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The aim of the present work is to perform an in-depth analysis of neutron scattering data on

liquid metals and to extend previous types of comparisons between experimental scattering functions
and various model theories. The kinematic viscosity v(q) for some liquid metals —liquid lead at 623
and 1173 K, liquid bismuth at 578 K, and liquid rubidium at 315 K—is derived, based on the
dynamical scattering functions S(q, co), and compared to molecular dynamics data for hard spheres.
The general behavior of the v{q) curve is traced. With use of an analytical form of pair potential
with several free parameters, a form of V(r) for liquid lead at 623 K is derived. Finally, the short-
time interaction part of the experimental memory function 4I(q, t) for the longitudinal current
correlation function is directly compared to the corresponding result calculated from kinetic theory
in the mode-coupling version, This comparison is based upon the derived form of the interatomic
potential for Pb at 623 K and upon other known potential data for Rb at 315 K.

I. INTRODUCTION

In recent years intense discussion has existed regarding
the theoretical description of atomic motions in liquids.
The generalization of linear hydrodynamics to make this
mathematical framework usable down to atomic distances
has been advocated based mainly on results from molecu-
lar dynamics' (MD) using continuous potentials as well
as from hard-sphere systems. The hydrodynamic equa-
tions are recast into Mori s memory-function formalism
to establish close contact with the ideas of viscoelastic
behavior. Deeper insight and more detailed information
about both the short-time viscoelastic behavior dominated
by the binary collision and various types of backfiow of
hydrodynamic nature set up around a moving atom are
obtained from kinetic theory in its mode-coupling ver-
sions. ' The only direct experimental check was with the
scattering function $(q, co} obtained from the neutron
scattering experiments. S(q,co} was calculated theoreti-
cally, and this result was compared to the neutron result,
but more often, MD results based upon assumed pair po-
tentials served as a basis for comparison.

For a long period of time the interest in neutron mea-
surements concentrated on smaller wave-vector regions
such that zero sound or so-called Brillouin side peaks
could be observed in $(q, co)—in the region q/qo& —', ,
where qo is the value of q at the peak of the structure fac-
tor, S(q). This region in the (q, co) plane is very difficult
to explore because S(q,co) reaches only very small values.
Comparisons between theories and experiments were also
made in the main region of $(q, co) for 0.8 & q/qo & 3.5,
within which more accurate neutron scattering experi-
ments for determination of $(q, co) were done. Unfor-
tunately, the shape of S(q,co) in this region is that of a
featureless, monotonously decaying function, making
comparison to theory difficult and demanding. It is
known that the first region, q/qo ~0.8, represents a tran-
sition region from collective to single-atom motions, or if

you like, from macroscopic to atomic scales. It is this re-

gion which is experimentally difficult to reach. The
higher-q region displays more of single-atom motions.
The present study is devoted mainly to this range, al-
though some results derived from this q range are used
for extrapolation to the small-q range by use of MD data.
The aim is to gain a more detailed knowledge of atomic
motions from $(q, co) in this featureless range and to find
more critical ways of investigation, not just by comparing
S(q, co) from theory with experiment.

During the last few years accurate measurements of
$(q, co) for some liquid metals were performed. The ear-
lier result on liquid rubidium was followed by accurate
results on liquid lead at 623 K and reasonably accurate
results at 1173 K as well as on liquid bismuth ' at 578
K. As reported in a previous paper, " the intermediate
scattering function F(q, t} was also derived from the lead
and bismuth measurements using an extrapolation tech-
nique to large-co values as was used for the rubidium
case a fit of a sum of three Gaussian functions to
$(q, co), which also gives an analytical form for its
Fourier transforms F(q, t). Knowing F(q, t}, one can
derive numerically its memory functions of first order,
K(q, t), and second order, M(q, t), by applying the Mori
formalism. It was shown earlier' that M(q, t) is closely
related to 4i(q, t}, which is the generalized time- and
wavelength-dependent kinematic longitudinal viscosity,
v (q, it) As @i(.q, t) also plays the role of the time-
dependent part of the memory function of the longitudi-
nal current correlation function, its derivation from exper-
imental data is already in itself of interest, as it can be
compared to predictions from kinetic theory. The time
integral of @i(q,t) is also of considerable interest as it cor-
responds to vi(q), the wave-vector-dependent kinematical
viscosity. This was recently computed for a hard-sphere
system of various densities using MD. A comparison of
neutron and MD results for vi(q) can be made.

