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We present a computer simulation on a lattice of a long charged polymer diffusing in a topologi-

cally restricted environment in the presence of an electric field. The problem is related to that of a
set of self-attracting particles diffusing in a random environment. For strong fields the polymer gets

trapped in metastable configurations, so that the relaxation time of the polymer has an exponential

dependence on chain length. Various correlation functions such as the mean square displacement

vary logarithmically with time.

INTRODUCTION

Diffusion of long polymers in gels is restricted by the
topological constraints of the network structure of the gel.
Although the dynamics of these configurations are com-
plicated, the snakelike-motion or "reptation" model easily
explains the dynamical properties of such systems. '

A chain trapped in a network moves around obstacles
by Brownian motion. A chain can only move freely at its
ends and at portions free of entanglements. The reptation
model takes this into account by constraining the polymer
to move in a tube whose diameter is the average distance
between network junction points. The polymer is unhin-
dered within a certain length scale called the tube diame-
ter, since the polymer moves freely over distances of the
order of the pore size of the gel. For larger diffusion dis-
tances, the polymer is constrained to move along the path
of the random tube.

In this paper, the effects on chain dynamics in gels in
the presence of an electric field are discussed. Consider a
long charged polymer embedded in a gel when an electric
field is suddenly switched on. Charge cannot migrate
along a polymer so that the motion of charge is restricted
to the motion of the monomers. If the field is small the
transfer of charge through the network is by fluctuations
on a length scale smaller than the tube diameter. This re-
sults in a process that proceeds by a continuous diffusive
drift. However, for sufficiently strong fields, there is a
nontrivial Boltzmann penalty associated with the motion
of the smallest "crankshafts" along the chain. For the en-
tire polymer to move, some crankshafts must move
against the electric field, out of local minima. Thus we
expect the polymer tube to be in a metastable configura-
tion. In other words, the longer the polymer and the
stronger the electric field the longer the relaxation time
from the initial configuration. From a computer simula-
tion of a polymer in a gel it is found that when a suffi-
ciently strong electric field is switched on metastability
does RAse.

An outline of this paper is as follows: Section I
discusses a computer simulation for a polymer diffusing
in a gel in the absence of an external field. Section II re-
lates the effect of a constant electric field in the above sit-
uation to the problem of a particle diffusing in a random

environment. The problem is discussed in terms of Sinai's
results for a random walk in a random potential. Sec-
tion III describes the computer simulation for this prob-
lem and analyzes the results. Finally, in Sec. IV the valid-
ity of the simulation is discussed and experimental evi-
dence that could confirm the results is suggested.

I. A COMPUTER SIMULATION FOR
A POLYMER DIFFUSING IN A GEL

We will first review the work of Evans and Edwards.
It is assumed that the polymer in the gel is at its 8 tem-
perature, i.e., at the temperature at which the binary
excluded-volume parameter vanishes such that the poly-
mer statistics are nearly Gaussian.

We represent the gel by a fixed cage. For computation-
al advantages the pore size of the gel is set equal to the
step length of the polymer, which corresponds to the cage
model with unit spacing. In these circumstances one has
the polymer chain as a random walk of N steps on a cubic
lattice embedded in a network which consists of infinitely
long bars forming a perfect lattice with spacings equal to
the step length of the random walk. The points where the
random walk comes directly back onto itself correspond
to the portions of polymer free of entanglements, hereaf-
ter referred to as kinks. The dynamics of this model al-
low free movement of the ends of the polymer and of the
kinks; otherwise the monomers are frozen due to the pres-
ence of the bars.

In the computer simulation the dynamics are set by
iterations. At each iteration the program chooses a point
j on the polymer at random; if the point is not a kink, that
is if rj+,&rj, , it carriers on iterating. Otherwise the
kink is displaced one lattice spacing along one of the six
possible directions, chosen randomly. Figure 1 shows
some possible moves.

In the cage model one can vary the separation of the
bars allowing the movement of all monomers which are
not crossed by a bar. For any spacing of the cage between
0 and N the same phenomenological results are obtained
in the absence of a field.

The computed quantities are the center-of-mass and the
monomer-monomer correlation functions. The center-of-
mass correlation function is defined as
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FIG. 1. Movement of the kinks along the backbone of the po-
lymer.

The monomer-monomer correlation function is defined as

The monomer-monomer correlation function for this
model has different power laws in time. At t =t,~ the
internal modes have relaxed, and

g;~t for t ~t„~acNi.
The relaxation time t ~ is the time it takes the polymer

to form a new random tube, uncorrelated with the original
configuration.

The center-of-mass correlation function is given at all
times as

gc.m, =Dc.m. t

where D, cc I/Ni is the diffusion coefficient of the
center of mass.

