 11)]dc

~Var [ “cAR1£(0020)Jde (41)
and
w22)= =Y [ 0r(1| 10— f 10| 1D)de
_mfo“’cvg[f(oo |22)]de , 42)

respectively. Again, the w’s and fs have to be obtained
through a self-consistent procedure. Notice that only the
m =0 equation of the set (31) needs be solved to obtain
®(22).

3. Transport coefficients

It follows directly from (27) and (40)—(42) that
172

.| 47 ©
W=i|= fo ¢3£(10 | 00)dc
~iVar [ “cAR1f(00] 11)]de (43)
172 -
Dp=— i;’— [fo S3F(11 ] 11)de
+ [ ¢4 | £100]20)
1
1 de |,
+\/§f(00|22) c
(44)
4 172
'n' o0
D =— | [fo ¢3f(10]11)
+ [ cMR1/(00]20)
—V2£(00|22))de (45)

are the transport coefficients as defined in Sec. IIB2 in
terms of the coefficients in the equation of continuity.
The first member on the rhs of (43) represents the average
velocity in the absence of spatial gradients, as can readily
be verified by evaluation,

(cz)=%fc,fd3c,

and substituting from (1) and (13). The quantity (43)
could therefore perhaps be referred to as the “apparent
drift velocity” as measured by a macroscopic observer
whose only information comes from the equation of con-
tinuity. We prefer just “drift velocity.” The second
member on the rhs of (43) has the effect of providing an
apparent drift motion through selective “chemical” pro-
duction or annihilation of charged particles with different
energies. [If the reactive operator were not energy selec-
tive, that is, Jg =const, then the second member of each
of (43), (44), and (45) would vanish identically by virtue of
(37).] It should be noted that the solution of only five
equations is needed: Egs. (28) and (29) with m =0 and
m =+ 1 or —1 and Egs. (30) and (31) with m =0 only.

III. DISCUSSION

We have reviewed existing approaches to electron trans-
port and have outlined the formal aspects of the problem
when nonconservative collisions take place. The equa-
tions to be solved are (28)—(31), the solutions of which
then provide the transport coefficients through (43)—(45).
Depending upon whether particles are created or annihi-
lated in collisions, the largest or smallest eigenvalue of
(28) is to be found. The discussion applies, in fact, to
ions, as well as to electrons. It also applies to positron
transport.’? In II we represent the £ [or, equivalently,
the f(Im |sA)] in terms of Sonine polynomials. This may
be looked upon as an extension of the LRM analysis to
account for nonconservative collisions. Other methods in-
volving finite difference techniques differ from this in-
sofar as the f,(,,” are represented by low-order polynomials
in discrete intervals of ¢. In principle, however, the
difference is small as explained in Sec. I. Transport coef-
ficients and the distribution function are obtainable from
the LRM procedure, as well as these other methods. All
methods can (and should) start from the same set of equa-
tions.

We can rewrite our Egs. (28)—(31) in a form more
amenable to computation and more suitable for compar-
ison with any previous results by defining

