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Procaccia and Gitterman have suggested that the reaction rates of chemically reacting binary

mixtures are drastically reduced near their thermodynamic critical points and that this reduction is

responsible for anomalies observed in a series of experiments performed more than 15 years ago. A
more detailed analysis shows that this suggestion is untenable, that spatially uniform composition
fluctuations are not drastically retarded at thermodynamic critical points, and that spatially varying

composition fluctuations are at best slowed down over a small range of wavenumbers that will be

difficult to detect experimentaBy. A qualitative picture is provided by mean-field and Van Hove

theory. Quantitative corrections are obtained with use of renormalization-group techniques. At
small and large wavenumbers, the hydrodynamic modes most affected near the critical point are,
respectively, thermal and particle diffusion. The mode-couplings relevant in these regimes differ
from the mode couplings relevant at intermediate wavelengths where the critical slowing of a reac-

tion might be observable.

I. INTRODUCTION

Interest in the properties of chemically reacting systems
near liquid-gas or consolute critical points was rekindled
in 1981 when Procaccia and Gitterman' (PG) asserted
that the rates of chemical reactions might be drastically
reduced near second-order liquid-gas or phase-separation
critical points. They argued that this reduction would be
especially large in binary chemical mixtures, and suggest-
ed that it explained the anomalies observed in a series of
experiments performed by Krichevskii and co-workers.

In this paper, we present simple physical arguments
that modify this conclusion and restrict its domain of
relevance. Using the "Van Hove" or conventional theory
of critical slowing down, we show that at long wave-

lengths, the chemical reaction rate is only weakly
suppressed, at most as ( T —T, )a, where a is the specific
heat critical exponent, as the temperature T approaches
the critical temperature T, . It is the thermal diffusion
mode that is suppressed strongly as the wavenumber
k —+OandT~ T, .

This conclusion follows directly from the conservation
laws. However slow the chemical process may be, at suf-
ficiently long wavelengths its fixed reaction rate must
exceed the thermal relaxation rate—a rate that must van-
ish with increasing wavelength since energy is conserved.
As a result, in an "infinite" system, at long enough dis-
tances and times, the "microscopic" chemical and "fast"
sound-wave processes reach local equilibrium before the
energy. At longer times and distances, the appropriate
specific heat, or entropy density susceptibility, is
(Bs/B)T)„~. This specific heat diverges strongly at the
critical point and leads to the well-known slowing of heat
transport. On the shorter time scale appropriate to the
chemical reaction, the entropy and mass density are time-
independent. Thus, the susceptibility appropriate to the
"chemical concentration variable" is (Bcjap), ~ which
does not diverge. [When the reaction time is longer than

the time required for sound waves or boundary effects to
equalize pressures, this susceptibility is replaced by the
weakly diverging (Bc/Bp, ), ~.]

The situation is different at constant pressure at wave-

lengths shorter than a "crossover" wavelength, a wave-
length at which heat diffusion and chemical relaxation
take the same time. A "Van Hove analysis" identifies this
wavelength and predicts, in accord with physical argu-
ments, that at shorter wavelengths, the slowest mode—
which may in some sense be identified as a "chemical re-
laxation" mode —relaxes isobarically and isothermally and
is therefore strongly suppressed near the critical point.

As in other systems, long-lived fluctuations and non-
linearities modify the Van Hove analysis of the dynamics
and the dispersion relations of the hydrodynamic modes
of chemically reacting systems near their critical points.
To calculate the dynamic exponents, which differ in dif-
ferent wavelength regimes, we use the renormalization
group (RG). At the longest wavelengths, the coupling of
the slow heat mode to the velocity is relevant and the
dynamical modes of the system reduce to those of Model
H of Halperin, Hohenberg, and Siggia. At intermediate
wavelengths, where the slow mode is most closely related
to the chemical reaction rate, its coupling to a fast heat-
like mode leads to the behavior described by Model C of
Halperin and Hohenberg. This is the regime to which
the RG discussion of PG applies. Although their discus-
sion concludes correctly that velocity couplings are ir-
relevant, it incorrectly omits this relevant conserved-
energy-coupling. At shorter wavelengths, where the
chemical diffusion rate exceeds the chemical reaction rate
and it is permissible to treat the concentration as if it were
conserved, the system is once again described correctly by
Model H.

II. VAN HOVE THEORY

In the conventional theory of critical slowing down, the
dynamical extension of mean-field theory, the "hydro-
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—icof(k, co) = I (k)f(k, co) = I'(k)X '(k, t)f

—icof(k, co) —= Mf .