Furthermore, if the measured S(q,co) are accurate
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enough it is possible to derive the fourth-frequency mo-
ment (co ), the value of which depends upon the pair in-
teraction potential V(r}. A scheme for obtaining V(r)
from (co ) was given a long time ago. ' Knowing (co )
from neutron experiments as well as the pair correlation
function g(r) and the structure factor S(q) to a sufficient
accuracy, one can derive V(r} by a direct fit, as developed
in this paper.

In the present article v(q) is derived and compared to
MD data for hard spheres. The neutron data on the
memory functions for Pb at 623 and 1173 K, for Bi at
578 K, and Rb at 315 K serve as a calibration of the MD
data. The general behavior of the v(q} curve is traced
This is reported in Sec. II.

With use of analytical form of pair potential with
several free parameters, a form of V(r) for liquid Pb at
623 K is derived. It is compared to other forms. In Sec.
III ere report the results.

Finally the form of the memory functions 4i(q, t) ob-
tained from experiments is used to derive the short-time
interaction part of the memory function for the longitudi-
nal current correlation function, which can be directly
compared to the corresponding result calculated from ki-
netic theory in its advanced node-coupling version. This
comparison is based upon the derived form of the intera-
tomic potential for Pb at 623 K and upon other known
potential data for Rb at 315 K. This is described in Sec.
IV.
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FIG. I. Generalized viscosity q~(q) measured in centipoise, for liquid lead at 623 K. Neutron data (+ ); MD data (0 ). (a) q re-
gion of overlap between neutron and MD data for calibration of MD data. (b) Total q region including the calibrated MD data extra-
polating qq{q) to q=0. g~(0) =4.85 cP. Basic constants: V/Vo ——1.6, o =3.0 A, Mn = IO. '7 g/cm .
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u. GaNaRA. 1.1ZaD V1SCOSnV FOR uqU1D
Pb, Bi, AND Rb

The experimental basis for the following derivations of
results is the availability of F(q, t) from neutron scattering
experiments at a large number of q values for all times
and with sufficient accuracy. Such data exist for a num-
ber of liquid metals, namely"' Pb at 623 and 1173 K, Bi
at 578 K, and Rb at 315 K. These data are used in the
present analysis.

The theoretical basis for the generalized viscosity fol-
lows from an application of the Mori memory-function
formalism, first to F(q, t), and then to its memory func-
tion K(q, t), which, in turn, has its own memory function
M(q, t), and finally to the longitudinal current correlation
function Jt(q, t), which has its memory function Kt(q, t).

Due to the intimate relation between F(q, t) and Jt(q, t),
which reads

2 d F(q, t)
t2

it is easily established that'

M(q, t) =Ki(q, t) (co—)/(aP), (2)

Kt(q, t)=(co )l(aP)+q 4t(q, t), (3)

where (co ) and (eo ) are the zeroth- and second-
frequency moments of S(q,co). From a generalization of
hydrodynamics, ' it may be shown that Ki(q, t) can be ex-
pressed as follows,

0,5

0.4- (a)

0.3-

lA
0
CL

02-
+ +++ +

++g o o
+ ++ 0

++
~ '

~
' 4++++J+++

+~++~++++q,
I I I I

2 3 4 5 6

00
s+ ~ ~ ~ ~ + ~ ~ 0 ~ ~ +oooo

2 3 4 5 6

FIG. 2. Generalized viscosity vyI(q }measured in centipoise for liquid bismuth at 578 K. Notation same as in Fig. 1. rgq(0} =4.0 cP.
Basic constants: V/Vo ——1.6, o.=3.1 A, Mn=10.03 g/cm .
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where 4t(q, t) =vt(q, t) is the generalized longitudinal
kinematic viscosity. In the macroscopic limit,

vt=(1/Mn)( —', rt, +g„)=rtt/Mn,

where g, and g„are the shear and volume viscosity,
respectively, M is the atomic mass, and n is the number

density. From (2) and (3) is is seen that

vt(q, t) = (1/q )M (q, t) .

