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%e study the analytic properties of the hypernetted-chain {HNC) and soft-mean-spherical
(SMSA) theories in the asymptotic high-density limit (AHDL). The scaling properties of the inverse

power potentials lead to the introduction of the SMSA-Ewald functions, which correspond to the
"overlap-volume" functions for hard spheres. The HNC and SMSA theories for soft interactions,
as well as the Percus-Yevick theory for hard spheres, feature the same AHDL analytic structure of
the pair correlation functions, which is dictated by the hard-sphere Ewald functions. The general
discussion is supplemented by detailed results for the one-component plasma. Implications to the
analysis of the density-functional theory, of dense matter, near its exact Thomas-Fermi limit are
pointed out.

I. INTRODUCTION

Integral-equation theories of fluids have been the object
of extensive studies in recent decades, and have found
many applications for quite disparate kinds of physical
systems. ' In most applications these equations must be
solved numerically and the solution becomes increasingly
more difficult as the density (or the reduced coupling con-
stant for the strength of the interaction) increases. It is
hardly surprising, therefore, that the few cases that could
be solved analytically attracted relatively high attention,
i.e., (i} the solution of the Percus- Yevick equation for hard
spheres (PYHS) played an important role in the develop-
ment and application of modern perturbation theory for
liquids (ii) the solution of the mean spherical approxi-
mation (MSA) for the primitive model of electroiytes, ~

and its generalization for centrally charged, arbitrary
hard-sphere mixtures, s still play an im rtant role in the
study of molten salts and electrolytes (iii) the modifica-
tion of the MSA to treat soft interactions 's (SMSA)
found applications for plasmas and colloidal disper-
sions 0 (iv) the solution of the MSA with Yukawa clo-
sure" found applications as a parametric fit for simula-
tion data. ' This list can be carried on and on. It should
be noted, however, that these analytic solutions still in-
volve parametric nonlinear algebraic equations for various
coefficients, and these can be solved only numerically.
Partly due to this complexity, especially for mixtures,
there has not emerged from these solutions a general pic-
ture regarding their analytic form, its dependence on the
dimensionality D, and its possible physical meaning, as re-
lated to the pair potential P(r).

Starting from the analysis of the universality of the
bridge functions, 'i it has become increasingly clear that a
proper fundamental approach to the study and application
of integral equations (especially those obtained from the
diagrammatic analysis of the pair functions) must be done
using the modified hypernetted-chain (MHNC) scheme. '

In this scheme, the hypernetted-chain (HNC) equation is

solved for a modified potential (that includes the contri-
bution of the bridge functions) which corresponds to the
physical pair potential in the HNC special case. The
HNC equation has not been solved analytically for any
physically interesting potential, and the analysis of the
HNC and MHNC has to rely on the numerical solutions.

Much work on the HNC and SMSA theories was done
in recent years in connection with the one-component
plasma' (OCP), especially regarding density-functional
theories of ionized matter, ' and as models for liquid met-
als. ' The OCP provides a reference in a perturbative
treatment of such systems. The similarity between the
HNC and SMSA results for the OCP prompted a detailed
study of the thermodynamics of these theories as related
to their closure relations for the pair functions. ' It was
found that both theories share many common features,
especially regarding their variational free-energy function-
al of the pair functions. It thus seemed that the SMSA,
with its available analytic solution, can provide a starting
point for the analysis of the HNC theory for soft (without
hard-core) potentials. The analytic form of the PYHS
equation of state (EOS), the corresponding success of I'
expansion' and scaled particle theories for hard parti-
cles, io and the simple and accurate asymptotic high-
density forms for the OCP EOS, ' suggested the study of
the asymptotic high-density limit (AHDL) of these
theories.

A novel approach to the analysis of the AHDL proper-
ties of the HNC and SMSA theories was proposed, by
which it was possible to establish a large body of interest-
ing new results, valid for arbitrary D and for mixtures. (i)
The HNC and SMSA integral-equation theories for soft
potentials, together with the variational perturbation
theory (based on the PYHS as a reference), are all identi-
cal in the AHDL; they share the same Madelung energy
that constitutes an exact lo~er bound to the true potential
energy of the system. (ii) This lower-bound Madelung en-

ergy can be evaluated either by solving a boundary-value
problem or by employing the PYHS pair functions. (iii}
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In the AHDL these theories feature the generally unphysi-
cal property of a space-filling-excluded volume region
[namely, g (r & 2aws }=0, where WS denotes Wigner-
Seitz] corresponding to total packing fraction equal to
unity. (iv) A well-defined physical meaning for the direct
correlation functions (DCF's) has been found for both
hard-core interactions (as overlap volumes) and soft in-
teractions (as interaction between "smeared particles" ).
(v) The general analytic solution of the MSA for any
Green's-function potential and for hard spheres was ob-
tained, and (vi) its relation to the Onsager procedure for
obtaining exact lower bounds for the energy was establish-
ed.

Ideas generated through the study of the AHDL prob-
lem have already been useful for the study of (i) the EOS
of plasma nuxtures, (ii) the isotropic-nematic transition
of line charges, and (iii) the coupling of micellar growth
to the degree of alignment. (iv) Study of the AHDL
problem also led to the introduction of a new and general
approach to the statistical thermodynamics of complex
systems (e.g., water, colloidal dispersions, polyelectrolytes,
micelles, etc.) modeled as hard objects with embedded
charge distributions.

In this paper we continue our study of the AHDL prop-
erties of theories for fluids, with the aim of further clari-
fying the connection between the variational boundary-
value problem and the analytic form of the pair correla-
tion functions (PCF's). Some points regarding the PYHS
and MSA are considered, but the main body of the paper
concerns the analytic structure of the SMSA and HNC
theories for soft interactions near the AHDL. In particu-
lar, detailed SMSA and HNC results for the OCP are
compared. The paper is structured as follows.

Section II contains a short review of the HNC and
SMSA theories. In Sec. III the general SMSA variational
boundary-value problem is formulated and general results
for Green's-function potentials are presented. The special
scaling properties of the inverse power potentials as borne
out by the variational problem are featured, the AHDL-
SMSA Ewald functions are introduced, and their proper-
ties are discussed. The general analytic form of the
SMSA pair correlation functions in the AHDL is
analyzed in Sec. IV, and the corresponding expressions for
the Madelung energy are presented. The AHDL proper-
ties of the HNC theory are examined in Sec. V. We find
that, in addition to the mapping of the AHDL-HNC on
the AHDL-SMSA variational problem, the general ana-
lytic structure of the HNC pair correlation function near
the AHDL is very similar to that of the SMSA. Section
VI is devoted to a detailed comparison of the HNC and
SMSA theories for the OCP, with special emphasis on the
analytic structure. Section VII is devoted to a brief sum-
mary of our results and some of their implications. We
discuss, in particular, the density-functional theory'6 for
dense plasmas near its exact Thomas-Fermi high-density
limit. In Appendix A we display the connection between
the PYHS Ewald function and the Laplace transform of
the AHDL pair correlation function, whose residues are
calculated in Appendix B. To make the paper more self-
contained, we quote, in Appendix C, the main results of
Palmer and Weeks for charged hard spheres.

