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The acceleration of trapped electrons in the relativistic plasma waves {wake fields) produced by
specially shaped charged-particle beams is described by physical, analytic, and two-dimensional

simulation models. The effects of competing instabilities, imperfect bunch shapes, transverse

dynamics, and dephasing of trapped particles are considered.

I. INTRODUCTION

The plasma wake-field accelerator (PWA) has been pro-
posed' as a means of coupling relativistic electron-beam
energy into high phase velocity plasma waves. A trailing
bunch of fewer electrons can then ride the wave electric
field and accelerate to high energy. Just as for other plas-
ma schemes, such as the laser-driven beat-wave accelera-
tor (BWA), the acceleration gradient in the plasma waves
can be very high [E((no)'~i V/cm, no is plasma density
in cm ]. The difference is that here the plasma wave is
driven not by the pondermotive force of two lasers, but by
the space-charge force of a charged particle beam. The
space charge of the beam perturbs the plasma electrons
and leaves behind it a wake of plasma oscillations at the
plasina frequency co~. The phase velocity of these waves
is exactly the velocity of the driving beam (even though
their group velocity is nearly zero), just as the wake of a
boat follows at the velocity of the boat.

Chen et a/. ' first studied the plasma wake-field ac-
celerator scheme with a model consisting of a series of
short driving bunches separated by an integer number of
plasma wavelengths. Such short bunches are subject to
the fundamental wake-field theorem 's which limits the
energy gain of trailing electrons to 2ybmc, where ysmc
is the energy of the driving electrons. Bane et a/. have
shown that this limit can be overcome by employing prop-
erly shaped driving bunch densities of finite longitudinal
extent. Chen et al. consider the plasma response to
linearly rising bunch densities (of length M~,
Az 2nc/to~), w——hich are sharply cut off at the tail of the
bunch. Using a 1D model they find that the maximum

energy gained by trailing electrons can be R times the
driving beam energy, where the transformer ratio R is be-
tween 2nN and re, depending on whether or not a pre-
cursor space-charge kick ts added to the head of the
bunch as in Fig. 1.

In this paper, we examine physical mechanisms in-
volved in the PWA with shaped driving bunches. We will
include several effects not considered in the idealized 1D
model of Chen et a/. ,7 which will be important to any ex-
perimental realization of the PWA. Instabilities of the
driving beam, nonideal bunch shapes, transverse plasma
dynamics, and dephasing of accelerated particles will be
treated.

In Sec. II, we give a physical interpretation of the
transformer ratio R. In Sec. III, we examine the plasma
response to smooth (Gaussian) rather than piecewise
linear-bunch shapes. We also consider the effect of a
nonzero cutoff length of the driving bunch. In Sec. IV we
examine the competing two-stream instabihty of the driv-
ing bunch and derive the limit to the transformer ratio
imposed by this instabihty. In Sec. V, the effects of trans-
verse plasma dynamics are demonstrated through 2D
particle-in-cell simulations. In Sec. VI, a revised
transformer ratio is derived which includes the effect of
the slowing of the driving beam on the dephasing of ac-
celerated particles in the wake. A new mechanism is pro-
posed in order to avoid dephasing. Finally, we summarize
the design equations for the PWA and present some ex-
amples in Sec. VII.

II. PHYSICAL DERIVATION OP THE PLASMA
WAKE-FIELD TRANSFORMER RATIO
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FIG. 1. The ideal "doorstep" bunch shape considered by
Chen et al. {Ref.7}.

The transformer ratio R of wake-field accelerator is de-
fined by the ratio of the maximum energy gain (by) of
accelerated particles to the initial energy (ys) of driving
particles (R =by/yb). This limit arises because the driv-
ing beam is decelerated by an electric field E from its
initial energy to zero in some length bx=ybmc /eE
During that same distance, the driven electrons can only
gain energy eE+ bx =(E+ /E )ysmc =Rysmc, —where
E+ is the peak accelerating field of the wake behind the
driving beam.

Chen et a/. have shown that the transformer ratio of
the PWA driven by shaped driving bunches that are slow-

ly ramped in density and sharply cut off can be as high as
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2nN where N is the length of the bunch in plasma wave-

lengths (2irc/to&). This result was obtained by evaluating
a convolution integral over the wake-field functions of
single particles.