(2.1)

dynamic" equations of motion for the thermodynamic
"fields" f (e.g., the density, concentration, and entropy
density) and their conjugate "potentials, "

P (e.g., the pres-
sure, chemical potential, and temperature) take the form

5T

~k
P

k2
pT
—k r+ —kP 2

p p

5T

dT
Bc

4

5T

(2.4)

In these equations, I is the matrix of Onsager coeff-
icient, and X ' is the inverse of the susceptibility matrix
as a function of reduced temperature t. The cotnbination
M =— I'X ', is called the hydrodynamic matrix. The re-
laxation processes described by I are assumed to be
short-ranged and local—and therefore unaffected by
long-wavelength critical fiuetuations. In this approxima-
tion, which should be rigorous in more than four dimen-
sions, the singular dependence of the hydrodynamic mode
frequencies results entirely from the fact that two eigen-
values of X ' vanish as tr and t .

If, for convenience, we choose new variables f' = Af
to make X ' diagonal, and assume that X ' has one entry
that vanishes as t" (where y is the susceptibility ex-
ponent), it is easy to see that the smallest eigenvalue of M
is suppressed to zero as t ~ 0. Clearly, some eigenvalue
of M goes to zero, because det M ~ 0. Moreover, as we
recall from degenerate quantum mechanical perturbation
theory, a perturbation between two nearly degenerate lev-
els that cross as a function of a parameter leads to a
"repulsion" that eliminates the crossing. In this
mathematically similar problem, it is the smallest eigen-
value of M (at each value of the wavenumber) that is
suppressed as t ~ 0.

The binary system discussed in PG contains six hydro-
dynamic degrees of freedom —the chemical concentration
difference, c, the entropy density, s, the mass density, p,
and the velocity, v. Since the transverse components of
the velocity are uncoupled, the 6 X 6 matrix that de-
scribes the linear hydrodynamics of the system can be im-
mediately reduced to a 4 X 4 matrix. %hen the ordinary
sound mode, to which the density and longitudinal veloci-
ty give rise, is much faster than the nonpropagating (dif-
fusive and reacting) modes, they can also be eliminated,
leaving a pair of equation= the conservation law for s,

5p 5c Bp
Bc

(2.5)

where the deviation of each thermodynamic variable, x,
from its equilibrium value is denoted by 5x, and where

~eq = —Peq = 0

III. STATIC SUSCEPTIBILITIES

B(T,p)=
5(., )

= BT Bp
Bs Bc

Having identified 5s and 5c as the important degrees of
freedom, and the derivatives at constant pressure in Eq.
(2.5) as the appropriate susceptibilities, we can make con-
tact with the rules of Griffiths and Wheeler (GW). These
rules relate the divergences of thermodynamic derivatives
to the orientation and position of the coexistence surface
(CXS) and critical line (CRS) in "thermodynamic poten-
tial" (T,p, p) space.

Suppose that the CXS is not exceptionally oriented.
Then, the rules of GW require that all elements of X
vanish "weakly" as the CRS is approached, while
(BT/Bs)„, etc., vanish "strongly. " In other words, in a
notation suggestive of the ferromagnet, with distance
from the CXS denoted by h, and distance along the CXS
from the CRS denoted by r, the uantity (BT/Bs),
behaves as t for h =0, and as h~~ for t =0, while
(BT/Bs)„behaves as tr for h =0, and as h' "~s for
t =0.

The determinant

s
pT = —V.q,Bt

(2.2)
BT Bp,

Bs, Bc
(3.1)

and the equation for c in which the conservation law for
the mass of each species is violated by the chemical reac-
tion

vanishes "strongly" times "weakly. " Two simple changes
of variables diagonahze X ' and display these thermo-
dynamic divergences manifestly. If we let

Bc
p = —V~+prA.

Bt
(2.3)

Bs
5c —= 5s —q5c

Bc

In Eqs. (2.2) and (2.3), q and i are entropy and concentra-
tion currents, A (or —p) is the affinity, and r is related to
the speed of the chemical reaction.

Expanding the currents with the aid of the constitutive
relations and the Onsager relations, we obtain

5c, =5c—

we obtain

Bc
5s =—5c —g5s,

Bs
(3.2)



1998 SCOTT T. MILNER AND PAUL C. MARTIN 33

+Sr,C

s

+S C (3.3)

Aside from exceptional cases, g and 2) are finite on the
CRS; in fact, AT) ~ 1. The two changes of variable are
regular at the critical point.