O. A BRIEF REVIE%' OF THE HNC
AND SMSA THEORIES

c(r)+@3(r)=g(r) 1 ——lng(r) &0

for the HNC, and

g(r)=0, r &R; c(r)+PP(r)=0, r &R

for the MSA, while

g(r =R+0)=0

(2)

(3a)

(3b)

is the SMSA condition. p=N/V is the number density,
P=(k&T) ' the inverse temperature, P(r) the pair poten-
tial, and R the MSA hard-core diameter. The MSA equa-
tion for hard spheres, i.e., with c (r & R }=0, is identical to
the Percus-Yevick equation for hard spheres (PYHS).

Three alternative routes for obtaining the equation of
state (EOS) are provided by the inverse compressibility,

P
xz ——p =1+X[c], (4)

the potential energy, u =pU/N,

u =+ f g(r)PP(r)dr,
2

and the virial pressure, Z, =PP/p,

Z„'"=Z„—1=— f g(r)r pp'(r)dr,

where the functional X[c] is given by

X[c]=—p j e(r)dr

or

X[c]= —p f [c(r)+pp(r)]d r (7b)

for systems like the OCP that require a compensating
background.

The HNC and SMSA EOS's as obtainai from the ener-

gy or from the virial pressure are identical. Denote by f,
the "virial" excess free energy, PF'"/N, and let

while Z,'" denotes the corresponding quantity obtained
from Eq. (4). The thermodynamic inconsistency of these
theories is refiected by Z, &Z„.

Consider also the following functionals of the pair
functions:

G = f g(r)[c(r)+pp(r)]dr,
2

The HNC and SMSA integral equations are obtained
from the Ornstein-Zernike (OZ) relation between the
direct correlation function (DCF) c (r) and the pair corre-
lation function (PCF) g (r) =h (r)+ 1,

h(r) =c(r)+p f h(
~

r —r'
~

)c(
~

r'
~

)dr', (1)

and the "closure" relations
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1.e.,
GsMSA

u"=8[c"],
Z„"= —,'X[c "].

(21)

(22)

GHNc —— g r g r —1 —1ng r r&0,
2

H = f h (r)dr&0,
4

L = (2~) f dk in[1 —pc(k)], (10)

The AHDL-DCF c" is obtained [via (17)] by solving the
variation equation

58 [c] (23)
5c (r)

for continuous functions c(r} which satisfy (19) and the
closure (3a). Alternatively, since the SMSA is obtained
from the MSA by imposing'

where the overtilde denotes Fourier transforms,

8 = —,
' {X[c]+c(r =0)],

and recall the "Ewald" identity '
u =8+6+—,

' . (12}

f„=u —6+H+L ——,',
Z„"=—,X+H —L + —,',

(13}

(14)

With the understanding that each functional is evaluated
subject to the appropriate closures (2} and (3), the follow-
ing relations hold for the HNC, '

(24)

g "(r &R")=0. (26)

we can find c" by solving (23) for a parametric function
(R being the parameter) satisfying (19), (3a), and

a8[c] (25)
aR

As part of the solution of the AHDL variational prob-
lem, we get the asymptotic exclusion region R corre-
sponding to

and for the SMSA, 's

f„=u +L ——,
' +F0,

Zex l~ I +1
U

(15)

(16)

In view of (24} the AHDL of the SMSA must be associat-
ed with the singularity for the MSA for the hard-sphere
potential, which occurs for total packing fraction,
r} [=(m/6)pR in three dimensions (3D)], equal to unity:
ri =1. Thus a general property of the SMSA is

where Fo is a finite constant and Fo ——0 for potentials
having Fourier transforms.

Finally, using the free-energy functionals given by (13)
and (15), the HNC and SMSA integral equations can be
expressed variationally by

R =2Qws, (27)

where aws [=(3/4irp}' in 3D] is the Wigner-Seitz ra-
1US.

From the mapping of the AHDL-HNC on the AHDL-
SMSA (Sec. V},we obtain

5c (r)
(17) c (r)+PP(r) &0, r gR (28)

The asymptotic high-density limit (AHDL), denoted by
superscript oo, is the limit in which the compressibility
tends to zero. For continuous {soft) potentials it is physi-
cally equivalent to the limit in which the excess free ener-

gy and the potential energy are both asymptotically equal
to the Madelung energy u~(p):

f„"=u"=limu =Pu~(p) .
P~ ao

(18)

A necessary and sufficient condition for the logarithmic
term I. to be real in the AHDL is

c "(k)(0
and, consequently,

J 00)o (20)

III. THE AHDL-SMSA VARIATIONAL PROBLEM

A. Direct correlation functions and Madelung energy

Inserting {18) into (15) using (3), (8), and (12), the fol-
lowing results are obtained for the SMSA:

Recall the general Ewald-type identity's

2
gr r r=8 + gr r+ r r

2

——,
'

(2m) D f [1+ph(k}]g(k)dk,

(29)

where g(r) is any function for which g(k) exists. Since
the exact PCF g(r) and structure factor S(k)=1+ph(k)
are non-negative (by definition), the choice P(r)=c "(r),
in view of (19) and (28), ensures that the AHDL-SMSA
Madelung energy is an exact lower bound to the true po-
tential energy of the system:

u&8[c ]. (30)

The AHDL-SMSA variational problem is, in fact, a
"best-bound" problem.