Here we present a physical derivation of this transform-
er ratio which sheds some light on the wake-field genera-
tion mechanism. The basic physical assumptions are as
follows: As the driving electron bunch enters a given re-

gion, the plasma there sees an excess of negative charge.
Since the charge builds up slowly (as long as nb /Nno
g&1, where nb is the peak density at the tail of the bunch
and no is the background plasma density), the plasma
moves in order to shield or neutralize the bunch field.
This adiabatic shielding of the bunch field reduces the re-
tarding field E and ultimately allows for high
transformer ratios. The shielding continues until the tail
of the bunch exits the region. Then suddenly the plasma,
which was nearly neutral, is left with a non-neutral space
charge of amplitude ni equal to the charge density at the
tail of the driver (nb ). Each plasma particle then acts like
a spring pulled out to its maximum amplitude and
released, setting up an oscillation at frequency co~, ampli-
tude nb, and phase velocity tied (like the wake of a boat)
to the driving-bunch velocity.

Unlike the beat-wave accelerator, which resonantly
drives up the plasma wave over many cycles, the wake-
field accelerator simply displaces and releases the back-
ground plasma once. Thus, an advantage of the PWA is
that it is not necessary to fine tune the plasma density to
satisfy a resonance condition as in the BWA.

Once the amplitude ni of the plasma oscillation (and
hence E+) is known (ni nb), —t—he retarding field E on
the driving bunch and therefore the transformer ratio can
be computed from energy conservation. The energy densi-
ty in the wake is E+/8n and is left by the drivers in a
volume ct times the area (nearly all this energy is left
behind because the group velocity of the wake is order
Vtb /c =0). Thus, energy balance requires

2
d E+ dcd = — Nbybmc —=Nbe(E ),
dt 8m dt

where A is area, Nb and yb are the number and Lorentz
factor of the driving electrons, and the average retarding
field on the driving bunch (E ) we take to be some frac-
tion a of its peak value E . Differentiating on the left
and rearranging yields

Sm.Nbea

E+cd

Now, the peak density of the driving bunch can be ex-
pressed as nb 2Nb /Al where 1——is the effective length of
the bunch.

From Poisson's equation, the plasma waves have
electric-field amplitude eE+ /m coze

=n i /no where n
~

is
the amplitude of the density oscillation (co~ =4nnze /rn ). .
Substituting these into the above expression, we find

R =2m% a,
n)
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FIG. 2. Numerical solutions of 1D wake fields produced by
various bunch shapes: (a) Triangular bunch; (b) Gaussian rise,
a, =7.2c/cop. Gaussian fall 0'f 0 1c/cop (c} o' 7 2c/6)p,
elf 1c /Q)p p (d) cd ——3c /cop.

The ideal bunch shape is one for which E is uniform
within the bunch, so that E =(E ) and a=i. In this
case, we obtain the optimal transformer ratio R =2nN
Such an ideal situation can only be created with a delta
function rise at the head of the driving bunch. For a tri-
angular bunch, (E ) = , E [see Fig. —2(a)],and we re-
cover the result R =No. found by Chen et al. by the con-
ventional wake-field analysis.

In both the 1D and 2D simulations of Sec. V, we have
seen n i to be slightly higher than nb (by about 20%). The
transformer ratios are correspondingly lower by about this
factor. The reason n& is larger than nb may be that the
shielding of the bunch charge by the background plasma
is not quasistatic as in our previous stretched and released
spring argument. Instead, the spring is moving when
released and slightly overshoots the amplitude at which it
is released.

III. %AKE FIELDS OF NONIDEAL BUNCHES

The linearly ramped and sharply cut off bunches con-
sidered by Chen et al. (see Fig. 1), can only be approxi-
mated experimentally. In this section, we examine the ef-
fect of more realistic (Gaussian) rise and fall of the
driving-bunch density.

The response of a 1D cold plasma to a relativistic

N = I/A~ =l—co~ /2mc .

