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The nonlinear evolution of a Rayleigh-Taylor {RT) unstable free surface is studied by three in-

dependent approaches. (i) The method of least-squares approximation (LSA) is critically examined

and applied to the general RT initial-value problem. It extends previous results of perturbation
theories to higher orders and describes the appearance of bubbles and spikes for both single- and

multiple-wavelength surface perturbations. Computational limitations, however, are found for the
steady-state bubble regime where the number of harmonics becomes exceedingly large. {ii) A
mathematically consistent sinusoidal Aow model is developed valid for certain nonuniform gravita-
tional accelerations. Its general properties are discussed, including a spike singularity and a unique
steady-state bubble shape. As a special case, Layzer's model is obtained and compared with the
LSA calculations. (iii) Steady-state bubbles are described more generally in terms of source poten-
tials. A one-parameter family of possible bubble shapes and corresponding gravitational potentials
can be derived. It includes the steady-state sinusoidal flow model and yields improved analytic ex-

pressions for the constant-acceleration bubble parameters. From this model it is also concluded that
flow singularities can limit the general applicability of Fourier analyses to free-boundary flows.

I. INTRODUCTION

In diverse important applications the outcome of hy-
drodynamic processes depends on the occurrence of
Rayleigh-Taylor instabilities. These are well-known inter-
facial instabilities which develop between superposed fiuid
layers, when an acceleration is applied towards the denser
fiuid and similarly under gravity, when a heavy fiuid
layer is supported by a light one. ' In particular, RT insta-
bilities have been found of

hereat
interest for the study of

inertial-confinement fusion. 'o In standard schemes of
fuel compression these represent a major source of asym-
metries and thereby limit the attainable fusion energy
gain. Occasionally related instabilities have also been dis-
cussed in nuclear physics and astrophysics. They provide
possible explanations for asymmetric nuclear fission" as
well as for the striking features of elephant-trunk globules
in interstellar HD regions. ' ' In supernova explosions
RT unstable lepton gradients have been predicted, which
can potentially cause large scale overturns in the collapsed
core. ' ' A number of experimental investigations re-
vealed instability growth under various conditions includ-
ing external, ' ' ablative, ' impulsive, and magnetic '

acceleration.
The nonlinear evolution of the classical RT instability

proceeds along three well-known stages of exponential
growth, bubble-spike appearance, and steady-state bubble
flow. ' In the following we shall restrict attention to the
most severe free-surface instability, which occurs when a
fiuid layer is supported against gravity by constant gas
pressure. Here the bubbles assume the shape of broad
columns of gas penetrating the fiuid and approaching a
constant rise velocity. The spikes consist of narrowing
jets of falling fiuid separating neighboring bubbles.

The analysis of free-surface motion is conveniently

33

based on potential theory, where the evolution is governed

by a generally nonlinear as well as time-varying boundary
condition (Sec. II}. A complete mathematical description,
however, seems only possible in the linear theory, while
the nonlinear evolution requires approximate analyses and
numerical evaluations. In previous work various attempts
at nonlinear descriptions have been considered, some of
which used Fourier analysis, ' ' conformal mapping
methods, and boundary-integral techniques.

In this study we shall examine and extend existing
methods of Fourier analysis and carefully discuss their
applicability to the nonlinear free-surface instability. The
Fourier approach is of particular interest, since it allows
one to adopt the physical ideas of modes and growth rates
developed in the linear theory. The velocity potential can
be represented by a superposition of unstable modes which
interact through nonlinear mode coupling. This raises
questions about the mode spectrum and the growth-rate
modification in the nonlinear evolution. But there are
also basic questions about the limitations and the general
validity of this concept in the nonlinear RT problem. For
computational reasons there arise limitations when large
numbers of harmonics are required and there are also
principle mathematical difficulties, when flow singulari-
ties develop so that Fourier series fail to converge. To
discuss some of these aspects we compare in the following
results obtained by three independent approaches. These
are based on the method of least-squares approximation
(LSA) and analytic models in terms of sinusoidal and
source potentials.