B. Green's-function potentials: The OCP

This "best-bound" problem has been solved for
Green's-function potentials, PoF(r), satisfying Pop(k} & 0:
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1
cop(r}

c "(r)
c "(0) (31b)

the overlap volume of two spheres of diameter R =Zaws
and separation r divided by the volume of a sphere of di-
ameter R =2aws, which equals

is the ("electrostatic" ) interaction between two particles of
separation r, when their "charge" is smeared uniformly
inside a D-dimensional sphere of radius aws centered on
each particle. The MSA for hard spheres was also solved
ln the AHDI. to give

C. Special features of the inverse power potentials

The inverse power potentials P(r)=e(o'/r), of which
the Coulomb is a special case, m=1, are homogeneous
functions, and thus a single isotherm or a single isochore
determines completely the excess thermodynamic proper-
ties. Using the reduced length x = r /aws we write
PP(x)=l /x, where I -Pp is the coupling constant
corresponding to the conventional plasma parameter
I =Pg /aws for m=1, so that u(P, p)=u(I') and
g(r, 13,p)=g(x, I ) Th. e AHDI. -SMSA solution has the
fotill

(40)

ai(r, R) =co(r/R),

e.g., in 3D,

1 —, (r/R)+ ——,(r/R)3, r &R
co r R

0, r&R . (32)

(41)

u "=a(m)I (42a)

where the finite and continuous function %(x) satisfies

4(x &2)=x™,4(x &2) &x

The thermodynamic functions are given by

Defining x =r/aws and the uniform smearing function
v

Z"=—a(m)I
lP

(42b)

p(x) = 1, ixi &1 D
0, [x[)1

with Fourier transform p, (k), e.g., in 3D,

iu3D(k) =3(sink —k cosk)/k, iM(0) = 1

(33)

(34)

c "(0)=2 a(m)1
D

X[c"]= a(m)I2m

D

(42c)

(42d)

we obtain

cPp(k)= —P(p(k)) Pop(k),

cBp(r)= —P J Pop( I
x—x

D

(35)

(36)

(KT ) jgjgi + 1 a(m)I (42e)

where a(m) is the Madelung constant. Relations (42b)
and (42e} are obtained from (42a) by using the general
properties of inverse power systems, namely

cocp(r) =

——,I 1 ——S r
2~ws

'5
1 r
6 2aws

1

2(r/2aws)
'

'2
S r+-

ws

r (2Qws

3

(38)

u = ——Ioo
10 7

where coD ——(2m) ~ /1(D/2) is the surface of a unit D
sphere.

For the 3D Coulomb potential (i.e., the OCP),
I3$(r) = I /x, we obtain

2
271 sink —k cosk

pc ocp k = —
kz k

and
2

(aT )„=1+—u+ — I"

while (42c) and (42d) then follow directly from (21) and
(22). Recall that these relations can be also obtained
directly from (42a) and (12) by applying the general dif-
ferential equation that relates the "virial" and "compressi-
bility" EOS's for the SMSA. '

The SMSA properties (42c) and (42d) can be obtained
directly from the variational statement (23}: The varia-
tional property of the solution c (x) implies that the
correct solution (i.e., the one with the correct lengthx"=2) may be sorted out from the function %(x) when
its length unit is scaled, i.e., %(x)~%(x/xo). The scaled
DCF must have [see Eq. (41)) the form

c "(r=0)= ——,I6 c "(x)= —I x,— %(x/x, ), (43)

X[c "]= ——,', I

4
+T virial io ~ ~ (39d)

where 4(t} is a finite and continuous function satisfying

%(t &1)=t, 4(t &1)&t™.
The expression for 8 then takes the form

where the difference between (39c) and (39d) is a manifes-
tation of the thermodynamic inconsistency of the SMSA.

8 [c"]=—x 0 I %(t)dt —x0™%(0)
0
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where for m g D (e.g., the OCP) we replace the integrand
%(h} by 4(h} —h .Optimizing 8 with respect to the
scale xo, dB[c ]/Bxo ——0, to obtain the correct x, we
fmd

(x")- = f V(h)dt, (45)
m D-~ll(0)

where again we replace the integrand 'P(h) by %(h) —h

for m &D. This relation is satisfied only when the func-
tion 4 is obtained from 4 by using the correct scale (i.e.,
x"). With the correct x" we switch back to the real
length, x = hx ", to find that (45) is nothing but

f (h) =1—5h'+5h' —h', (57a)

while for the 1D Coulomb potential, p(r)- r, we obtain

The AHDI. -SMSA variational problem is thus set to find
the best such bound (i.e., the optimized Ewald function,
one for each potential) among Ewald functions satisfying
(55b) and f ( h & 1)=0.

These SMSA-optimized Ewald functions are available
(from our general solution for Green's-function potentials)
for the D-dimensional Coulomb potentials satisfying
$(k) =k . Specifically, for the 3D OCP we use (38) and
(47) to get

X[c"]/c "(0)=m/(D —m), (46) f(h)=1 —h'. (57b)

which in view of (12) is equivalent to (42c) and (42d).
Equation (46) is valid also for m = ao (the hard spheres),
and together with Eq. (19) it was used in order to obtain
(3 lb).

D. AHDL-SMSA Ewald functions

A general way to construct scaling functions of the
form (43) is to use, instead of 'l(h), the "Ewald" function

All SMSA Ewald functions satisfy

DW(D)=D f, f(h)hD 'dh =2--D, (58)

they have a quadratic small-h behavior, f(h) —1=0(h ),
and they usually do not obey f(k) &0. The hard-sphere
overlap volume functions may be considered to represent
the m~oo limit of the SMSA. Using (32) and (47) with
m = ~ we obtain the hard-sphere Ewald functions [which
satisfy (58)], e.g. [and see (48)],

f (h) = ~II(h) +—ill '(h)
m

%(0)

having the properties

f(0)=1, f(h&1)=0, f(h &1)&0.
Defining

(47)

(48)

fHs-iD(h) = 1 h, —

fHS3D(h)=1 Th+Th3 1 3

fHs-5D(h) =1—"h+ ' h' —' h'

fHs 2D(h) = [arccosh—h(1 h) ——]=2 2 1/2

(59a)

(59b)

(59c)

x/xo
%(x/x, ).= f f (h)h 'dh,

W(m)

0'(0) =1/m W(m),

(50)

(51)

xo DW(D}8 [c"]=I
2(m —D) W(m) 2m W(m)

(x ") =DW(D),

a(m) = D(x")
2m (m —D}W(m )

(53)

Note that when f(h) is the customary Ewald function
g2f(h)=e ', relation (50) corresponds to the well-known

theta-function transformation.
With any Ewald function f ( h) having the properties

f(h) &0, f(k) &0, (55a)

W(m) = f f (h)h 'dh,

we obtain, after some algebraic manipulation, the follow-
ing expressions that hold as they stand for either m &D
orm ~D:

4 2=1——t+
3m

(59d)

Unlike the SMSA results for soft potentials, these HS
Ewald functions contain only odd powers of h. Having
the convolution property f(k)-[p, (k)] they satisfy (55a).
The property (55a) ensures that each of the functions (59)
satisfies (56) for every inverse power potential for the ap-
propriate dimensionality. In contrast to the SMSA func-

f2tions, the usual Ewald function e ' satisfies (55a} and
(56) for the inverse power potentials for every dimen-
sionality. The SMSA functions provide, however, much
better bounds (see Sec. IVB). The bound (56) represents
the structure-independent part of the Ewald summationio
(or integration). In addition to their significance as
representing the AHDI. DCF's, the SMSA Ewald func-
tions should have interesting consequences in the context
of lattice summations, as generating optimized "theta-
type" transformations.