Invoking the assumption made previously that ni of
the plasma wave equals nb gives

8 =2mNa .
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5gEi = —4~«i+4npb(g),
—VbBpi ———eEi /nt,
—Vbdgni+npBgui =0

(2)

(3)

charge bunch of arbitrary density shape can be found
from the Green's function response to a single charge.
Neglecting the change in velocity of the driving particles,
the space-time dependence of both beam and plasma
quantities can be expressed as functions of the single vari-
able g=x —Vbt, where Vb is the beam velocity (=c).
Then Poisson's equation, the equation of motion and the
continuity equation become

For pb(g)=5(g), the solution to (5) is simply the
Green's function of a simple harmonic oscillator
[ni (—k—» /e) sink»g far (&0 and ni ——0 for g&0]. The
response must be zero ahead of the bunch (g&0) by
causality. The electric field behind the bunch (g'&0) is
simply [from (3) and (4)] Ei =G—(g) =4m eB~n i /k»
=4m cask»g'.

From the above Green's function, the response of the
plasma to arbitrary bunch density is simply

Ei(t)= J pg(r)G(t r)d—g
Consider a bunch density consisting of a Gaussian rise

af width rc„and a Gaussian fall of width trf

Bgni+k»n, =k»pb(g)/e, (5)

where pb(g) is the charge density of the driving bunch.
Taking g derivatives of (3}and (4) and combining with (2)
gives Pb(g) =

—g'2/a+f2
enbe—

where k» =—a~» /Vb. Then the wake-field response of the plasma is

& —(g ]2no2,
4menb J e "cos[k»(g g'))dg', —$&0

Ei(g)=
4menb e 'cos

p
—' '+ e f cos p &0,

Analytic expressions for the above integrals are not par-
ticularly revealing, but numerical solutions for various
values of cr, and tr/ are shown in Fig. 2. Also shown for
comparison is the solution far the linearly ramped bunch
density. From the figures we are able to draw three con-
clusions about the Gaussian bunches.

(1) The wake behind a sharply cut off Gaussian is near-
ly identical to that of a triangle bunch of the same num-
ber of particles [(length of triangle) =(2iro, )'~, height of
triangle = height of Gaussian].

(2) The wake field (E ) inside the Gaussian rise is
smoother than in the triangular bunch. This is preferred
since it will lead to less distortion of the bunch shape, a
higher transformer ratio, and ultimately higher coupling
efficiency of beam energy to plasma waves. From the
analysis of Sec. II and the uniformity of E in the nu-
merical solutions, one could expect the transformer ratio
of the Gaussian bunch to be between mN and 2nN where
N =o,co» /ci/2m.

(3} The sharp cutoff of the driving bunch is not too
critical as long as it is shorter than c/co». In Fig. 2(c),
of ——c/to» leads to only a 10% reduction in the wake am-
plitude compared to the case of af ——0.1e/~p. Further-
more, the smeared out cutoff will be "self-sharpening"
since it is apparent from Fig. 2(c) that electrons in the cut-
off region feel an accelerating field which will help them
to catch up to the bulk of the driving bunch. The cutoff
requirement may prove to be one of the largest technolog-
ical barriers to realization of a plasma wake-field accelera-
tor. For example, in a plasma of density 10' cm, the
cutoff length must be of order 0.1 mm (only 0.3 ps).

IV. TWO-STREAM INSTABILITY
OF THE WEDGE-SHAPED BUNCH

The distance which the driving bunch can travel
through the plasma may be limited by the plasma two-
stream instability. The instability feeds energy from the
driving bunch to a plasma wave which can modulate and
degrade the driving bunch. Fortunately, the instability
can be suppressed if the density gradient of the driving
beam is high enough. In this section, we calculate the
gradient threshald for two-stream instability in an inho-
mogeneous plasina and apply the result to the ramped
driving beam. Since a high gradient implies a short
ramp-up length (low N), the gradient threshold corre-
sponds to an upper limit of the transformer ratio (2mN)
which we will determine.

The two-stream instability of a spatially uniform
beam-plasma system has the following well-known fre-
quency, growth rate, wave number, and group velocity:

k =to» /Vb,

V de)/dk =2Vb /3,
where Vb is the driving beam speed, 5=(nb /16ybno)'
nb /no is the ratio of beam to background density, and

yb
——(1—Vb /c )
Consider a system in which either the beam density,

background density, or beam energy is varying with an in-
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verse spatial scale length

Bfl 0K=
~o ~x

glib

Pfb Bx

k'=(dk/dm)(duldx ) =co'/Vs .