Of primary interest for the present purposes is the time
integral of (4), which is equivalent with the co =0 value of
its Fourier transform vt(q, t0):
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FIG. 3. Generalized viscosity gI(q) measured on centipoise for liquid rubidium at 315 K. Notation same as in Fig. 1. qI(0) =0.74
cp. Basic constants: V//Vo ——1.6, a=4.4 A, Mn = 1.481 g/cm'.
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v, (q)=1(m f v, (q, (icos(ru(ld(.
u~p

This quantity was computed with MD methods by Alley
and Alder within the formalism of generalized linear hy-
drodynainics for hard spheres. The idea behind that pro-
cedure is to keep the ordinary hydrodynamical equations
unchanged down to atomic dimensions. The transport
coefficients are, however, as a consequence, assumed to be
wave-vector and time dependent and are calculated from
the appropriate correlation functions calculated numeri-
cally with MD. In what follows, MD data are compared
to the neutron data. The MD data are fitted to the neu-
tron data over the q region studied in the neutron experi-
ments. This region is 0.8&q/qo&3 for Pb and Bi and
0.8&q/qe&3. 7 for Rb. About fifty constant-q cuts in
the S(q,co) surface were used for Pb and Bi. As the MD
data are given down to small-q values and are normalized
to the value at q=O, these data, thus normalized by the

V

Vp

where n is the number density and a is the atomic radius.
This is taken at 3.0 A for Pb, 3.1 A for Bi, and 4.4 A for
Rb.

The result for Pb at 623 K is shown in Figs. 1(a) and
1(b). The experimental values of v(q) have in this and all

absolute neutron data, are used to find the value of vi(q)
for q=O. The MD data exist for different packing frac-
tions V/Vp. . 1.6, 3.0, and 10. For Pb at 623 K, Bi at 578
K, and Rb at 315 K, the value of V/Vo is close to 1.6.
For Pb at 1173 K it is close to 2.0. For this case an inter-
polation between the MD data at 1.6 and 3.0 was used to
obtain the MD shape of the curve v(q) [this is called
a(k)/a(0) in the paper of Alley and Alder; compare the
last column in Tables I and II in Ref. 2]. The value of
V/Vo is calculated from
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FIG. 4. Generalized viscosity gI(q) measured in centipoise for liquid lead at 1173 K. Notation same as in Fig. 1. g~(0) =2.8 cP.
Basic constants: V/Vo ——2.0, o =3.0 A, Mn =9.146 g/cm .
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subsequent figures been multiplied with Mn, where M is
the atomic mass, to obtain rlt(q), here given in centipoise.

gt(q) from neutron scattering measurements is seen to be
influenced by the liquid structure [Fig. 1(a)], showing a
minimum at q =qo (2.2 A '). It is also seen that the MD
data show a similar tendency, and, on the whole, the
agreement in shape is remarkable. %hen the entire q
range is plotted as done in Fig. 1(b), it is observed that the
change from atomic towards macroscopic behavior sets in
at q values just below qo. For 0 & q/qo &0.9 the value of
i)t(q} changes from approximately 0.15 cP at 0.9qo to 4.8
cP at q=O. In just this region (0& q/qo &0.9) the two
components S,(q, t0) and S~(q, co), where the indices d
stands for distinct and S~ describes the pair motions, tend
to balance each other and thus give a very low value of
S(q,ro}, making it very difficult to study this function ex-
perirnentally.