When solving the HNC equation for an inverse power
potential in strong coupling, I &&1, we expect that the
"Ewald" function

or

f(h)&0, 4'(k)&0, (55b)
f(x)= e(x)+—c'(x) c(0) (60)

u,„,&a(m)I (56)

expression (54) provides an exact lower bound to the true
potential energy of the inverse power system, will be a slowly varying function of I . This refle:ts the

slow variation of the basic length given, e.g., by the posi-
tion, xi, of the first peak of g(x). This feature should be
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of help in the numerical solution of the HNC
equation.

Ng
' employed this idea, implicitly using the e ' Ewald

function. It is interesting to note that the "length scale"
found by Ng from a numerical fit of his HNC-OCP data
compares very suggestively with our expression (53) when

—Xevaluated for the e ' Ewald function:

(xc)Ns ——1.08, (61a)

(x")p
'

(sp) ——[—,I'( —,)]+' =( —,i/ir)' = 1.10 (61b)

(compare with the discussion of Gaussian "smearing" in
Ref. 26}.

IV. PAIR CORRELATION FUNCTION IN THE AHDL

A. General analytic form and the approach to the AHDL

Certain general relations may be established between
the PCF g(r) and its Laplace transform (LT). We focus
attention on 30 and consider

G(s)= f rg(r)e "dr .

The structure factor given by

$(k) =1+ph(k) =[1—pc(k)]

may be expressed as

S (k) =1+ Im[G (s = —ik)]
k

by using the relations

h(k) = J rh (r)sin(kr)dr,
k

h(r)= f kh(k)sin(kr)dk
2 r

J kh(k) . dk .
2 r 2l

The inverse LT of (62) gives

(64)

(65)

(66)

i'd+5
rg(r)= . I G(s)e'"ds = g residues of G(s)e" at poles of G(s), s =sj .

2&l —i co+S
J

The pole at s=O gives g (r) =1 so that

h (r)= —g residues of G(s)e at poles of G(s), s =st+0= g h'J'(r) .1

J J

(67)

Since h(r) is real, the poles come in complex-conjugate
pairs

for the hard spheres,

(75)
sj~ = —Cx~+lpt& cg&pj )0 . (69)

Denoting the residue of G (s) at the poles s =sj. by

8J ——8~"+i3J', (70)

and defining

R

tan8& ————,, AJ
——2B& /sin8i,gr' J J (71)

and find [for s in units of (2aws) ]
—1

lim GsMsz(s) = limGpvHs(s) .
p~ e~O

The limit e~O of the LT, Gc(s), can be calculated direct-
ly from the hard-sphere Ewald function f(t) without
resort to the detailed solution of the PY equation. For ex-
ample (see Appendix A), in 3D we denote

f(s}=f, fHs-iD(t)« "«- (76)

we write

h'J'(r)=AJe J sin(pjr+8 )/r .

Let us choose the indices j such that aj «a~+~ with

(72)

1 sf(s) 1/s 1 —s(s+1)
12 f(s) f(s} 12 (s+2)+(s —2}e'

The poles of Gc(s) give the AHDL of the poles of the
SMSA solution G(s):

+
sT = —txi+tpi (73)

denoting the pole nearest the imaginary axis. The asymp-
totic large rbehavior of g-(r) is governed by h'"(r).

Recall that the SMSA PCF is obtained from that for
the corresponding MSA PCF g(r/R, p,p, rt) by invoking
il(p, p) as obtained from (24}. Denoting e= 1 —il, then the
limit e-+0 of the SMSA solution for any potential has the
following form in 3D,

lim sj
———+iq&,

P~ eo
(78)

where the qj are the zeros of the Fourier transform (t'1')
of the hard-sphere Ewald function [i.e., the zeros of @{k}].
Likewise, the residues AJ of Go(s) give the AHDL limit
of those for the SMSA.

The 3D results are as follows: The zeroes of p, (k) are
given by the solutions of the equation

G (s)=Go(s)+ e'Gi(s)+ e'G4(s)+ (74} tan(qJ }=qj

where s is in aws units "and Go(s) is the leauhng term
in the e~O limit for the MSA (i.e., Percus-Yevick) result

and, in particular,

q i
——4.493 406. . . .
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r ~

pg ——qj+bje ',
aj —a&e —-8JJ

(83)

(84)

where rj and gj are universal constants, independent of
the potential. The analytic SMSA solution for the OCP
(Sec. VI) gives

pj 3

J ——6,
(85)

(86}

independent of j, with a&-qj. The SMSA AHDL solu-
tion for the inverse power potentials in 3D is' '

(87)

which, in view of (86), implies

a)"—1/I . (88)

This result is important for the analysis of the AHDL
HNC.

The behavior of aj, and of a& in particular, determines
the contribution of the functional H to the AHDL-HNC
EOS. From (9), (68), and (72) we obtain

H=+ f 4nr h (r)dr
4 0

From Appendix 8 we obtain [for r in (72) given in units

of aws]

11Hl A SMSA 2
q g cg)1+q)

J 3 J 2 J
p—+ co

and, in particular,

A ]" ——3.144. . . .

For very small, but nonzero, values of e, we should have

As long as a, is small but nonzero, the PCF h(r) de-

cays exponentially for large r in a way dominated by the
first pole s~. In the AHDI. , when a~~0, which is a
singular point for the theory, the solution "blows up": In
the SMSA and PYHS the singular point occurs for e=0,
where all aJ vanish simultaneously and all poles contri-
bute to h (r) at all distances. This picture, but without the
details, has been already discussed by Wertheim in con-
nection to the PYHS. The relation between the stability
of the HNC solution for the OCP as determined by a& has
been discussed by Ng. ' As we show below, nearly all the
details of the AHDL-SMSA apply also to the AHDL-
HNC.

B. Madelung energy

P( r) =—f (t, (s)e "ds,
r

and using (62) and (94), we obtain

(95)

The exact analytic solution of the AHDL-SMSA varia-
tional "best-bound" problem can be obtained, at present,
only for Green's-function potentials. An exact analytic
expression for the Madelung energy is available, however,
for any potential and for any number of dimensions, via
the solution of the corresponding AHDL problem for the
hard spheres (i.e., the PYHS result):

u =)im zPp f gpyHg(r/)(, q)P(v)dr . (94)
q-+ ]

By analogy with the 3D calculation in Appendix A, we
can relate Gc(s) to fHs(t) for any D, through which the
3D expressions, given below, can be generalized.