From Eq. (7) and the definition of «, co =co» [1
—5(0)(1+—,'«x)] so that co'= —,co»«5. Substituting into

Eq. (8) and defining x =L when b,((}=m gives

L =(2m lk')' =(4n Vb Ice «5)'

Since the wave cannot grow if the distance L is less than
an e-folding length of the homogeneous instability (Ref.
9) L, = Vs Iv, the plasma will be stable to the two-stream
instability if L & 2 Vb /3v 3'»5 or if

24" ~i

27~ ~» (~b In, )'~'

We apply this gradient threshold to the wedge-shaped
driving bunches. These are assumed to be ramped linearly
over N plasma wavelengths, so

«=(1/no)(anb /ax) =~, /2~WVb

at the peak of the bunch density. Substituting for « in Eq.
(9}and recalling that the maximum transformer ratio R is
approximately 2irX, we find that

2'"
R =2m% & ~ (nb /nO) 1/3 (10)

This is the peak transformer ratio we can obtain while
still remaining stable to the two-stream instability. For
typical parameters, this will be slightly less than the max-
imum transformer ratio from particle dephasing con-
siderations discussed in Sec. VI (R& &2eyb, e=eE/
mrs»c). Although the limit (10} can be very small for
modest driving beams, for high-energy driving beams R is
still quite large. For example, if y b ——10 and
nb /no 0 1, R =——600.; while for yb —10 and
nb /no 0 01, R is less ——than. 1.

The actual transformer ratio obtained in modest energy
simulations is higher than (10}since wake-field excitation
can take place even in a regime where the two-stream in-
stability begins to grow. However, for a high-energy ac-
celerator where the beam must travel over long distances,

This spatial dependence causes a wave which convects
from point x =0 to x =x to be out of phase with a wave

growing locally at point x by an amount

&P= I [k(x)—k(0)]dx= I k'(0)xdx= —,'k'(0)x',

(8)

where we have Taylor expanded

k(x ) =-k(0) +xk'(0) .

Now

the limitation imposed by (10) (or a few times this value if
a few e foldings can be tolerated} will probably apply.

%e have only considered waves parallel to Vb. %e note
that for the two-stream instability at angles nearly perpen-
dicular to the beam direction (x), the growth rate may be

as much as yb~ higher than that for the 1D instability

(see the discussion towards the end of Sec. V), while Vz x
remains 2Vb /3. The peak value of R corresponding to
gradient stabilization of the oblique two-stream instability
is then smaller than Eq. (10) by the factor yb . Thus, the
longitudinal beam gradient is not strongly stabilizing for
the oblique two-steam instability. On the other hand, the
growth of nearly perpendicular waves may be limited by
the finite radial extent of the driving beam.

V. TRANSVERSE DYNAMICS AND 2D SIMULATIONS

The one-dimensional wake-field analysis has been veri-
fied recently with 1D computer simulations. For beams
of finite radius one might expect that the 1D mechanism
would be greatly altered by transverse plasma dynamics,
particularly since the electric-field lines from a very rela-
tivistic charge in vacuum are primarily transverse. ' "

In order to model the PWA including transverse
dynamics, a 2D electromagnetic particle-in-cell simulation
code (wAvE)'i was used. Typically, 10 particles were fol-
lowed on a cartesian simulation grid 50c/co» long by
IOc/co» wide (250X25 grids). The transverse driving
beam profile was trapezoidal (flat for 2c/co» in the center,
falling linearly to zero in lc/co», on each side, occupying
4c/co» in total). Both metallic and periodic transverse
boundary conditions were used with little difference ob-
served. The longitudinal driving beam profile was chosen
to make comparisons to the 1D simulations of
Chen et al. Namely, pb(g)=0 Olno for. the first A» /4
and pb(g) rose linearly to 0.2n Dover the next 3A»

[see Fig. 3(c)]; yb ——7.
Figure 3(a) shows a contour plot of the plasma potential

indicating plane waves behind the driving bunch. The
electric field down the axis is shown in Fig. 3(b) and the
corresponding electric field from 1D simulation is shown
in Fig. 3(c). Comparison of Figs. 3(b) and 3(c) reveals that
the 2D wake field behind the driving bunch is nearly iden-
tical to that of the 1D case. (The decaying fields near the
left and right edges are due to the simulation boundaries
and should be ignored. ) The transverse-beam fields did
not significantly alter the wake-field generation mecha-
nism which still arises primarily from the )ongitudina)
displacement of plasma electrons.