The macroscopic value from direct measurements of r),
and rl„ is 4.4 cP. An estimation of alt from formulas
given in Faber's book on liquid metals's give rl, =0.025 P
and with rI„=0.3', the value of —,il, +rl„ is 4.0 cP. It is
observed that the macroscopic values and extrapolated
neutron data agree within 10% or 20%.

In Figs. 2(a} and 2(b) the corresponding comparison is
made between the bismuth results from neutron scattering
and MD data. Again it is observed [Fig. 2(a)] that MD
data show the same shape as the neutron data (qo ——2.2
A). When extrapolated to q=0 with the aid of calibrated
MD data, the value obtained is 4.0 cP. Flinn' found, in
ultrasound studies, r1, =1.62 cP and i)„=7.7 cP, which
adds up to alt

———', i), +i1„=9.9 cP. Use of the formulas
given in Faber's book give g, =2.2 cp and g~=3.0+g„.
The final result depends upon the value of rl„. If one ac-
cepts Flinn's value, one obtains i))=10.7 cP. If, on the
other hand, the value of rl„ is of order 0.3i)„ the value
would be 3.7 cP. The relatively large discrepancy between
the extrapolated neutron value of 4.0 cP and the macro-
scopic values 9.9 or 10.7 cP seems to depend upon the
large macroscopic value of rl„, 7.7 cP.

In Figs. 3(a) and 3(b} the rubidium neutron data are
used for normalization of the MD data. Again there is a
remarkable, detailed shape agreement in the high-q range
0.8 & q/qp & 3.5 [Fig. 3(a); qo ——1.5 A]. The extrapolation
to q =0 by use of the calibrated MD curve gives
i)t(0) =0.74 cP. The experimental value for rl, is 0.64 and
0.59 cP from a MD simulation study. ' If we assume 0.6
cP, the value of alt ——0.8+i)„, giving a total of the order
of 1 cP (i)„unknown, but assumed =0.3', ). We notice
that the present neutron value is in the same region of
values within 25%.

In Figs. 4(a) and 4(b), finally, the high-temperature lead
(1173 K) neutron data are used for calibration of the MD
data. The quality of the neutron data are much worse
here due to background difficulties, but the general shape
remains in agreement. The i)t(0) value comes out as 2.8
cP. No macroscopic experimental data exist for this high
temperature. Flinn's data range from the melting point at
600 K up to 925 K. The trend of her data is such that q,
decreases roughly exponentially with temperature and g„
increases exponentially. If these trends are extrapolated
up to 1173 K, one finds g, =0.87 cP and q„=17.5 cP,

gi»ng i)(0) =18.4 cP. There is, however, a tendency of in-
creasing rl, and decreasing i)„ for the last two viscosity
values at 875 and 925 K in her data. The value of i)t(0) is
therefore uncertain. It seems that g„(0) is much too high
to result in the 7)t(0) =2.8 cP value found from neutron-
MD data.

The low-temperature data at V/Vo ——1.6 all show simi-
lar behavior. The reason that the value of alt(0) for rubi-
dium differs (=0.74 cP) from those of lead (=4.8 cP) and
bismuth (=4.0 cP) by a factor of 6 is that the value of the
density, Mn, differs by the same factor. It is then of in-
terest to compare vt(q) for the different liquids when the
factor Mn is divided out. Also the structure effects
should be removed, which is done by comparing vt(q/qo)
for various liquid metals. In Fig. 5 the three liquids are
compared. It is seen that all results fall within a relatively
narrow band. This is made even more evident in Fig. 6, in
which the entire range down to q=O of vt(q/qp) is plot-
ted for the three liquids. It seems that the relative differ-
ences are small. The main difference in viscosity, alt(q), is
created by the density values.

To sum up the results of this section, we find the fol-
lowing characteristics.

(a) The various liquid metals show about the same re-
duced variation of vt as a function of q /qo. The absolute
values of i)t(q) are to a large extent determined by the
liquid density and its structure.