In 3D we write

=~pea;AJ f sin(p&r+e;)sin(pJr+ej)e
' '+ J'dr .

0 u sMsA g f Go(s)4(2s&ws )ds
(2&ws)'

(96)

(AJ" )
H =limH= —,', g aj"(I )

(90)

(89)

The leading contribution in the AHDL is due to the "di-
agonal" sin2p;r terms, so that we finally get

In particular, for the inverse power potentials ( m & D), we
obtain, for the Madelung constant,

a(m) = 1 (s +2)s ds, (97}
2 (m D) o (s+2—)+(s —2)e'

while for the OCP (m= 1), we get

For the SMSA we obtain [in view of (88)]

(91)

a(1)=61im Go(s) ——1

s-+0 S
(98)

and we shall consider this result for the HNC in the next
section.

Following the analysis of Verlet, ' ' we expect that the
position of the peaks of $(k), kj '", follows the approxi
mate relations

I mRx P (kBlax) 1/ (92)

The SMSA result for the OCP and the PYHS solution
satisfy the following relations (for k and a in units of
~ws):

The results in one dimension are special because

00 00~ SMSA ~ exact

In 10 we define

P(r)= f P(s)e "ds,

and obtain the general result

" ((()(sp)+ SMSA P e' —1

(99)

(100)

(101)

lim kj. '"=q~, lim $(k~ )aj-1 .
P~ 0O p~ co

which takes the following form for the inverse power po-
tentials:
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60 ——lim 60——0 .
p~m

(122)

cp (x, I ) = lim cp(x, I ) = —I QHNc(x),r~ oo
(123)

To simplify expressions, we define x =r/aws and
proceed with the analysis as applied to inverse power po-
tentials PP(r)=I /x T. he Madelung behavior in the
AHDL implies

originate froin the long-range nature of h (r). Indeed, for
small h(r) we have

6 = f g(r)[g(r) —1 —lng(r)]dr=+ f h (r)dr=H,

(134)

and the 1/I behavior of ai [Eq. (88)] is responsible for
(131). A specific expression for H is thus given by (90).
Equation (134), i.e.,

where

PHNc(x }&x

yHNc(x) =x™,x &xp

(124a)

(124b)

aG=G /I'= lim (6/I )= lim (H/I')=H" /I =aH,r- I ~oo

(135)

and it is the inequality (124a), i.e., the inequality in (2),
which gives (112), i.e.,

immediately implies [in view of (18) and (13)]

lim (L/I )=L "/I =0.
r (136)

—r[x +&HNC{x)]
g "(x &xp )= lim e " =0.

I ~co
(124c) The above situation that leads to (134) also yields

&0 =&sMsA =2

PHNc(x }= |l'sMsA(x)

(125)

(126)

which then implies that (124a) also holds for the SMSA,
we must have the following HNC properties:

To have the mapping of the AHDL-HNC on the
AHDL-SMSA, i.e.,

—,'gi" = lim —+ f g(r)[g(r) —1 —lng(r)]dr= H", —
I ~oo 2

(137)

so that from (119) and (120) we Anally obtain the desired
results (128) and (129).

On the other hand, let us start from the discussion in
Sec. IV, from which we have that

g (x, I ) —1 —lng (x,I )

I ~oo I ~oo I X PXp

(127)

a~ ——H" /I (138)

originates from the long range of h(r). It then follows
that

lim u =u "=8 [cp"],r (128)
lim (h,„b,/I )= lim (g,„b,/I )=0r r (139)

lim (6/I')=aG &0 (case 8},r-~ (131)

with aG ——const. Dominant AHDL contributions to G
can come from either terms of the type g,„h or from the
long-range decay of h (r). 6 is the width of the first peak
and g,„ is its height. Considering the energy integral

u = —,
' I f g(x, I )x x dx, (132)

0

then, in view of the Madelung behavior u" =a(m)t, we
must have

lim g „A=const .r (133)

Let us now first assume that (127) holds. Then, from
(133},we find that the constant aG ——6 /I of (131)must

lim Z„'"=Z„"=—,'X[cp" ] .r~ ao

In Ref. 23 we started with the assumption

lim (6/I')=0 (case A),r
and it readily followed that in view of (112) and the in-
equality in (110) we get (127). In turn, in view that
H" &0 and L"&0 we should, because of (18), also get
(128) and (129).

The analysis in Sec. IV A and, in particular, the SMSA
result H" —I', prompts us to consider also the possibility

and [in view of (133)]

lim [g(x, l )/I )=0 .r (140)

Since limz p(g lng) =0, then we also obtain (135). From
(135) and (134) we may consider the short-range (SR) con-
tribution to 6,
lim (Gs„/I )r

D= lim
I -+co ND2

X f [g(x)—1 —lng(x}]dx=0 .g (x)

(141)

Since in the HNC theory both g (x) and g (x)—1 —lng (x)
are non-negative, the only possibility of satisfying (141) is
by use of (127).

In either case A, Eq. (130), or case 8, Eq. (131), for
which we need (127), our analysis predicts that
(125)—(129) and (also see Ref. 23) (74)—(85) are all valid
for the AHDL-HNC as well as the AHDL-SMSA. For
case 8 we also obtain (86)—(91). Note, however, that the
coefficients bz and a~ in (83) and (84) need not be the
same for the HNC and the SMSA. The HNC e expansion
is obtained by inverting the relation xp(I ) and using it to
express the HNC solution in terms of xp while using (in
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3D) @=1 —(xo/2) . ro is the HNC analogue of the
SMSA parameter R. This expected general similarity of
the HNC and SMSA suggests, in view of the SMSA result
(88), that case B, namely aj.—1/I, is the actual HNC
behavior.

Thus, the virial (energy) EOS of the HNC and SMSA
theories are identical in the AHDL:

The AHDL expansion for the other thermodynamic
quantities readily follows from (11), (12},(15), and (16).

In order to see the connection between the P%' solution
and our general result (31a), take the limit y~(c for
fixed i) & 1, and obtain from the PW DCF the following
expression:

~HNC ~SMSA ~

in general, and

(m) (m)
HNC=SMSA

(142a)

(142b)

c "(r) . c(r)= lim — =f(r) = '

l ly y y r,

g~(r) = 2+ —(1 ri) r —4r—tr
5

(146)

for the inverse power potentials. There is a difference in
the compressibility EOS due to the contribution of X& to
the HNC 13(dP/dp) T:

+(2ri+ri )r —,'ri r— (147)

=X[CO" ]+Xi"= a(m)I —2aH I,P 2m

ap, D
(143)

Note that f(r) can be written as

g( r) =P„„(r)+g„(r)+g„,(r), (148)

5

108

' 1/2
108
I

' 2/3

(144)
1 108

Inserting this expansion into the MSA expression for the
potential energy, Eq. (C9}in Appendix C, we obtain

u (I ) =uMsA(1(l ) I )
1/2

= ——I +39 I
108

1 r+
15 108

' 1/6

+O(1 —1/6)

(145)

where a(m) is the HNC (SMSA) Madelung constant. It is
of interest to investigate whether for some m & D (in view
of the above expression) the HNC inverse compressibility
vanishes, for a purely repulsive potential, at some finite
r=r, .