II. A POLYMER IN AN ELECTRIC FIELD

Let us suppose that the chain trapped in the network is
charged, as in the case of DNA, and a constant electric
field is suddenly switched on. In order to understand the
behavior of the monomer-inonomer correlation function it
is necessary to look at the diffusion of the kinks along the
backbone of the polymer. When a constant electric field
is switched on we will see that the potential along the
backbone is random.

Let the coordinates of the backbone of the polymer be
parametrized by a curve R(S), where S goes from 0 to
1. =Na. A constant electric field gives a potential energy
at each point R(S),

V(R(S})=ER(S) .

As a kink is restricted to move along the backbone, it feels
only the component of E along the chain. Since R(S) is a
random walk, such that &R (S)}=aS, then the potential
over S is random, and

Therefore, inverting this equation,

s' (in&i})' . (3b)

The discrepancies between the results of (2) and (3)
show the breakdown of scaling laws in this problem. Let
us compare Kramer's criterion —t (S) ac exp(h V(S)),
where b V(s} is the maximum barrier height between 0
and S—with both Eqs. (2) and (3) to find out which reali-
zations of the potential are significant in determining the
average quantities in each case. If the time a particle
stays in the interval [0,S] is calculated using (2) thd most
significant barrier height is the maximum barrier height
one typically finds between 0 and S,

r ~exp&[V(S) —V(0)] )'~ =exp(ES'~ ) . (4)

On the other hand, (3a) would state that the time a par-
ticle stays in an interval [0,S] is dominated by the time it
takes to surmount atypically large maximum barriers of
the potential in the interval. Let P( V,S) be the proba-
bility that in the interval [0,S] the maximum potential is
V, which one expects to decay very rapidly for
V~ ++Es'~ . In order to find the average time ~ea~e
age over all realizations of V,

&r) ~ J e "P(V~,S)dV~ .

Consider the realization for a maximum potential along S
to be V =EI; then the probability of such a realization is

Assume for the moment that the backbone R(S) is stat-
ic; then the problem is that of a particle moving in a one-
dimensional space S with the probability of hopping from
s; to s;+&, p(s; },randomly distributed over S. This prob-
lem has been studied rigorously by Sinai' who constructed
the probability functional for a particular realization of
the force F(S) and then averaged over all possible realiza-
tions to find that the mean square distance traveled by a
particle in such circumstances,

& S'}~ (inr)'.

de Gennes has approached this problem in a different
way. He was interested instead in calculating the average
time it takes a particle diffusing in a random potential
with a mean given by (la) to move a distance S. He
showed that in such circumstances,

& t }=D ' j dm I dp &exp[u(m) —u(p)] }cc exp(E S}.
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2
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Although there are discrepancies between (4) and (5),
both results are correct. Sinai's result (2) gives the mean-
square displacement of the particle (Si), while if the
average time (t) is of interest, de Gennes's result (3)
should be used. The differences between them show that
a typical realization of the potential is not enough to find
the average time the particle spends in an interval since
the time it spends surmounting the highest potential bar-
riers is much longer than the time it spends crossing the
mean barriers.

The case of an entangled chain in the presence of an
electric field is slightly different as here the problem is
one of metastability. It is expected that after a kink has
diffused over the whole path S and is no longer confined
to a particular random walk the monomer-monomer
correlation function is given by the power law for dif-
fusion of a particle in a constant field:

([R(S,t) —R(S,O)]') ~t'. (6)

An additional difference from the problem described
above is that V(S) is not really static. As the kinks tend
to move more in the direction of the field than against it,
they aggregate, as shown schematically in Fig. 2. The
particles aggregate at minima of the potential, further in-
creasing the height of the barriers. In order for a segment
to straighten out, there will be intermediate configurations
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FIG. 2. (a) Initial random configuration (E =0 at t =0) of
the chain in the unit cage. The dots represent the cage. (b) The
kinks have moved along the polymer backbone at t ~ 0.

the probability that a random walk of N =S/a steps
(a =1) has a maximum displacement of 1, P(1,N). This
resembles the problem of a random walk with an absorb-
ing wall at I. Chandrasekhar found the probability
8'(x,¹l)that a particle executing a random walk of N
steps arrives at x given that there is an absorbing wall at
x = I. So the probability that a random walk has its max-
imum displacement at I,

I
P(I,N)= —f W(x, N;l)dx,

I

can be obtained, and this leads to

where all the kinks have clustered together, forming
several potential barriers with height of order ES. This
suggests that the time the particle spends in the interval
[0,S] is typically

t cc exp(ES)&const) . (7)

III. A COMPUTER SIMULATION OF
A POLYMER IN AN ELECTRIC FIELD

be the coordinates of the N =L /a monomers in the chain
at the tth iteration and H(r') the energy associated with
this configuration. The program randomly chooses a
point on the chain, and if this point is not a kink the pro-
gram carries on to the next iteration. If it is a kink it
chooses one of the six possible directions of movement
and it compares energies: If moving to the new configu-
ration r ' lowers the energy of the system it accepts it, i.e.,
if H(r')&H(r'), it fiips the kink by setting r'+ =r',
otherwise it accepts it with probability

—[H (T ') —8 (r ') t/T (8)

After completing a required number of iterations the
whole process is repeated for different initial random con-
figurations until adequate statistics are obtained.