The LSA method has been suggested in the context of
RT instability in early works by Hill and Wheeler" and
by Pennington. It determines the mode amplitudes by
minimizing the mean square error for an expansion of
given order. The approach does not presuppose the form
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of the time dependence and can also readily be applied to
large expansion orders. It therefore extends previous
work on second- and third-order perturbation
theories. In Sec. III we describe in detail the general
procedure and present calculations involving 10—15
modes and 50—100 surface particles. Possibly because of
the high numerical resolution, particle redistributions and
interpolations have not been required, which greatly sim-
plifies Pennington's original treatment. We also discuss a
possible failure of the method which makes it necessary to
reconsider the original work. This failure arises when a
determinant known as the Grammian approaches zero. In
this case the expansion coefficients generally become
singular and strongly coupled, although the mean square
error can be small. In the present analysis the expansion
has been reformulated in terms of orthonormal functions
to avoid such artificial failure. Our results, however, still
show a rapid increase of higher harmonics when the evo-
lution approaches the steady-flow regime. Therefore these
calculations are generally found limited to the initial and
transient stages of RT instability.

Further insight in the nonlinear evolution can be gained
by the consideration of special flow models. In Sec. IV
we analyze fluid motion for a class of sinusoidal flows
w'th time-dependent amplitudes. Single-mode estimates
of bubble rise velocities have been given before by Davis
and Taylor and by Layzer. These nonlinear models
describe exactly the particle trajectories in the flow field
but satisfy only approximately the dynamical condition of
constant surface pressure. Davis and Taylor have studied
the steady-state problem with cylindrical symmetry and
determined the rise velocity by requiring constant pressure
at the bubble vertex and at one further intermediate sur-
face point. Layzer generalized this approach to include
the transient evolution and improved the estimate by im-

posing the constant-pressure condition to the vertex and
its immediate neighborhood. This modeling proved rather
successful in describing the evolution of bubble ampli-
tudes, but the neglect of harmonics is difficult to justify
theoretically. We therefore adopt here a different
viewpoint which allows us to obtain special exact solu-
tions. For a prescribed class of flows we determine gravi-
tational potentials which consistently satisfy the
constant-pressure condition. As a result one obtains pos-
sible flows for certain cases of nonuniform acceleration.
Thus by slightly changing the physical conditions one can
avoid major theoretical uncertainties. The model present-
ed illustrates basic features of bubbles and spikes and may
be used for testing general computational methods. In
particular, it defines precisely the conditions where in the
framework of Fourier analysis no harmonics are required
in the description of bubble evolution. We also emphasize
the important point that the whole dass of sinusoidal
flows describes asymptotically a unique steady bubble. Its
shape is found independent of the initial surface and the
transient evolution. Layzer's model is included in the spe-
cial case where a constant acceleration is prescribed at the
bubble maximum. As a result one obtains a special evolu-
tion law, which describes the rise velocity in excellent
agreement with the least-squares calculations. However,
the bubble curvature is found much lower than predicted

for uniform acceleration. In the sinusoidal fiow model
this is a consequence of an exponentially increasing ac-
celeration along the falling spike.

To obtain more accurate results for uniform accelera-
tion we consider in Sec. V a steady-flow-source model.
Here periodic bubble profiles are imitated by the incidence
of a uniform stream perpendicular to an infinite row of
sources. The source row can be described in complete
analogy with vortex rows as commonly studied in the
Karman vortex street. It is therefore possible to derive
explicit analytic expressions for the basic bubble parame-
ters. These are found in excellent quantitative agreement
with previous computational results. i The source
model also shows principle limitations in the Fourier-
series approach. Fourier representations here are only
valid in the half-planes above and below the sources and
therefore allow no complete description of these flows.
Some of the results of Secs. IV and V have already been
reported in Refs. 24 and 25. They are presented here in a
self-containai form to allow an easy comparison between
the different approaches.