It should be noted that we could not find anything in
the SMSA theory that would imply (28) a priori In ord. er
to obtain it, we needed the mapping on the AHDL-HNC.
From its relation to the Onsager bounds for Green's-
function potentials, we know that the AHDL-SMSA does
obey (28}, and (30) always holds in practice. This may be
of help in a search for a rigorous proof of (127).

VI. HNC AND SMSA THEORIES FOR THE OCP

A. Exact analytic solution of the SMSA

The exact solution of the MSA for charged hard
spheres in a uniform neutralizing background was given
by Palmer and Weeks (PW). With r in units of the
hard-sphere diameter d, d /a ws

——2''/, y =I'/2''/,
x=(24riy)', the OZ equation (2} was solved for the
MSA closure c(r & 1)= y lr and g (r & 1—) =0. The
solution, quoted in Appendix C, also gives the PYHS re-
sults upon taking the limit y =0 for fixed ri. The SMSA
is obtained from the MSA solution by equating the linear
term in c(r &1) to zero, i.e., M=O in Appendix C. The
resulting function e( I')=rt(1 ) —1 has the following
AHDL expansion:

' 1/6

(~) 108
I

where, for r & 1,

f„„(r)=rl (
—", 4r +3r— —', r )—,

g (r)=(1—ri} (2—r},
g~(r)=ri(1 —t))(4—4r +2r ) .

(149a)

(149b)

(149c)

P =fp(q &)=q —qp & +3

0;-=O(e ),
a . =-O(q; ),

21+q;
Ag= 3qI 2 +QgE +

(151b)

(151c)

(151d)

(151e)

These functions are (respectively) the volume-volume,
surface-surface, and volume-surface electrostatic interac-
tions between two spheres of diameter 1, each having a
charge 1 —i) uniformly spread on the surface and a charge
i) uniformly spread in the volume. This result for the
charged hard spheres is a special case of our general solu-
tion ' of the AHDL for hard objects with embedded
charge distributions associated with arbitrary Green s-

function potentials. The limit y~ao for fixed ran&1 in

the energy expression gives

u "(rI,I )= — 1+rl — y=- 1+r] rl /5—
5 2n'" I, (150)

which is easily recognized as representing the Onsager
energy of the system of charged spheres described above.
This simple electrostatic interpretation of the PW solution
is also a special case of our general result for charged
objects. i' To see the role of (24}, note that
Bu "(rl, l )/()rt ~r gives 7)"=1 and u"= —0.9I. With
i) = 1, Eqs. (146) and (150) give (38) and (39).

Detailed analytical investigation of the pole structure of
the PW G(s) involves very tedious algebra in view of the
e dependence of a;. This means dealing with expansions
up to at least sixth order. From the nature of the expan-
sions we could establish, however, that the SMSA-OCP
obeys the following type of scaling when we use the
SMSA e(I ) to express the structure in terms of e only:

a;=f (q;,e)=a e + (15 la)
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where f and fp are universal (independent of j) func-

tions of q; and e. The detailed analysis was performed
numerically by calculating the poles of G(s) and its resi-

dues as functions of e and I. This is why we cannot

quote exact numbers for the coefficients a,a~,az . Ap-

proximate numbers can be obtained from the figures in

the next section.

numerical solution of the HNC for the OCP (up to
I =7000) as obtained by Ng. ' We first list the features
and numbers which (according to our analysis above)
should be the same for both HNC and SMSA, and for
which the HNC data are available: '

B. Comparison between the SMSA and HNC
theories for the OCP

In this subsection we compare the results from the ana-

lytic solution of the SMSA with those obtained from the

o(r),
p, -4.4934. . . + o (r-'"),
A i ~3.144. . .+O(I" ' ),
xo,xi~2+0(1 '

)

(152b)

(152d)

I ~10

4 3

I I

0.01 0.02 0.03

FIG. 1. Residue of 6 (s) at first nonzero pole (see text). The HNC data are froxn Table III of Ng (Ref. 31), and the line serves only

to guide the eye.
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10000 3000 1200 800 60Q 400

0 0.01 0.02 0.03 0.04 0.05

FIG. 2. Imaginary part of first nonzero pale of G(s), p~, and position of first peak of g(k), k
~

'" (see text). The HNC data are
from Table III of Ng (Ref. 31), and the line serves only to guide the eye,

(152e)

(152f)

where x, is the position of the first peak of the PCF
g(x, l ), and xo is the position of the first zero of the
HNC g(x) —1 —lng(x). The results presented in Figs.
1—6 are in complete agreement with our predictions.
Bearing in mind the interconnections between these many

predicted qualities, the way they are borne out by the
comparison in the figures can leave little doubt as to their
validity. The reason for this appeal to the numerical data
is the fact that our analysis is not strictly rigorous in the
mathematical sense, and highly nonlinear equations may
have surprises in store.

Finally, with the help of Fig. 3, we can now estimate
the HNC-AHDL correction to the SMSA compressibility

7000 3000
1

1200 800 600 500
I I

4QO 500

300 400

200

0.01 0.02 0.03 0.04
200

FIG. 3. Real part of the first nonzero pole of G(s), al, and "phase shift" 81 (see text). The HNC data are from Table III of Ng
(Ref. 31), and the line serves only to guide the eye.
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10 75x10 7000 2000 600 200 100
I

0.1 0.2

-1/6
0.3 0.4

FIG. 4. Position of the first peak of g(x), x& (see text). The HNC data are taken from Ng (Ref. 31), and the line serves only to
guide the eye.

75000 7000
I I

1000 400 200
I I I I I

1.6

0.1 0.2
-1/6

0.3 0.4

FIG. 5. Position of the first zero of the HNC g (x)—1 —1ng (x), xo, and the hard-core parameter for the SMSA, R. The HNC
data are from Ng (Ref. 31), and the lines serve only to guide the eye.
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7000 3000
I I

1200
I

800 600
I I

400

1.2

0.895

0.890

0.885 0.01 0.02 0,03 0.04 0.05

FIG. 6. Potential energy u and value of DCF at the origin, c(0) (see text). The HNC data are taken from Ng (Ref. 31), and the
lines serve only to guide the eye.