(b) The shape of the viscosity curves vt(q) derived from
MD within the framework of generalized hydrodynamics
shows a remarkable agreement with vt(q) from neutron
scattering data. A similar statement applies for the data
obtained by Ailawadi, Rahman, and Zwanzig' on an ar-
gonlike system.
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FIG. 5. Generalized kinematic viscosity v~ as a function of
reduced q/qo derived from neutron data on liquid Bi at 578 K,
Pb at 623 K, and Rb at 315 K in the large-wave-vector region,
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FIG. 6. Band (shaded area) of values of generalized kinemat-
ic viscosity, vI(q/qp), within which the neutron observed values

for liquid Bi at 578 K, Pb at 623 K, and Rb at 315 K fall in the
large-q range, 0.8 & q/q«3. 7, and would fall also in the small-

q range, 0& q/qp (0.8, if the hard-sphere MD data would give
a good result in this range. The lower limiting curve is fitted
MD data for liquid Bi and the upper limiting curve is fitted MD
data for liquid Rb. The fitted MD data for liquid Pb falls in be-

tween these two curves. Fitted limiting MD curves (solid line).

bious or unknown. In particular, the values of rl„seem to
be of determining importance. The observed discrepan-
cies could be due to incorrect values of g„. It could also
depend upon a failure of the hard-sphere-model concept
at small-q values. This could be particularly true for
bismuth, in which directional nonspherical forms of
atomic potentials may be of importance.

(d) As the MD data are based on the hard-sphere as-
sumption, we are, however, forced to the conclusion that
the interatomic potentials do not seem to play a very large
role in the small-wavelength range q/qp & 0.9. A possible
exception may be the role of i)„(q) as discussed above.
Possibly the potential shape plays a role for q/qp &0.9
and particularly for q~0.

(e) The mathematical framework of generalized linear
hydrodynamics seems to work remarkably well in spite of
the many potential difficulties such as failure of the linear
approximation and the fact that for q/qp&1 S(q, cp) is
dominated by S,(q, co). What is the meaning of hydro-
dynamics for self-motion? What little is left of collective
behavior as manifested in a very small Sq(q, co) may be
sufficient to motivate the use of hydrodynamic concepts
[compare the shape of the memory function I »(q, t) dis-
cussed in Sec. IV]. If this generalized form of hydro-
dynamics is recast into a viscoelastic theory, the conceptu-
al difficulties may seem to disappear.

III. INTERATOMIC POTENTIAL FOR LIQUID Pb
AT 623 K FROM FOURTH-FREQUENCY MOMENT

The mathematical form for the fourth-frequency mo-
ment is well known,

(c) The extrapolated values at q=O for the viscosities
come out with the correct magnitude, in some cases even
quantitatively correct within 10% to 20% from the mac-
roscopic values. These latter values are in some cases du-

2 2 2 2 2=~cpi ~=3q u +Qp —Qq

where (cpl ) is the second-frequency moment of longitudi-
nal current correlation, u =ka T/M,

2V'
Q2 2 y'&i

4'urn "
2 „sin(qr) 2 cos(qr) 2 sin(qr)rdrgr V" +

qr (qr)' (qr)'

r

2V' cos(qr) sin(qr)

(qr) (qr)

3q u is a kinematic, free-motion term which we subtract,
and Qp is the characteristic frequency, or let us say, the
Einstein frequency of the system.

The quantity (cog) —3q u oscillates around the value
Qp due to the oscillatory term in Q~. It is characterized
by the aiiiplitude of oscillation as well as the period. We
expect that both properties are sensitive to the choice of
V(r).

Our method to get a pair potential out of the $(q, co)
data is the following.