Subsequent acceleration of particles injected behind the
wake is depicted in the phase space plots of Fig. 4. A
low-density beam of particles of energy yb ——7 was distri-
buted uniformly in x and y behind the driving beam. De-
pending on their phase relative to the wake field, the trail-
ing particles were either decelerated or accelerated. The
maximum energies at time 9%os

' are near y =30
(consistent with bymc =eE+M, eE+ -0 26mcco», .
M =90c/co» ).

Besides verifying the 1D analysis, the 2D simulations
provide insight into important transverse effects both in
and behind the driving beam. First, we discuss the focus-
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wavelength wide, Eq. (11) predicts a focusing field
equivalent to a quadrupole magnetic field of 10 MG/cm.

Although our beam profile in the simulations was tra-
pezoidal rather than parabolic, we can make an approxi-
mate comparison between the prediction of Eqs. (11) and
the simulation results. In Fig. 6, we have plotted the
linear prediction of E„versus y from Eq. (11) on the
simulation results. In determining the slope, we have used

k&a =2, E~o 0.26——inca&c/e [from Fig. 7(a)], and a value
of x for the slice plot such that sink»(x —ct)=1 in Eq.
(11).

We turn now from the plasma waves to the driving
beam, and its transverse profile evolution. By partially
neutralizing the space charge of the beam, the background
plasma enables the beam to be self-trapped by its own az-
imuthal magnetic field. Without some self-trapping, the
space-charge repulsion and nonzero emittance of real
driving beams would cause them to diverge in a distance
far too short to make an effective accelerator. The self-
focusing of a particle beam by this mechanism is also of
interest for conventional accelerators. Higher luminosity
might be obtained merely by designing the final stage of a
collider to pass through a passive plasma; no plasma
waves or applied currents would be necessary.

The fields acting on the driving bunch (a slice at
x =42c/ai», t=45ni» ') of the 2D simulation are shown
in Fig. 8. Figure 8(a) is the retarding field E slowing
the driver beam; comparison to Fig. 3(b) suggests a
transformer ration E+ /E of about 10 ( =mN). Figures
8(b) and 8(c) show the space charge field E» and the "az-
imuthal" (in 2D Cartesian geometry) magnetic field 8,
due to the bunch current, Note that E„ is nearly an order
of magnitude smaller than B„substantiating the argu-
ment that the plasma shields the beam's space-charge
repulsion.

In Fig. 9, we see that the profile of the driving beam at
times 0, 45co» ', and 9(ko» shows a definite narrowing
trend. Self-focusing can also be inferred from a slight in-
crease (a few percent from t=3(ko» ' to 45co» ') of the
wake-field amplitude behind the bunch. This is probably
due to an increase in beam density on axis caused by the
beam self-focusing. The modulation of axial bein densi-

ty leads to a slight oscillation of the decelerating field E
inside the beam which does not appear in 1D [see Figs.
3(b) and 3(c)].

The beam self-focusing is often associated with the
Weibel or filamentation instability. ' This instability

0.20
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0
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0 25

!
~ t=90!

50 75
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FIG. 7. Slice plots of 2D wake fields (E„vs x at y =0) at (a)
t =45~~ ' and (b) t =9%v~ ' showing changes in the wake-field
amplitude.
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arises physically because two parallel currents attract.
The growth rate of the Weibel instability is'

v/ro» ——(nt, /yt, no)'~ kc(k c +co»)

which is roughly 0.1 for our simulation parameters.
However, the presence of the true Weibel instability would
be indicated by a growth of 8, perturbations, and these
were not evident in the simulations [see Fig. 8(c)]. In-
steadm, odulations are evident in the E» versus y plot of
Fig. 8(b). These may be indicative of the electrostatic
two-stream instability propagating obliquely to the beam

-G.20
—5.0 - 2.5 0 25

mpy/c

5.0 5.0

FIG. 6. Focusing field (E» vs y) from the 2D computer
simulations (t=45co~ ',x=41.7c/co~) and the corresponding
linear prediction from Eq. {11).

