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A one-parameter generalization of the diffusion-limited-aggregation (DLA) model, originally sug-

gested by %'itten and Sander, is studied. On changing the parameter, the resulting aggregate
geometry changes from a fractal DLA-like structure to a compact one. Along the way, geometrical
structures bearing a striking resemblance to viscous fingers and a variety of aggregates found in na-
ture are obtained.

There has bben a great deal of recent theoretical and ex-
perimental interest in the study of shapes of patterns
formed in diverse systems such as the growth of viscous
fingers in a Hele-Shaw ceil, 'i two-phase fiuid fiow in
porous media, electric breakdown, irreversible kinetic
aggregation of gold colloids, and the sputter deposition
of thin films of NbGe2. It has been argued that
diffusion-limited aggregation (DLA) is the underlying
physical mechanism responsible for fractal geometries in
many of these systems. In the standard DLA simulation,
a seed particle is placed at one point on a lattice. Then a
random walker is introduced into the system. When it
comes to a nearest-neighbor site it becomes part of the
cluster and a new random walker is introduced. By re-
peating this procedure, a very ramified structure is ob-
tained.

In this paper we present a detailed study of a simple
one-parameter generalization of the Witten-Sander DLA
model. The generalized model contains a parameter
0 &a & 1, which controls the surface structure. On chang-
ing the parameter a from 1 to 0, the resulting geometry
changes from a fractal DLA-like structure to a compact
one. Along the way, geometrical structures bearing a
striking resemblance to many observed in nature are
found.

In a recent paper Vicsek considered the effects of sur-
face tension on the DLA-like simulation. He assumed
that the sticking probability of the random walker to the
growing aggregate depended on the local curvature. Since
the local curvature is a macroscopic quantity, his work is
in the spirit of simulating continuum equations using the
Monte Carlo method on the lattice. ' However, in order
to avoid obtaining a ramified cluster, a microscopic rule is
added: After sticking to the cluster the particle relaxes to
the neighboring site which has the largest number of
bonds connected to the cluster.

We reconsider an earlier model due to Kitten and
Sander" involving only microscopic interactions on the
surface. The focus of our analysis and our results are,
however, different from theirs. Briefiy, their model starts
with the DLA model and adds the following important
modification: When a new particle makes contact with

the growing cluster it does not necessarily "stick." In-
stead, the sticking probability p depends on 8, the number
of nearest-neighbor occupied sites in the cluster. For a
square lattice (on which we have carried out all of our
simulations), the sticking probability is

1 if 8=3,
p= a if 8=2,

a if 8=1.

The standard DLA case corresponds to a= 1, whereas the
limit a~0 leads to compact structures because holes with
8=3 will have a much higher tendency to fill than points
with 8=1. Even though Eq. (1) is a microscopic rule, we
expect that it generates surface tension at a macroscopic
length which may, for example, be represented by the
Gibbs-Thomson relation. Therefore the parameter a can
be regarded as a measure of the surface tension.

How do the patterns of the clusters evolve as a changes
from 1 to 0? To answer this question and to make quali-
tative contact with experimental results, we have carried
out extensive computer simulations in two distinct
geometries. The first of these is the rectangular geometry
shown in Fig. 1 with seed particles present all along the
width of the cell. We assume periodic boundary condi-
tions in the transverse direction. The second geometry
corresponds to the conventional radial geometry with one
seed particle at the origin. In the event that an incoming
particle does not stick to the growing cluster, we let it
continue walking in the region external to the cluster, i.e.,
we do not let the incoming particle penetrate the cluster.