From either diagonal form of X ', we can construct a
field theory of the thermostatics and fluctuations with the
exponents anticipated by GW. In mean field theory
(Mi i'}, we have

~ ~'

aT
(k, t) = (k =O, t =1)BT

Bs Bs

liquid-gas transition, but with molecules "colored" red or
blue. The "coloring" is pedantic and does not affect the
microscopic Hamiltonian in any way. Hence the coex-
istence surface and critical line in (T,p,p, ) space are just
the coexistence line and critical point in (T,p} space
translated parallel to the p-axis and g=0. Consequently
X ' is already diagonal, both (BT/Bs)„and (BT/Bs),
vanish strongly, and both (BIl/Bc), and (BIl/Bc)r are fi-
nite at the critical line. The concentration variable, t.", is
irrelevant.

It is more difficult to find a syinmetry that even
"pedantically" leads to the other exceptional case (men-
tioned by PG) where s is "irrelevant" at a phase-
separation transition for which c is the order parameter.
If there were such a system, with 21 =0, its specific heat,
Bs/BT, would be finite, while Bc/Bp, would diverge
strongly. Its CRS would be parallel to the T-axis.

IV. MODE FREQUENCIES

In this section we calculate the two mode frequencies,
accessible to scattering experiments. In the Van Hove ap-
proximation, the calculation reduces to a simple eigen-
value problem

det (M —icoI) = 0. (4.1}

B}tl

Bc
L

(k, t) =
C

(k =O, t =1) t +
A

(3.4)
If we set r —= it0, we expect to obtain two positive real
roots, r& and r&, to the equation

where A is some microscopic cutoff. If we introduce the
scaled variables

0= r —rtrM+ detM,

with

(4.2)

and

qr =Sr
S

C

(k =O, t =1)

~ 1/2

(3.5)

detM = r r = detI detX

k r+ —k~
pT p

(k =O, t =1),
A I /2

. T

we can write a free energy that includes all the relevant

couplings

pF= fdxw- ,

+~2~ + '+yq~ +u~ . (3.6)
(q )2 2 q 2 4

2 2 2 '2 4t

In Mi'i', the inverse square coherence length g is given

by x = tA . This expression agrees with the 6%' picture
with the following identifications:

p

trM =r& +r
y k2 BT

pT Bs

BT
BC

BT Bp,

Bs Bc

+ r+ —k
p

Bp
Bs

Bgl

Bc

(4.3)

(4.4)

(cc) = X, = n =1 ferromagnetic susceptibility,

(s,s, ) = X, = specific heat,

(ss) = ((s„+v]c)(s„+pc))
= (s„s„) + i)2(cc) .

Two "exceptional eases" are worth noting. Consider
first a single-component system undergoing an ordinary-

det M det M &( 2~+

The roots, which are not simple power laws, define several
length scales independent of t and k:

(1) The first of these scales is related to kc, defined by

We note that det M vanishes "strongly" times "weakly, "
(i.e., as t"+ ) while tr M vanishes "weakly" (i.e., as t ).
We can therefore make the approximations

r& ——tr M —r& ——tr M + O(t"),
(4.5}
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TP'
r =— —— kc,

P H'
(4.6)

or r{Bp/Bc), = (a/p)(Bp/Bc), kc. Since the equations

Bp
Bc

I

(4.7)

a p
p Bc

(4.8}

describe a chemical relaxation time and chemical dif-
fusion coefficient, kc identifies the length scale at which
local chemical relaxation and chemical diffusion are
equally effective. For k «kc, local relaxation of 5c by
chemical processes is faster than relaxation by diffusion;
for k »kc, diffusion dominates chemical relaxation. Of
course, since we expanded I {k) about k =0, we can only
use this estimate when it yields a value for kc that is
small compared to the microscopic length scale involved
in the expansion of I (k); if the definition yields a "micro-
scopic" value for kc in some system (because the chemi-
cal reaction is strong or particle diffusion is slow), particle
diffusion will not be seen in that system.

(2) A second length scale is related to kH, which is de-
fined by

trM = —+ DTk
1 2

7
(4.3')

det M = —+ Dk
1 2 BT y k2

Bs pT
(4.4')

For dense liquids, in which particle diffusion is impeded
while heat diffusion is not, f can have a value of 100 or
more. For a reaction rate of 0.1 MHz, a thermal dif-
fusivity of 0.1 cm /sec, and a particle diffusivity of
10 cm /sec, we have f = 10, kH ——10 cm ', and
k& ——10 cm '. Even under these conditions, the
"window" only includes two wavenumber decades.