The computed quantities in this paper are the
monomer-monomer and center-of-mass correlation func-
tions. The relaxation time, the time it takes the polymer
to lose its correlation with the original entangled configu-
ration, is dominated by the time it takes a kink to diffuse
the entire length of the polymer backbone. As the kinks
aggregate, forming long sections of polymer aligned in the
direction of the field, the potential barriers are of the or-
der of the length S of these stretched sections. The relax-
ation time is expected to be, as in (7),

r= b exp(ELc),

where b has some much slower algebraic dependence on
L The constant . c in (9) is a numerical factor less than 1

which is given by the maximum potential barrier to sur-
mount in the interval [O, L]. The maximum potential
height is L/2, corresponding to the final configuration
where the polymer is trapped by a single entanglement.
Nevertheless, as Eq. (7} is an asymptotic form for when
ES»1 and the aggregation effect has a characteristic
time depending on the value of E, we expect substantial
corrections for chain lengths considered here.

The relaxation will be logarithmic only if the relaxation
time at E =0, L, is less than exp(ELc}. Otherwise, the
diffusion of the kinks along S is dominated by thermal
noise with a constant drift in the direction of the field.

The effects of a constant electric field were included in
the computer program for the cage model with the unit
spacing, as describing in Sec. I. As there, the initial con-
figuration of the polymer is a random walk. The dynam-
ics of the polymer after the electric field is switched on
were represented by a Monte Carlo algorithm. At each
iteration the energy associated with the movement was
computed. Let

r'=(r i, r i, . . . , r~)
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FIG. 3. (a) Plot of log(g, ) against log(t} for E=1 and L =10, 12, 15, 20, 30, and 80. (b) Plot of log(g;) against log(t) for E=1
and L =10, 12, 15, 20, 30, and 80.
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FIG. 4. (a) Plot of log(g, ) against log(t) for I.=80 and E =0.5, 1.0, 1.5, 1.75, 2.5, and 5. {b) Plot of log(g;) against log(t) for
I.=80 and E =0.5, 1.0, 1.5, 1.75, 2.5, and 5.
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FIG. 5. (a) Plot of log{g, ) against log{t) for a stretched chain of L =40 for E =1.0, 1.5, 2.0, and 2.5. (b) Plot of log(g;) against
log{t) for a stretched chain of I. =40 for F. = 1.0, 1.5, 2.0, and 2.5.
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The case where E is very small is not considered here, as

explained in Sec. IV.
The logarithm of the center-of-mass and monomer-

monomer correlation functions are plotted against the log-
arithm of time for different polymer lengths at constant
electric field E =1 in Figs. 3(a) and 3(b), respectively. As
I. is increased the plots show the expected logarithmic re-
laxation in time. Also plots of log (R; ( r ) ) and

log(R, ~ (t)) against log(t) were computed for L =80
[Figs. 4(a) and 4(b)] but this time varying the electric
field.

It would be of interest to find the steady-state configu-
ration of the polymer, which is not obtained from equili-
brium statistical mechanics. It is also accessible experi-
mentally by light scattering. It was found in the comput-
er simulation that for EL sufficiently large the polymer
stretches from its random configuration with Rs ~ v L to
8 ~I. in a time which goes as e '. On the other hand,
the time it takes a stretched chain to curl back to its origi-
nal random configuration should be roughly e '. In or-
der to observe the behavior of the polymer once it is
stretched, the program was run starting from a straight
chain and varying the electric field and the length of the
chain. Figure 5 shows the correlation functions for
L =40 for different electric fields. It is observed that
there is a crossover effe:t, such that the polymer moves
slower at higher fields which indicates that the polymer
gets caught by entanglements even if it is straight, as one
might expect.

The present work is not extensive enough to conclude
that the equilibrium configuration of the polymer is no
longer a random walk, especially in the limit where the
length of the polymer is much greater than the pore size,
as then the topological constraints increase the probability
that a straight chain gets entangled again in the gel.