In summary, the present discussion of free surface RT
instability includes the following results: (i) reformulation
of the LSA method to avoid singular expansion coeffi-
cients; (ii) LSA calculations of the mode spectrum and of
single- and multiple-wavelength surface perturbations; (iii)
discussion of computational and mathematical limitations
for Fourier analyses; (iv) development of a rigorous
sinusoidal flow model extending Layzer's model and com-
parison with LSA results; (v} derivation of improved ana-
lytic expressions for bubble parameters in terms of period-
ic source potentials.

II. BASIC EQUATIONS

In this section we briefly introduce the basic equations
governing the free-surface evolution. We consider an
inviscid homogeneous fiuid layer of density p and pressure

p in a gravitational potential U(y). The fiuid motion is
assumed two-dimensional, irrotational, and incompressi-
ble. It is described by the velocity potential P(x,y, t) and
the corresponding stream function g(x,y, t), which are
harmonic conjugate functions in the region occupied by
the fiuid. The velocity components in the x and y direc-
tions are defined as the partial derivatives

u„(x,y, t}=B P(x,y, t) =B»g(x,y, t),

uy (x,y, t) =Byp(x,y, t )= —B„1t(x,y, t),
respectively. When the velocity field is given, the evolu-
tion of a fluid boundary y=Z(x, t) can be determined
from the Cauchy initial-value problem,

B,Z(x, t)+u„(x,Z(x, t), t)B„Z(x,t) =u, (x,Z(x, t),t),
(2)

Z(x, 0)=ZO(x) .

This is a single first-order quasilinear partial differential
equation for Z(x, t). According to general theory its
solution can be obtained from a set of characteristic
curves t (p,xo), x (p,xo), and y(p, xo) described by
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dx (p,xp)

=vy(x, y, t),

One should, however, notice that with this special gauge
the velocity potential generally does not vanish at infinity
(y~+ ao ) where the fluid is at rest.

Sometimes it is more convenient to describe the evolu-
tion in the coordinate frame rising with the bubbles. The
origin then is attached to the bubble vertex x =0, y =a (t)
moving with the bubble velocity u =a in the y direction.
In this comoving frame the fiuid motion can still be
described by a potential; however, the boundary condi-
tions are changed (Appendix A). At infinity, where the
fluid is at rest, the boundary condition becomes
u~(x, + ao, t) = —u, and at the free surface,

B,P(X,Z, t)+v (x,Z, t)/2+ U(a +Z) —U(a)+uZ =0 .

dt (P,xp) =u (x,y, t),
dp dp

dy (p,xo)
(3)

dp

where the initial surface is given parametrically by
t (0 xp) =0 x(0 xp) =xp aild y (0 xp) =yp(xp). The Pro-
jection of the characteristic curves on the xy plane de-

scribes the paths of the surface particles. In the impor-
tant case where the flow is steady Eq. (2) can easily be in-

tegrated. Inserting Eq. (1) into Eq. (2) and requiring

B,Z(x, t)=B,Q(x, t}=0 yields f(X,Z(x))=const. In this
case the surface is coincident with a particular streamline.

The evolution of the flow is determined by the condi-
tion of constant pressure p (x,Z, t) =pp on the free surface.
This condition is readily expressed using Bernoulli s equa-
tion,

d, P+v'/2+pip+ U(y) =f(t),
where v =v, +v~ and the time function f(t) is fixed by
the values of the left-hand side in one particular point of
the fluid. We now choose the special gauge of the poten-
tial where f(t)=pplp Then . the free-surface boundary
condition becomes

d, g(X,Z, t)+u (X,Z, t)/2+ U(Z) =0 . (4)

dence of the amplitudes P (t) .As discussed in the fol-
lowing section this is determined by the free-surface
boundary condition (4). We finally note that in the frame
comoving with the bubbles the fiow may be described by
corresponding amplitudes P' (t). The transformation
(A2) of the potentials implies for the amplitudes the
transform ations

P' (t)=P (t)e, m&1.