To characterize the resulting patterns quantitatively, we
have studied two different fractal dimensions. The first
of these is the conventional bulk fractal dimension Db de-
fined by the relationship between the mass M (number of
particles) and the radius of gyration R:
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that exhibited in Fig. 3 for the radial geometry case. On
narrowing the width of the rectangle, Dz is found to de-

crease in accordance with the finding of Nittmann et al.
Figure 2 shows a similar set of clusters which were

grown using the radial geometry on a 256&256 lattice.
Again, as a drops from 1 the DLA cluster thickens. For
intermediate values of a the patterns are not unlike those
found in snowflake simulations' in the absence of aniso-

tropy. At low values of a the pattern again becomes com-
pact (a&0.05). Note that for the a=0.05 cluster, the
underlying lattice structure plays an important role. In
particular, the aggregate interface is substantially flat
with small-scale fluctuations. This is not the case for the
clusters with a )0.1. Between a =0.05 and a=0.1, there
is a definite change of the surface structure in the none-

quilibrium kinetic process. It is an important question to
ask whether this change occurs as a smooth crossover or
abruptly as in a phase transition. In an analogous
equilibrium-crystal-shape problem, an abrupt change does
take place and is known as the roughening transition.

A plot of Ds and Dz versus a is shown in Fig. 3. It is
interesting to note that the dimensionalities seem to be
substantially independent of a for values of a greater than

FIG. 1. Clusters gro~n on a 256X256 lattice in the rectangu-
lar geometry. The diffusing particles come in from the top mth
the seed particles initially located all along the bottom edge.
Periodic boundary conditions are assumed along the side walls.
The values of a are (a) 1.0, (b) 0.4, (c) 0.2, (d) 0.1, and (e) 0.05.

41&
I)

m&li a kg

Ja p 14~ ~ =-

4'» ~ jp

We have also calculated the fractal dimension of the exte-
rior perimeter length Dz. The total exterior perimeter is
measured using rulers with lengths ranging between
2=3.0 and L =11.3 measured in units of the lattice spac-
ing. The apparent length of the fractal curve in units of-DI. decreases as I. i'. Nittmann et al. ,i in their analysis
of the fractal growth of viscous fingers, have argued that
Ds and D~ ought to be equal for the DLA cluster (a=1).
This appears to be in contradiction with their Fig. 6 in
which the fractal dimension does not seem to asymptote
to the %itten-Sander value as the Hele-Shaw width tends
to infinity. Our analysis suggests that even for the DLA
cluster Db )D, (see Fig. 3).

Figure 1 shows some sample clusters which were grown
using the rectangular geometry with dimensions
128X256. Different values of a were used in the dif-
ferent pictures. As a drops from 1, the highly ramified
fractal DLA cluster thickens at first. Then fingerlike
structures emerge due to the competition between the at-
tractive effects of the surface tension and the screening ef-
fects. Eventually, for sufficiently small values of a
( & 0.05) a flat interface is obtained. A plot of Dz versus a
is qualitatively and even quantitatively very similar to

FIG. 2. Clusters groom on a 256&256 lattice in the radial
geometry. The diffusion particles come in radially and there is
one seed particle initially at the center of the square. The values
of a are (a) 1.0, (b) 0.4, (c) 0.2, {d)0.1, and {e)0.05.
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FIG. 3. Fractal dimension versus a in the radial geometry-
o represents Db and 0 represents Dr.

approximately 0.4. The crucial point is that the max-
imum value of Dz is about 1.52 and does not seem to tend
asymptotically to the usual DLA-like value around 1.70.
As a becomes small, D~ and D& approach the limiting
values 2 and 1, respectively. These are obviously the bulk
and perimeter dimensions for a normal compact object in
two dimensions.

In conclusion, we have studied a generalized DLA
model which extrapolates from a fractal geometry to a
compact geometry on changing the value of a surface-
tension parameter. As the parameter is varied, clusters
are formed with striking resemblances to viscous fingers,
tip splitting snowfiakes, and a variety of aggregates in na-
ture. It remains an intriguing question whether there are
phase transitions for well-defined values of the parameter
or whether the geometry evolves continuously. Similar
ideas may be useful in understanding facet formation and
in studying the kinetic analog of the roughening transi-
tion.
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