First, the S(q,co), c0 S(q,cp), and co S(q, c0) curves ob-

tained from the fitting of a sum of three Gaussians to
$(q, cp) are carefully inspected for the larger co values for
all of the 50 q cuts in S(q,cu), which are used in this
analysis. For about one-third of the data it is observed
that the last few values of co S(q, co) for the largest co

values deviate markedly from the fitted curve. This is due
to incomplete corrections for multiple scattering. These
points are discarded Then a new least-squares fit is now
made to co $(q, co). Even in the worst cases the new fit
differs little from the first fit. The analytical forms for
S(q,co) were Fourier-transformed and the resolution—
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parameters belonging to the n=5 case.
In Fig. 10 a LJ potential with +=3.02 A was compared

to the Jacobs type with n=12. The depth == —100
meV —af the LJ potential came out identical to the energy
difference between the first maximum and minimum of
the fitted Jacobs type [Eq. (9)]. It is observed that the two
calculated fourth moments are indistinguishable. The
conclusion is that the attractive part cannot be determined
with confidence from fittings in this large q range
q/qo & 0.9, a fact discussed in the literature.

In addition, use of only the repulsive part Vi(r) of the
patential to a large extent verifies that the attractive part
plays a very minor role here, if any at all.

In summation, we conclude that the best fit for the
liquid lead at 623 K is characterized by a soft core defined
by the r s repulsion (Table I).

We notice that the zero-sound or Brillouin peaks were
observed in liquid lead at 623 K up to approximately
q/qo & —', . A similar soft potential and extension of zero-
sound peaks were also observed in liquid rubidium. This
is to be contrasted to hquid argon with its steeper poten-
tial and its shorter range for zero-sound peaks. On the
other hand, this result seems to be in contradiction with
the success of the hard-sphere model in predicting correct
shape of the viscosity function v(q) introduced in the
preceding sectian. The explanation probably is that v(q}
function is too insensitive for potential details to show up,
possibly only when q~0. In the v(q) case the degree of
packing seems more important.

IV. MEMORY FUNCTIONS FOR LONGITUDINAL
CURRENT CORRELATION. LIQUID Pb AND Rb

The last aim of this paper is to establish a connection
between the memory functions 4r(q, t) derived from neu-
tron scattering for the longitudinal current carrelation
function (time-dependent part) and the prediction of ki-
netic theory. In Sec. II we were interested in its time in-
tegral [=v(q)]. Now we shall look somewhat into its de-
tailed time dependence. This is characterized by an initial
rapidly decaying part followed by an oscillatory tail. If
we want to facilitate comparison with predictions from
modern kinetic theory in the mode-coupling version, we
find that in the calculations performed so far—mostly
limited to the small-q region, q/qu &0.8, the formulated
memory functions contain just the same features —a rap-
idly decaying initial part approximated with a Gaussian
function, followed by a complicated tail determined by
various mode-coupling integrals. The Gaussian-shaped
part is described as containing the physics of the binary
collision plus the first rapid atomic rearrangernents in the
neighborhood of the collision site. This is the caging
phenomenon. Considering the fact that this study is per-
formed in a large-q range in which the Gaussian part
dominates —at least in 4r(q, t)—we limit our analysis to
the short-time range. This does not mean that the
longer-time tail is absent or unimportant. Its theoretical
treatment is more complicated and its analysis is therefore
left for future work

At first we have to establish a relation between the
memory function derived from kinetic thcmry and the

function Kr(q, z) [Laplace transform of Kr(q, t) obtained
from neutron experiments mentioned above], which is

Cr'(q, z)
Cr(q, z) =

1 [—(q2u 2/z)nc (q) I—i(q, z) ]Cr'(q, z)
(12)

In agreement with the formulation of Sjagren and
Sjolander, we write, for the self-current-correlation
Cr'(q, z),

Cr (q,z)
Cr'(q, z) = p1+I ir(q, z)Cr (q,z}

(13)

where the free-atomic-motion current correlation Cr (q,z)
follaws from (see Boon and Yip, z' pp. 188—192, special-
ized to the noninteraction case)

Cr (q,z) =
z+q u /z+I (q,z)

(14)