2
F=i'|2EL 1 fi0)00), (462)
4
21 1 1/2
FP=i+1|=X2 | ruol11), (46b)
4
220+ |
F(T)E'I+l
| i 4l I+ 1) fU1)11), (46¢)
21 1 172
F=i+1 | ZX1 | £(0]20), (46d)
41
21 1 172
Fb=i+t | 221 £10)22) (46e)
4
and
wo=0(00)=—a, (47a)
o1=io(ll)=W , (47b)
w;=0(20)=1/V32Dr+D;) , (47c)
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52=0)(22)=(%)1/2(DT—DL) . (47d) and by (39), (40), (41), and (42),
2
Thus, it can be shown that F;, F{*', F{*T, and F{*" all “’0=_4‘”f0 Jr(Folcde (52a)
bey equations of the form © ®
o>y " a)l_—,—‘-?—fo ¢3F, dc——477f0 chg(FBL))dc , (52b)
1+1 1+2
Uhtoodr+ 21_:-3 di e P4 Am 3 p(L) (T)
w2=§—‘/€fo ¢ (F{"+2F; ')dc
T N P T -
21" |de = ¢ |70 —dm [ TcIR(FETde (52¢)
. 172
where h; assumes the expressions o 4r (2 f = 5P e
0, (492) T3 3 o !
L+1 L_f F (49b) dr [ IS (FRE)d (52d)
243 1+1+21_1 I—1|—ofg, — 1rf0 c“Jr(Fy c,
c d+1 FL (] FD respectively. Thus, we have by (47a)—(47d) and the above
V3 | 20+3 { Fiii+U+2F ’*‘] that
211_1 [F2 0~ DFD, | | —o2F; - \/ng“, a=dn [, TP Foctde (532)
4r = 3 ® 270 (L)
49¢) =3 Jo € F, dc-—47rfo c“JRr(Fy')dc , (53b)
and
_AT r® 3o
12 DT— 3 f() c F] dc
2 dI+1 FI(L) (142) FI
13 +1—
3 21+3 2 _ A4 f 72 2T)+%2F(()2L) cde,  (53¢)
1 (I1-1)
s P S,
12 DL:4T17 wC3F(1L)dC
—&.F+ o FiY, (49d) o .
respectively, while f JR(FG" —V2F§ e dc . (53d)
(JI+(00)F[(T)+-IiE i‘*‘l 2 FI+1
2A+3 |dc ¢ Equation (53a) is consistent with results derived on the
I—1 d1-1 basis of the two-term approximation—see, for example,
+=——a|—+— |FT Eq. (26) of Ref. 31, with boundary effects removed. After
2-1"|dc insertion of appropriate expressions for J' [see Ref. 1,

Eqgs. (158a), ( 159) and 175); the above equations can be

(50)  solved for F;, F{", F{", Ff T), and F{*". In the absence
of reactive effects, the equatlons for F;, F{*, and F{"

reduce to well-known forms, as do the expressions for W,

" Dr, and D;. [See Ref. 1, Egs. (184), (186), and (189), but
47rf Foclde=1, note that a factor 4 is required in (184c), (184d), (186d),

0 (51)  and (189d).]

f “FPe2de = f “F{De?de To make contact with other expanswns, we use Eq. (15)
0 0 and the explicit expressions for Y./, together with the

= f s F et de = f o F ¢ cde=0, ’ definitions (46a)—(46e) and Table I, to find

Fi_y  Fy,

201" 21+3

The normalization is

finen=n 3 Fic)P(cosd)— 3 FEAcIPi(cos0)d,n— 3, FiT(c)P}(0) cosd Byn +sing d,n)
=0 1=0 I=1

+ —‘1/3— 3 (F2T(0)Vn +VaF{2()[ (82 482)— 82 ]n } Py(cosh)
=0

g

+ 2 fim |2)Y @6 Pn+ - . (54)
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This is the most general expansion to second order in the
density gradient. Note that we do not need f(Im |22)
with m=£0 in order to obtain the conventional transport
coefficients.

The first three members of the rhs of (54) correspond to
well-known expansions to first-order in the density gra-
dient [Ref. 1, Eqgs. (183), (185), (187), and (188)], while the
fourth summation, containing second-order density-
gradient terms, may be compared with the second-order
terms of Eq. (2) of Ref. 17. Note, however, that it is not
necessary to make any assumptions about symmetry prop-
erties of density n, as is implicitly done in the latter.

This concludes the general discussion on the spherical-
harmonics decomposition and it is at this point that the
various representations of the F’s as functions of ¢ will

differ, as will the means of solving (48) and (50). In the
subsequent paper (II), we perform a further expansion in
Sonine polynomials in order to effect numerical solutions
and examine a wide variety of problems in electron-swarm
physics.
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