FIG. 8. Fields in the driving bunch (t =45m~ ',
x =41.7c /co~ ). (a) E vs y, (b) E» vs y, (c) 8, vs y.
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sides of Eq. (12}by yb(x) and integrating determines the
effective acceleration length L corresponding to phase
slippage by Ap l4:

', ~4

4fS =
2yb(x) 2yb 0 (1 x/—La)i

Evaluating the integral, we obtain for L,
2

L= 1Tybc /co»

1+ebb /R
'

where we have substituted Lz yb
——mc leE

Az ——2rrc/co&, R =E+ /E, and e=eE+ /mcozc is the
normalized plasma wave amplitude (e=nb /np & 1).

The maximum energy that an accelerated particle can
gain is hymc =e(E+ )L (where the brackets denote the

average accelerating field on the particle} or

~(e&ybmc ~&e&yb
b,ymc = =Rybmc (13)

1+neyb R R+meyb

FIG. 9. Real space (y vs x ) of driving beam particles at {a)
t =0, (b) t =45co~ ', (c) t =90co~ ' in the 20 simulations.

VI. DEPHASING OF TRAPPED PARTICLES

Since accelerated particles move at nearly c and the ac-
celerating waves move at Vb &c, the particles outrun the
waves. As discussed in Sec. V, only one-fourth of a plas-
ma wave is both focusing and accelerating, so the effective
accelerator length is determined by the distance it takes
the particles to phase slip by Az /4. In the following, we
derive a revised transformer ratio which takes into ac-
count both dephasing and the considerations of Sec. II.
We also present a means for increasing the effective de-

phasing length by tailoring the plasma density.
A particle moving at nearly c wi11 slip past a wave

moving at V»b ——Vb(x) by an incremental amount ds in a
time dt or a distance dx =c dt given by

dx = =2yb(x)ds .c ds

c —Vb x
(12)

Now yb is decreasing according to yb(x ) =yb(1 x/La ), —
where La is determined by the decelerating field (E )

acting on the bunch (eE Lz ybmc ) ——Dividing . both

direction. This instability has a growth rate at an angle 8
to the beam of'

v/co& ——(v 3/2) ~~
(nb /2ybno)'~ (sin 8+ cos 8/yb)'

From Fig. 8(b), k» =2.2coz /c, suggesting that tan8
=k„/k, =2.2 and v/co»=0. 2. The time of Fig. 8(b)
(50c0» ') corresponds to about 10 e foldings of the insta-
bility.

As the beam self-focuses, its perpendicular temperature
rises. To what extent the self-focusing can offset the
natural divergence of the beams and what will be the final
beam profile are important questions that require further
investigation.

Alternatively, we can express (13) in terms of a revised
transformer ratio Re which includes dephasing,

Rg—= ——R
n. e&yb

(14)
yb R +meyb

For high-y driving beams, such that meyb»R, the
phase slippage is small until the beam is nearly depleted.
In this case, the particle can stay at the peak accelerating
field for most of the accelerator (so (e) =e) and Re ap-
proaches the value R (=2m%a) given in Sec. II. For ex-
ample, if yb =10 and e is of order 0.1, then dephasing is
negligible for R less than 1000 or energy gains less than 5
TeV.

Although driving electron bunches of very high energy
avoid the dephasing problem, lower energy driving elec-
trons may be desirable because they can be produced more
efficiently. Alternatively, one could even use proton
beams. In these cases, the dephasing can dominate
(K6yb «R ) and Re approaches the value cr( e)yb, where

(e) =e/~2. The corresponding limit on energy gain is
roughly Reybmc =2Eybmc, whic'h is completely analo-

gous to the BWA limit given by Tajima and Dawson3
(with replacement of yb by c0' '/co& —yzb ).

Particles in the beat-wave accelerator can be phase
locked in regions which are both accelerating and focus-
ing by imposing a dc magnetic field (the surfatron
scheme}. ' Since the magnetic field would infiuence the
driving beam, as well as the trapped particles, the surfa-
tron does not appear to be applicable to wake-field ac-
celerators. However, there is another way to maintain
PWA particles' phase in the waves which is not possible
with the resonant beat-wave scheme.