Here, I ii(q, z) and I"ii(q,z) are, respectively, the memory
functions for the distinct and self-parts of the longitudinal
current correlations. We notice that the free-motion part
is separated out from I ir(q, z) and contained iil I'p(q, z),
nc(q)=1 —[S(q)] '. Substituting Eqs. (14) and (13) into
(12), one finds

Cr(q, z) = 1

z+(q u /z)[1 —nc(q)]+I ir(q, z)+I' (q,z)

1

z +KI(q,z)

Here,

I'ii(q, z}=I"ii(q,z)+ I ii(q, z),

i.e., the memory function for the total longitudinal
current correlation decreased by the free-motion memory
function and the term [q u /S(q)](1/z).

Now the two memory functions in Eqs. (11) and (1S)
must be the same, giving

I „(q,z)=q 4r(q, z) I (q,z) . —

If we now want to concentrate on the Gaussian binary
collision part of I ii, which is denoted I'ii(q, z), this is
easily done. Our procedure is now the following:

We have, directly from the neutron studies, the func-
tion q 4r(q, t). We write the Mori equation (14) far the
free gas and solve it numerically to obtain I (q, t). This is
subtracted from q 4r(q, t). According to Eq. (16), we
then compare the result thus obtained with I'ii(q, t),
which we can calculate from Sjogren's kinetic theory. It
is in this last phase of the analysis that we limit ourselves
to the calculation of I'f, (q, r). I » is given by

2 2

Kr(q, z)= —+q 4i(q, z) .
S(q} z

According to Sjogren, "the longitudinal current correla-
tion is
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I ii(q, t)= 2Z 22—3q u +q2U nc(q)

(17)
t2

g exp
[~i(q)1'

The width function ~i(q) is determined from theory.
Its calculation is already rather length F S'-rom JogrcIl s
results it is clear that one can at first calculate the self-
part [Ht(q)] and compare it to the derived width func-

I

(18)

where the q-independent term r 2 is given by

tion rom the neutron data [compare Sjogren, Ref. 5(c) p.
2884, Fig. 1; and formulas 2.5—2.7 . 2871 f. —. , p. , Ormulas

]. The reason is that the distinct term I »(q, t)
contributes an oscillatory term aro d I (

the same
un» q, t' I exactly

t e same way as S(q, co) oscillates around S,(q, co) and

(q jqo) 0.9). ' For xi(q), we have

[P(q)]
—2 5 qZU2+r —2

I n drr g(r) [V"(r)] +2 —V'(r)
0

1 M

+
6 2y 0 dq (q ) t [VI(q')]'+2[x'(q')]']P'(q') —ll
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rl"(q')= -n,'. ,

J d" » g (")(V"( )+(2/

%'e observe that
'
in order to compare theory to experi-

These
ment, we need information abo t V( ),

ese are well enough known for Pb (Ref. 24 at 623 K
and Rb (Refs. 25 and 26) at 315 K. We th
ed the necess

e therefore evaluat-
e necessary functions for these two cases.
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& q, r, I (q, r), and I'»(q, t} for Pb at 623 K and

'
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and in Fig.
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(12)—(14)]. As we see, this transition to free motion will

finally occur, but only at a very large q value.
We notice that the approximation for describing the

whole I"ii(q, t) with a Gaussian form becomes increasingly
ahorse as q increases. On the other hand, the memory
function 4t(q, t) is increasingly better approximated with
a Gaussian as q increases.

Using Eqs. (18) and (19), [v~(q)] is evaluated and
compared to experimentally determined values of
[rt(q)] . The experimental values of vi(q) follow from
the HWHM values of I ii assuming ~i(q)= IVHwHM/
(ln2)'/. The assumption is then made that the experi-
mentally found functions I ii(q, t) are well described by a
Gaussian to a t value corresponding to WHwHM/(1n2)'~ .
By fitting Gaussians to our memory function I'ii, we
have found that this is indeed the case for smaller times.
In the theoretical evaluation for Pb at 623 K, the potential
with power n =5, 12, and 25 is used to calculate
[Ht(q)] . It should be noticed that the q=0 value of
[Ht(q)] given as ~ in Eq. (18) is determined by the
various integrals over the potential V(r) The. q variation
comes from the term —', q2v, which, in turn, contains con-
tributions from free flight, as well as terms from the sixth
moment.