{3) A third length scale is related to kr, defined by
kt ' ——cr (where c is the velocity of sound and ~ the re-
laxation time away from the critical point}. The 2 X 2
matrix analysis above was restricted to k»kt. For
k &(kt, the argument in the introduction applies and the
reaction rate, r(Bp/Bc ),z, is unaffected by the phase tran-
sition.

For a sound velocity c = 1000 m/sec and
r ' = 0. 1 MHz, we have kr = 1 cm '. As in the case
of kc, we should recall that hydrodynamics applies only
when the mean free path, L t~, satisfies

fp (( Lp = kp . Tlius for L tt = 10 cm and
c = 1000 m/sec, "nonlocal" hydrodynamic phenomena
have no effect on the local energy and particle density for
reactions with time constants shorter than a picosecond.

In terms of these diffusion and time constants, Eqs.
(4.3) and (4.4) take the form

y P a
PT P P

—2g —+ 97l— dT 2 Bp
kH —= r 4.9

whence Eq. (4.5) becomes

Ordinarily, heat diffuses more rapidly than particles, i.e.,
both tip/p and tea/p are smaller than y/pT. Thus, the
length kH, which is related to the thermal diffusion coef-
ficient,

by

T

y aT
pT Bs

1
Drka =—2

(4.10}

(4.1 1)

kc

ka

is generally larger than kc '. (If it were not, the slowest
mode would be associated with heat transport at all
wavenumbers, and there would be no mode crossover. )
When k «kH, the chemical reaction is more rapid than
both heat conduction and particle diffusion.

The absolute sizes of kH and kc can be altered by vary-
ing the chemical properties of the system, i.e., by varying

As noted above, the "wavenumber windo~, " in which
the relaxation is dominated by chemistry and slower than
thermal relaxation is bounded below by kc and above by
kH. It is therefore natural to introduce the parameter, f,
defined as

r) ——+DTk = r+ —k
1 2= a

P
(4.12)

1+Dkr y dT
1+DzkgpT Bs

(4.13)

As usual, the inverse susceptibilities are homogeneous
functions of k and g = At " For examp. le, (dT/Bs)& is
approximately k "f(kg); for kg » 1, it vanishes as
k' " and, for kg « 1, it vanishes as t". The mode fre-
quencies are displayed schematically in Fig. 1.

To lowest order in small quantities, the corresponding
eigenvectors of M are

f(k) = ( DTk 1/~ ) fast,

s(k) = ( 1 1/tl ) slow.

(4.14)

As k crosses kH, the fast eigenvector rotates in the
s —c plane —from the "heat direction" to the "concentra-
tion direction"; the slow eigenvector is roughly indepen-
dent of k. Thus, the eigenvectors and eigenvalues show
that the fast mode should be associated with chemistry,
and the slow mode with heat, when k &~kH, the roles are
reversed when ktt «k. Both modes become diffusive
when kc ~&k. For k =kH, no clear separation is possible.



SCOTT T. MILNER AND PAUL C. MARTIN 33

ICU

( j[lk

t

l~

I
I

I
I X

I

I

t
/+0+ 'gP

r(k)

In particular, for kH « k « kc we have

t
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Model H =~-- Modet C +~-- Model H
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FIG. l. The frequencies of the hydrodynamic modes as a
function of wavenumber, k, and reduced temperature, t, for
large coherence length, f (f must be large enough to violate the
Ginzburg criterion for mean field behavior). Four wavenumber

regimes, separated by the wavenumbers, kp, ka, and kt.- (deter-

mined by the reaction rate, the thermal and particle diffusivities,
and the sound velocity) are depicted schematically. The (real)
frequency of sound wave modes is indicated by a dashed line.
In each regime, the rate of the fastest mode is unaltered, and the
rate of the next fastest is "weakly" reduced (as the inverse
specific heat, t ). Thus, the frequency of the mode r&(k) is
"weakly" reduced for k &kp, and the frequency of the "slow
mode, " r (k), is drastically reduced for all k. The effects of
critical dynamics, which alter the inverse susceptibility or Van
Hove prediction, t", for the temperature dependence of critical
slo~ing, are indicated as are the models that apply in the three
regions where chemical relaxation is relevant.

wavevector transfer q =k. Typically, q can range from
10 to 10 cm ', and with "typical" values of
r, D, Dr (as above) one might hope to probe intermediate
wave vectors. The dielectric structure factor measured in
these experiments would show two superimposed Ray-
leigh peaks with widths given by the eigenmode frequen-
cies (along with Brillouin peaks at sound-wave frequen-
cies}. We emphasize that such coherent scattering experi-
ments are quite different from the incoherent photoexcita-
tion experiments of Krichevskii et al. The latter probe
fluctuations of vanishing wavenumber, not fluctuations
with the wavenumber, q, of the impinging light.