In the simulation it was assumed that the pore size is
equal to the step length of the polymer. This assumption
was made to simplify the computational task. It is ex-
pected that within the assumptions of this simulation me-
tastability will be observed for any pore size bigger than
the step length of the polymer.

A computer simulation was also performed for a Rouse
chain in the presence of an electric field. In this model
the chain is free of entanglements so all monomers are
free to move. It was found that the equilibrium configu-
ration of the chain was a random walk. That is, the poly-
mer does not stretch, as shown by plotting the difference
between the radius of gyration at t =0 and t (see Fig. 6).
The results for the correlation functions are given in Fig.
7. In this case one has a linear diffusion process: the
stronger the field the faster the polymer relaxation.

The center of mass moves at constant speed at all times
for any value of E,

Thus the polymer does not change its equilibrium config-
uration even for EL && 1 if it does not entangle in the gel.

&(R (T)-R (0)»

LENGTH = 4L".

10 .0

FIG. 6. P1ot of ([Rs(t)—Rs(0)] ) against 1og(t) for a Rouse chain of L =40 in E =1.
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IV. DISCUSSION

In this section we discuss the applicability of our lattice
model to a real system. Instead of considering an entire
cage as we did previously, consider only one thin "bar."
We label the lengths of string initially hanging on the two
sides of the bar by L i and Lz.

In the lattice model, the average velocity v of the string
decreases with increasing E. Setting the charge per unit
length equal to unity we have that v -exp( EL,—).

Now consider a continuous charge string that is inex-
tensible but locally flexible, also with unit charge per
length. In this circumstance we have to apply some boun-
dary conditions at the surface of the bar. If we assume
that there is a frictionless contact between the bar and the
string, then the velocity of the string is an increasing
function of the field strength with

U-E(Li Li)/(Li—+L)) .

(Here we are making the additional assumption of a local
bead friction due to the viscosity of the solvent, although
inclusion of hydrodynamic effects also give a similar
dependence on E.) So there is no metastability induced by
the electric field.

However, one can construct off-lattice models that do
show metastability akin to the lattice case. If we bind
many rigid hook-shaped side chains onto the continuous
string, then the hook will tend to get caught and hang
from the bar. Once a hook is hanging, the probability of
it becoming unhooked is proportional to exp( ELh)—
where h is the vertical distance necessary to lift the hook
in order to disengage it, and L is the total length of the
string. Therefore this model shows strong metastability.

%e can relax the assumption that the chain possesses
hook-shaped side chains and consider a flexible but "bum-
py" chain. If the local corrugations of the chain are suffi-
ciently large, then we might expect a behavior similar to
that of the hooked chain. If the height of the corruga-
tions is not large enough to stop the chain from sliding
over the top of the bar, we still might expect the chain to
get stuck if it was knotted around the bar. This is because
when two portions of chain slide against each other, then
tend to get trapped in local corrugations. In order for
them to slide, they must overcome an energy barrier pro-
portional to the chain tension times the height of the cor-
rugation.

The above two examples of metastable behavior depend
crucially on having a small but finite length that gives rise

to an energy barrier proportional to it. The chain must
overcome this barrier in order to move. This is similar to
the lattice case since kinks must hop a small but finite dis-
tance. In all three cases, if this small length goes to
zero or the E goes to zero—while we maintain a fixed
charge per unit length, then energy barriers disappear and
configurations cease to be metastable.

Any real system does contain an analogous length
nectesary for metastability, namely the distance between
monomers. Therefore we believe that the metastability
discussed above could be observed experimentally in some
real system. Nevertheless a sufficiently strong field is re-
quired; for a temperature T and a charge per monomer q,
ELq/2kT ~1, where k is Boltzmann's constant (in the
simulation Eq/kT is set equal to E). Otherwise the
motion is driven by a continuous diffusion drift. For ex-
ample, in DNA electrophoresis experiments the charge
per monomer is very small, and a very strong field is re-
quired in order to observe metastability (we estimate of
the order of 200 V/cm for a chain of length 1 X 10 A).
In these experiments the electric field varies from 1 to 10
V/cm. ' Nevertheless, experiments with pulsed field gra-
dients of around 200 V/cm have recently been used to
separate DNA of different lengths;" the results may pro-
vide evidence for the applicability of the work present
here.

CONCLUSIONS

It has been shown that a linear chain in a network be-
comes trapped when under the influence of a strong elec-
tric field. The relaxation time increases exponentially
with the strength of the field times the length of the poly-
mer.

In these circumstances the polymer stretches and once
it is stretched, it will eventually entangle again. It was not
possible to find the steady-state configuration. However,
in the case of a chain free of entanglements it was shown
that the chain in equilibrium preserves its radius of gyra-
tion in the presence of an electric field.
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