In Fig. 13, [Ht(q)) calculated as described is com-
pared to the experimental values of [rt(q)] . It is seen
that the value of r [Eq. (18)] is sensitively dependent on
the shape of the repulsive potential. For n =25 the curve
falls above the frame of the picture. This is an important
conclusion, as no other such potential sensitive function
was found earlier that can be directly derived from experi-
ment. Thus, for instance, the fourth moment is relatively

insensitive, as was demonstrated in Sec. III. It is found
that the best value of n in the Jacobs potential is 5, in
agreement with the results of the fit to the fourth mo-
ment.

It is also found that the theoretical q variation of
[~,(q)] does not describe the experimental width data
well. In order to test if a q variation can at all describe
the experimental data, we fitted a curve of form
[r,(q)] =aq +b. As seen in Fig. 13, a very good fit is
produced for [~,(q)] =12.3q3+48. As a =cv [Eq.
(18)], with v =2.49 (A/ps), we find c=4.95 instead of
—', , as given by the theory; also, b =48 instead of 120.

A result of a similar nature is obtained for liquid rubi-
dium, as seen in Fig. 14. The theory does not describe the
q variation in the correct way. By fitting the same form
as for liquid lead, we find [r,(q)] =15.7q +6.2. As
v =3.086 (A/ps), one finds that the factor in front of q
can be written 5.1v . Thus, in both cases we observe a
value of 5 instead of —', in front of q v in Eq. (18).

The fact that the values of b =r in Eq. (18) come out
much smaller than the theoretical values, 2.5—3 times
smaller, cannot be taken to be certain, as we do not have
experimental points below q/qo ——0.8.

Regarding the factor in front of q v in Eq. (18), we
notice that the first theoretical value [Ref. 5(a), Appendix
1, formula Al. l 1] was —,', in the next approximation (Ref.
22, p. 404, formula 3.9) it was given as —', , and in this
work we find 5. This fact should initiate various compar-
isons between theory and experiments for larger q value
(q &qo)

V. CONCLUSION

We have found that carefully performed neutron
scattering studies including accurate correction pro-
cedures on several liquid metals allow a detailed analysis
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FIG. 13. Results for the width function ~~(q) from neutron
data on liquid Pb at 623 K {~). These data are compared to
kinetic-theory data for vq(q) according to Sjogren's theory for
two different forms of V(r} according to Eq. {9)and Table I.
n = 12 (dashed line); n =5 (solid line); fitted curve
~,(q) =12.3q +48 (dotted line).
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FIG. 14. Results for the width function ~I{q) from neutron
data on Rb at 315 K (~). These data are compared to kinetic-
theory data for ~I(q) according to Sjogren's theory (solid line)
and to the fitted curve w, (q) = 15.7q +6.2 (dotted line).
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involving determination of memory functions for the
longitudinal current correlation functions. From these
memory functions it is possible to draw conclusions re-

garding the generalized longitudinal viscosity. Such data
combined with MD data can become a powerful aid in the
discussion of various model theories such as generalized
hydrodynamics and viscoelastic theory. It may also serve
as a test on approximations made in advanced kinetic
theory in the mode-coupling versions. %e have also no-
ticed that the memory functions derived from the more

elaborate and detailed kinetic theory is sensitive to the
pair-potential form assumed. This seems to be the first
case of a noticeably potential-sensitive function derived
from neutron scattering functions. We believe that our
type of analysis and our results open new possibilities of
exploring neutron scattering data in creating a full under-
standing of fiuid mechanics from macroscopic to atomic
domains. It is no longer necessary to compare theories to
the structureless S(q,co), but rather to other more struc-
tured, derived quantities.
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