This prediction of a suppressed reaction rate for values
of k that satisfy kH «k «kc is subject to further con-
straints. For example, it does not apply to a system that
has more than two components and a single reaction, no
matter how many components the reaction involves. ' In
an m-component system with one reaction, m —1 quanti-
ties are conserved. The system therefore has rn —2 parti-
cle diffusion modes (in addition to the mass conservation
mode that combines with momentum conservation to pro-
duce sound). In the reaction

+ ' ' ' &~+~ ~ p~B~ + ' ' pkBk, 1+k =rn,

for example, the (i —1} + (k —1) quantities

B)
VJ Pi

are conserved. The m —2 modes associated with these
conservation laws have frequencies ~; = D;k which are
much slower than the reaction rate, 1/r, when k « kc.
Consequently, for kH «k «kc, the appropriate reaction
rate is

r&(k) = r a) aT as
SS,P c

r)(k) = DTk = k2,
pT s

(4.15)

r p
OC T,p, n

1
" nm —2

(4.17)

which is weakly suppressed for m=3 and regular for
m=4. Related thermodynamic conditions, that follow
from GW and lead to weaker singularities in multicom-
ponent systems than PG predict, have been discussed by
Wheeler and Petschek.

i.e., a strongly suppressed chemical reaction rate and
weakly suppressed heat diffusion, while for kr «k «kH
we have

(4.16}

1r)(k) = —= r
'r

i.e., strongly suppressed heat diffusion and a weakly
suppressed reaction rate.

In the k~ macroscopic limit, in which transport
coefficients are customarily defined, the simple arguments
of the Introduction apply. In addition to macroscopic
measurements in space and time, one can measure the
time-dependence of spatially varying fluctuations of
wavenumber k by light-scattering experiments involving a

V. RENORMALIZATION GROUP CORRECTIONS

The remainder of this paper summarizes briefly correc-
tions to Van Hove theory and corrections to those correc-
tions. We use a RG approach with an expansion in
@=4 d, so that w—e can compute o (e) corrections to the
slopes in Fig. 1.

As is well known, the Van Hove hypothesis (that the
Onsager coefficients are "local" and regular as g~ao)
does not hold in less than four dimensions. The nonloca1-
ity results from multiple scattering off long-lived fluctua-
tions. Nonlinearities in 5F/5$ in Eq. (3.6) and "mode-
coupling" terms'o arising from Poisson-bracket relations
can both act to couple these fluctuations. Using well-
established RG machinery, " we can compute, perturba-
tively in e, response functions R(k, co) and correlation
functions C (k, co) that have the requisite properties.

A straightforward application of the RG to the binary-
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system model quickly shows that in the "scaling limit, "
both kH and kc tend towards oo as they do in Model H
of Siggia, Halperin, and Hohenberg. In fact, the model
behaves exactly like Model H in this limit, as we now
show.

In general, we cannot diagonalize M and X ' with the
same choice of variables. M is diagonalized by the
transformation

P'=A/, M'=A&IM ', A '=[f(k) s(k)j

k 2+a jv and p k2+a f (5.2)

It then follows from scaling that the roots behave as" and g
~" when kg &&1. In other words, the

chemical relaxation time constant vamshes strongly, as
t "+, with 2v+o. = y+a+qv = 2 —v = 1.37, while

(5.1)

while X ' is diagonalized by the transformation discussed
at length in Sec. IV. However, the eigenvector basis
described above is equivalent to a change to the variables
s and c, for k « kyar and to the variables c and s, for
k )) kH.

Thus, for k « kH, we have a (slow) critical conserved
heat mode and a (fast) noncritical nonconserved composi-
tion mode, with M and X ' both effectively diagonal.
The system is therefore the same as Model B of Halperin,
Hohenberg, and Ma and has Van Hove dynamics. %e
next note, as in Ref. 4, that the coupling of the order pa-
rameter to the transverse part of the velocity is relevant.
Its inclusion converts Model B to Model H. Thus, for
k « kH, we conclude that, as g ~ oo, the slow mode

behaves as r&(k) = k with xi ——18ej19
+ 0(e ). The dependence on g is given by scaliny argu-

ments, i.e., for k «g ', we have r& —k g . In

other words, the diffusion constant vanishes as t
with y —x~v = 0.64.