EOS. From Fig. 3 we find

(a i)SMSA g (+1)»c3

From (90) and (151) we find, for the SMSA,

(153)

3 (&i") qi
(2uH )SMSA =— g =0.013,

8 ral" 1~1 qJ
(154)

so that the HNC result is estimated by

(2 „)»,=-0.011. (155)

C. Comments on the numerical analysis
of the HNC data

The general similarity between the AHDL-HNC and
the AHDL-SMSA results for the OCP, in full agreement
with our general analysis of these theories, sheds light on
the problematics associated with the direct numerical
analysis of the HNC data when performed without resort
to basic theoretical analysis. To be specific, consider the

Unfortunately, Ngi' did not present results of the HNC
compressibility EOS. Our estimate (155) is in ~ood agree-
ment with more recent unpublished HNC data. @"

The main difference between the HNC and SMSA re-
sults for the OCP is the general shape of the PCF g(r).
The HNC g(r} is always non-negative, while that for the
SMSA attains negative values for large I' starting at
I -400. The SMSA result lacks all the interesting
features discussed by Ng. ' These points will be discussed
elsewhere.

two quantities u(1 } and xi(l'}, which are expected to
give limp „u(I )/I = —0.9 and limz „x&(I')=2. For
the sake of argument, we assume that the HNC data, for
I & 7000, is of absolute accuracy (i.e., exact).

(a) Ng
' fitted u(I') for 100&I &6000 by several dif-

ferent polynomials and rational functions of various in-
verse powers of I with three to six parameters, with the
obvious leading behavior a

&
F+a2I' . All his numerical

fits indicates that u (I ) is a very smooth function of I in
that region with a limiting value of ( —0.8995+0.0002)I'.
It is to be noted that inserting in such fitting schemes the
SMSA values instead of the HNC results, we also cannot
retrieve the exact value of —0.9 unless we use the exact
AHDL expansion form and we maintain an appropriate
number of terins (depending on the range of values for I ).
In Table II we compare the HNC and SMSA results and

0
0.01
0.05
0.1

1

5
10
40
60
80

100

~SMSA ~ HNC

r
0
0.0001
0.0022

—0.001
—0.037
—0.01927
—0.01176
—0.003 14
—0.001 83
—0.001 25
—0.000794

200
400
600
800

1000
1200
2000
3000
4000
5000
6000

~SMSA ~HNC

0.000041
0.000 392
0.000433
0.000413
0.000 378
0.000 344
0.000237
0.000 151
0.000090
0.000040
0.000004

TABLE II. HNC and SMSA potential energies for the OCP.
The HNC data for I g 200 are from Ng (Ref. 31) and those for
I & 200 are from Ref. 36(b).
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find no indication (in the general trend of the difference)
that limr- (iiHNc —usMsA)/I W0.

(b) The general difficulty associated with the asymptot-
ic nature of the expansion is much more pronounced in
the case of xi(I ). In Fig. 7 we present the data of Fig. 4,
but on the I ' scale. It is evident that in the region
1 ~ 6000 both the SMSA and HNC data suggest a fit of
the form C, +C2t ', with Ci —1.8, in contrast to the
correct picture given by Fig. 4.

(c) Finally, any method of numerical solution of the
HNC (and for that matter, of the SMSA as well) must en-

counter, as I'~&1, the problem associated with a)~0.
Any numerical method can work only in a finite region of
x, x ~R, . %Then the true a1 approaches the value

a) —1/R„ the truncation error makes the solution unreli-
able. Ng used a 4096-point mesh with separation
be=0.025, i.e., R, -100. Considering Fig. 3, we expect
his results for I &6000 to be accurate, while his scheme
must break around I -30000. This is still a relatively
small I if we consider the behavior of x, in Fig. 7.

VII. SUMMARY AND IMPLICATIONS

We continued the line of study of Ref. 23 and con-
sidered aspects of the SMSA, HNC, and PYHS theories.
We found that they all share the same AHDL Go(s), with
similar pole structure that determines the EOS in strong
coupling. The scaling properties of the inverse power po-
tentials as borne out by the AHDL-SMSA variational
problem led to the introduction and analysis of the SMSA
Ewald functions. The relation between the SMSA Ewald
functions and the AHDL analytic structure of the SMSA,

~(D+3}/2 p —(D+3)/[3(D+1)] (156a)

aJ— -I[3(D—1)/2 —1

c (0)

g ( co ) ~(D+3)/2 I —{D+3)/[3(D+1}]
J

p-2/f 3(D+1}]

P ( )
(D+3)/2 —I (D+3)/[3(D+)))

(156b)

(156c)

(156d)

(156e)

Note that in these relations the, e.g., I dependence of e is
used to express the solution entirely in terms of e, with the
length reduced by aws. For the PYHS we use the hard-
core diameter as the length scale and the solution is given
entirely in terms of e. Generalizing the 1D and 3D re-
sults, we expect

P, —Zq, -~( +""-1/g(1),
aj —1/c(0) —e +',

1/g(1) p( + )/2
J J

(157a)

(157b)

(157c)

where g(1) is the "contact" value of the PCF at r =d.
Note that the SMSA for the OCP follows g,„

HNC, and PYHS theories ~as considered, and the special
role played by the PYHS (overlap volume) Ewald func-
tions was clarified. Detailed analysis of the relation be-
tween the HNC and SMSA theories in the AHDL, and of
the significance of the 1/I' dependence of aj, was present-
ed. The comparison of the analytic SMSA results and the
numerical HNC data for the OCP provided an illustration
for the general picture.

Generalizing our results (in view of Sec. VI in Ref. 23),
we expect the following universal AHDL behavior of the
HNC and SMSA theories for soft interactions:

75000 10000
I I

800 600 500
I

~ HNC

& SNSA

'++as ~
1.81 - 1.79 r

0 0.05

FKJ. 7. Position of first peak of g (x } (see text and caption of Fig. 4}.
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-I'~3-e i. If the SMSA g,„always follows the
PYHS g(1) behavior e ' +", then g,„-i'~ will
hold for all D. The numerical HNC data for the OCP
suggests, however, g,„-I'~ for the HNC.