Consider the wake fields generated by a bunch moving
up a plasma density gradient. If we assume R »meyb so
that the beam speed can be considered constant, then the
wake phase velocity is fixed at Vb =c. Its wavelength will
decrease according to

A» =2nc/c0»(x) ~no ' (x)

where
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0.4
T =50~p

ma wake-field accelerator can be summarized by the fol-
lowing two equations:

E=(n~ Ino)(no)'~ V/cm (ni, &no),

0.2
KEgb

~X «~Xb =~Xb
8+meyb

(13')

-02l
0 12.5 25,0

I

37.5 50.0

FIG. 10. One-dimensional simulations of wake fields pro-
duced in a linear plasma-density gradient at (a) t =30co~ and
(b) t =45co~ '. The plasma density at the right boundary is four
times that at the left boundary (no); the driving bunch was a
doorstep rising to 0.2no in 1A,~.

or if the density gradient satisfies

n (dx)
2=wkpyb.

In Fig. 10, we show the wakefield produced in a 1D
simulation with a density gradient increasing to the right
[no(x=50)=4no(x=0)]. At time 45ar~ ', the distance
from the wth peak of the wake field to the tail of the
driving beam is less than its corresponding distance at
i=30co~ ' The w.ake appears to be catching up to the
beam (although the phase velocity at fixed x is still Vi, ).
A decrease in the accelerating wake field at higher plasma
densities follows from Poisson's Eq. (2):

E=(mao c/e)(ni /no) =(mcozc/e)(n~ Ino)

= (nb /'no)(no) V/cm, (16)

which is proportional to no for fixed nb ( & no)

VII. SUMMARY

Slowly ramped and sharply cutoff driving beams can
produce high-phase-velocity high-gradient-plasma waves
which can trap and accelerate charged particles. The ac-
celeration gradient and maximum energy gain of this plas-

co&(x)=4m.n 0( x)e elm .

As the driving beam progresses up the density gradient,
the plasma wakes will appear to catch up to the tail of the
ham (see Fig. 10). Highly relativistic particles (V=c)
that are trapped "w" wavelengths behind the bunch will
stay in the same phase of their trapping potential if the
rate of advance of the particles toward the driving beam
(c—Vi, ) matches the rate of advance of the wake

whA, hA, BA, «o

where R &2n'%=cobol~ /c, 1& is the driving bunch length,
ni, is the peak density, ys is its energy, and e= ni, Ino

For example, these equations predict that a ramped
driving bunch consisting of 5 X 10' 50-GeV electrons 3
mm long and 20 pm in radius sent into a 10' cm plas-
ma could accelerate a properly phased trailing bunch to 1

TeV in 20 m.
Implicit in these expressions are a number of assump-

tions or requirements considered in this paper. We have
shown that for physically realizable bunch shapes, a
transformer ratio between n N and 2nN can be expected if
the bunch is cutoff in a distance shorter than c/co~. The
above equations neglect competing instabilities such as the
plasma two-streln instability. We found the parallel
two-stream instability to be gradient stabilized for
transformer ratios smaller than that given by Eq. (10).
For the 1 TeV example, the transformation ratio is 20,
well below the maximum of 3700 given by Eq. (10).
Thus, one would not expect this instability to occur in
such a high-y case.

The design equations were derived from a 1D model
which from our 2D simulations appears to be justified for
beam widths greater than c /co&. Our 2D simulations sub-
stantiate the 1D models at early times. At later times, the
simulations indicate that transverse motion can distort the
driving beam and modify the wake fields, both in and
behind the bunch. To what extent this would occur in the
1 TeV accelerator example is not clear because limitations
on computing time preclude simulations of such length
(order 10 c/co&). We note that both yb and the accelera-
tion length scale up by a factor of 10 in comparison to
the simulations we have performed so that bulk focusing
of the stiffer high-y beam may be qualitatively similar to
the simulations. Recently, Su at UCLA has developed a
1D simulation code which follows the driving beam and
enables modeling of more realistic parameters. Energy
gains from 70 MeV to 1 GeV have been simulated and are
in agreement with the analytic model. '

We have proposed a plasma density gradient (1S) as a
means of avoiding limitations imposed by the dephasing
of accelerated particles (13). This scheme may enable the
use of proton beams or moderate energy electron beams as
the driving source.

Accelerator issues such as luminosity and emittance are
the subjects of continuing investigation for all plasma-
wave schemes' and have not been addressed in this paper.
Among plasma schemes, the wake-field accelerator is par-
ticularly attractive because of its comparatively efficient
free-energy source and because it does not require the
plasma density to be fine tuned to a resonant frequency.
Further investigation of transverse driving beam stability
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and particle loading appears key to realizing the promise
of a useful high-gradient high-energy plasma wake-field
accelerator.
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