As k ~kH, we accumulate "corrections to scaling"; the
effect of the finite cutoff is to break "scale invariance" at
large k. ' Also, if the minimum g

' attained in an exper-
iment satisfies g & kyar, the Ginzburg criterion for the
heat-velocity mode coupling will be satisfied and Van
Hove or mean-field exponents observed.

We next consider the modes for kIr « k « kc.
Suppose that kc is very large, i.e., that kc = A, which is
"infinite" for RG purposes. Then, for kH «k, we have a
(slow) critical nonconserved chemical relaxation mode and
a (fast) noncritical conserved heat mode. In the limit
kz~O the theory again has no scale and the RG can be
applied —with the proviso that the scaling equation" may
not be extended to values of k & kH.

In this regime, the q„P term in the free energy gives
rise to important couplings between order-parameter fluc-
tuations and energy fluctuations. The critical dynamical
properties of these modes are described by Model C. Sim-

ple power counting shows that the coupling of a noncon-
served order parameter to the velocity is irrelevant above
d =2. Thus, for intermediate wavevectors, the results for
Model C apply; at T„both roots have the same depen-
dence

the thermal diffusivity vanishes weakly, as t . Note, in-
cidentally, that in contrast with the small k regime, here
(as in the stochastic Ising model) the inverse susceptibility
or Van Hove critical exponent y underestimates the rate
of slowing.

These results are not exact since kH/kc is finite. We
can neither take kH ~0 nor kc~ ~. As a result, asymp-
totic corrections to Eq. (5.2) cannot be obtained rigorously
by straightforward RG procedures. In view of the diffi-
culty of obtaining more accurate results and the limited
utility such results would have, we have not pursued this
analysis further.

The last regime to be considered is the one in which
A » k » kc. As the chemical reaction is "'turned

off," this regime grows until it covers all wavenumbers.
In this regime, there are two diffusive modes, one of
which is critically slowed. As g~ oo, the same degrees of
freedom approximately diagonalize both M and X ', and
the dynamical behavior of the pair of modes can be
described by Model D. This model obeys Van Hove
theory. Once again, the coupling to the transverse veloci-

ty is relevant, and its inclusion leads to dynamics
described by Model H. Thus, for k » kc, as g ~ ~,
we find

r =k'+ "and r =k (5.3)

In other words, the diffusivity of the slow "concentra-
tion" mode vanishes as r, and the diffusivity of the
fast "heat" mode vanishes as t~

When k = kH and k = kc the situation is even less
amenable to the RG than when kH &~ k && kc.
Nonetheless, an interpolation formula which joins the
corrected versions of the curves in Fig. 1 should give ade-
quate predictions for foreseeable experiments.

More than a year ago, a preprint of this paper was cir-
culated and submitted for publication. In that version, we

reported the same qualitative conclusions we report here.
When it was suggested that speedy publication was not
warranted we decided to postpone submission until the
RG analysis was performed. During the past year,
Greer' has redone the experiment reported by Kri-
chevskii et al., and demonstrated that the chemical relaxa-
tion rate of spatially uniform composition fluctuations is
not drastically reduced. She finds, in qualitative agree-
ment with our analysis, that the critically slowed mode is
associated with heat transport. However, Greer finds that
its critical slowing is better fit by a thermal diffusivity
proportional to the reduced temperature t than by one

v(2 —zg —g) O ~proportional to t = t . Our calculations con-
firm the latter prediction near the critical point. We have
no explanation for the remaining discrepancy —a
discrepancy that she reports has also been observed in
some nonreacting samples. If the discrepancy persists, we
believe it will have to be attributed to the fact that the ex-
periment has not measured the temperature dependence of
the rate of thermal diffusion near T, . For exainple, if ex-

periments were performed at reduced temperatures t sinall

enough for slowing to be detected but large enough for the
Ginzburg criterion to be satisfied, neither static nor
dynamic RG corrections to mean field would be observed
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and the rate of thermal diffusivity would decrease as
r with gM~ = l.

In addition, hope persists that a scattering experiment
can be performed that probes the relaxation times of fluc-
tuations ~ith wavenurnbers that lie between k~ and k~.
In such an experiment, the relaxation time should grow
approximately as t
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