The nature of the AHDL behavior of the HNC theory
as revealed by our analysis should be related to the bridge
functions and their role in the MHNC scheme. ' ' Note
that in the "physical" fluid region, g &0.5, it is always
found that the HNC energies for repulsive potentials are
higher than those obtained from computer simulations, in
agreement with the short-range repulsive behavior of the
bridge functions. ' Yet, in the AHDL, the HNC potential
energy provides an exact lower bound to the true potential
energy of the system. This aspect of the bridge functions,
and, in particular, the relation between the HNC and PY
theories for hard spheres, should be clarified. It seems
that the universal behavior [Eqs. (156b) and (157b)] 1/c(0)
plays a key role in this proposed analysis. Another
feature that should be clarified concerns the details of
how the "Widom-theorem" behavior ' of the HNC
DCF's, involving an expansion in even powers near the
origin, turns into an expression that contains odd powers
[e.g., Eq. (38) for the OCP] when aj =0 (i.e., e=0 or
xp ——2).

Finally, we would like to point out the important con-
ceptual and practical implication of our results regarding
the Thomas-Fermi (TF) or the more general "atom-in-
box" models for the EOS of high-density matter.
Central to the TF or "atom-in-box" models is the "ion-
sphere" (IS) picture in which the properties of the bulk
material are approximated by those of a spherically sym-
metric "atom" of radius aws, with appropriate boundary
conditions for the electron distribution around the central
ion that should represent the effects of the many-body
correlations. The IS picture, although founded by the no-
tion of a Wigner-Seitz lattice, is introduced, however, ad
hoc. In the more refined density-functional theory'
(DFT) one considers self-consistent equations for the dis-
tribution of electrons and ions around the central fixed
ion. Although the ion contributions to the high-density
EOS are relatively small, it is mainly the ions which
determine, via the self-consistent equations, the effective
potential and boundary conditions for the electronic part
of the D&l problem. The IS picture is one physically
suggestive way to implement the ion correlations without
resort to the full self-consistency problem. What our re-
sults [and g "(r &2aws)=0, in particular] mean in this
context is the following:

Any Dt" I' theory of ions and electrons, in which the ion
distribution is determined by the c1assiea/ HNC Dk I, ap-
proaches, asymptotically for high densities, the corre-
sponding TF result of an isolated (electrically neutral)
sphere of radius a~s, with a uniform distribution of elec-
trons around the central ion.

In other words, the classical HNC theory builds the ion
sphere automatically in the AHDL, and there is no need
to introduce it ad hoe. The finding that the TF theory is
an exact limit of a full fledged Dl' I' should be of help in
the analysis of the boundary conditions, which represent a
central issue regarding TF-like theories. ' Our general
solution of the MSA for Green's-function potentials is

The author thanks H. E. DeWitt for stimulating
con ~ondence, and L. Blum for interesting discussions
and warm hospitality in Puerto Rico, where this work was
completed.

APPENDIX A: RELATION OF Gp(s) TO fHs(t)
FOR HARD SPHERES IN THREE DIMENSIONS

Using the OZ relation [Eq. (1)],the definitions

G(s)= J rg(r)e "dr, (A 1)

c(s)= J r c (r)e "dr,
0

and the PYHS closure, g (r & 1)=0, c (r & 1)=0, we obtain
(with r in units of the hard-sphere diameter)

G(s) =c(s)+—+12'—G(s)[c(s)—c( —s)],$2 S

(A2)

(A3)

or

c(s)+a /s

1+(12'/s)[c(s) —c( —s)]
where for the PYHS we have

a=1—p c r r= —e r=0
Using the definition

fHs(r) = lim [c(r)/c (0)],
q-+1

and recalling that lim„ ic (0)= ao, we obtain

Gp(s) = lim G(s) = f(s) —1/s

(12/s) [f(s)—f( —s) ]

1 sf(s)—1/s
12 f(s) f( —s)—

The 3D hard-sphere Ewald function
P

1 —2r+ 2r s r(1
fHS(i')= () „)1

gives

f„,(s)= ——e-'(4+4s+s )+ ———+S 1 3 12
~5 S2 S3 55

and when inserted into (A7) we finally obtain

1 s(s+2)Gps=
12 (s+2)+(s —2)e'

(A4)

(AS)

(A8)

(A9)

(A10)

APPENDIX B: RESIDUES OF 60($)

The poles of Gp(s) are given by [with s in units of
(2&ws) ']

SJ= =+I (81)

also relevant to these studies —specially for nonspherical
boundaries.
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where qj are the solutions of

tanqj- ——qj .

Using (Bl) and {82)and the trigonometric identities

cos(2qj ) = z, sin(2q}J =J 1+ 2' J 1+ 2

where the coefficients are

(1+2')) Q (1+q)Q»
(1 7—/) 4(1—7J )

(5+rl }»

60' (C2)

we write

(83)

1+qg
AJ

———,qj
qj

(86)

s+ 1 —q 2q.
e'& =

2 2
1+q& 1+qj

Denoting L(s)=s+2, S(s}=s—2, F(s}=L(s)+S(s)e',
F'(s)=1+(s —1)e', the residue of Go(s) at s =sj of (Bl)
is given by

sj+L (sj-)-2(1+q~ )=+)
12 F'(sj+ ) -qj 12

The contribution to h '1'(r) of Eq. (71) is

1+qj2
A) ———,qg (85)

When h (r) is evaluated as function of x =r/aws, then we
obtain an additional factor of 2 from d/aws ——2 (for
i) =1},and finally

U=- (1+q —i) /5) (1—g)Q
12' 12'K

(C3)

Q2

24'
(1+—,rl )

(1—il )
(C4)

6 (s) =sL (s)/12' [L (s) +S(s)e'], (C5)

where

L (s)=12il( Ms~+Ps—+»),

S(s)=s +Rs + —,'R s +12'(» —P) —12')»,
(C6)

The SMSA is obtained by finding i)(I ) from the solution
of M=O.

The Laplace transform of the PCF is (with s in units of
d —i)

APPENDIX C: THE PALMER-%'EEKS SOLUTION
OF THE MSA FOR CHARGED

HARD SPHERES (SEE SEC. VI A) (REF. 29)

The direct correlation function is given by

wi.th

1+2rl Q
(1—i)) 2(1 —rl)

(C7)

= —7'/x, x &1

K X
c (x ) =A +6rlM x + —,

' » x + —,g( A +» U)x +
x ~1
(Cl)

R=
1 —g

The Fourier transform of the DCF is (q is units of d ')

2

pc(q) = Aq (sinq —q cosq)+6i)M q [2q sinq —(q —2)cosq —2]+—
q [(3q —6)sinq —(q —6)q cosq]

6

(A +»~U)[{4q 24)q sinq —(q ——12q +24)cosq +24]
2

K+ z [(6q —20q +120)qsinq —(q —30q +360q —720)cosq —720]—yq cosq

and the potential energy is given by [compare with (C3)]

1/2
1 2 2 2(1—g)»

u (il, y) = — (1+rl——il )» +»(1+2')) 1 — 1+
24' (1+2')

K~—:—U
2
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