111. LEAST-SQUARES APPROXIMATION

To analyze the formation of bubbles and spikes in the
nonhnear RT instability we first consider a numerical
procedure introduced by Pennington. It is based on the
method of least squares to approximate the potential by a
set of basic harmonic functions and leads to a closed set
of ordinary differential equations.

Let us assume that the velocity potential can be
represented in the form P=f(x,y, t,c (t)), with time-
dependent parameters c (t) labeled by the subscript
m =0, 1,2, . . . . Here f is considered as a known func-
tion of its arguments. It is harmonic with respect to the
spatial coordinates x,y and satisfies at the fixed
boundaries the conditions d„f(x =0)=B,f(x =m)
=B„f(y =+ ao ) =0. Specifically, for the Fourier-series
representation (6) the function f is given by

f(x,y, t, c (t))= g c (t)f (x,y),

f~(x,y)=e "cos(mx) .

In this case it depends linearly on the parameters c (t)
and contains no explicit time dependence. The evolution
of the parameters c is governed by the free-surface
boundary condition. Using a parametric representation of
the surface x =x(xp, t), y =y(xo, t), Eq. (4) assumes the
general form

Qc (t)f (x (xp f) y (xp t) c t )

Here a gauge has been used, where B,P(0,0, t) =0, and the
bubble acceleration u introduces an additional effective
body force.

In the following we shall suppose periodicity in x with
wave number k =2m/A, and express, unless otherwise stat-
ed, lengths in units of k ' and times in units of (gk)
where g denotes the unit of gravitational acceleration.
Further assuming even symmetry with respect to x =0,
the Fourier-series representation of the potential assumes
the form

P(x,y, t) = —,
' a, (t,y)+ g a~(t,y)cos(mx) .

m=1
(6)

Since P must satisfy the Laplace equation and the
boundary condition u„(x, + ao, t) =0 the Fourier coeffi-
cients a (t,y) can be written as

a (t,y}=P (t)e

for m &0. The evolution is governed by the time depen-

=R(x (xp, t},y (xp, t),c,t) (7)

with f =8, f and R = (d,f+u l2+U). A—t a given

time the function R depends on xp only and the time
derivatives c are the coefficients in a series expansion of
R with respect to the set of functions If J. The coeffi-
cients will now be determined by the method of least
squares. We define

2
(a,b) =— dxoa(x (xo) y(xo))b(x (xo) y(xo))

~~a~~=(a, a)'~, for functions a(x,y) and b(x,y) and ap-
proximate R by a linear combination of r functions such
that the mean square error

(
~g' 'pc f —R

( ~

becomes
least. The minimum is assumed if the coefficients c
obey the r-component vector system,

with the vector and matrix components defined by
x~=c~, R~=(f,R), and I' „=(f~,f„), respectively
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If the determinant I'=
~

F „~ does not vanish Eq. (8) to-
gether with Eq. (3} determines uniquely the evolution of
an approximate solution from the initial conditions. If s
is the number of surface particles the system consists of
2s +r coupled first-order differential equations.

Let us now consider the failure of the procedure if the
determinant approaches zero, This case generally leads to
a singular behavior of the expansion coefficients even if
the ansatz is an accurate approximation to the solution.
To discuss this important point in some detail we note
that I is known as the Gram determinant of the functions

If J, where here and in the following discussion we al-
ways refer to the functional dependence on xo. Let A,;
with i =0,1, . . . , r —1 denote the eigenvalues of the
symmetrical matrix F and e' the corresponding eigenvec-
tors normalized by e' e'= l. One can then define a set of
mutually orthogonal functions If; ) by observing that

r —1

f;= g f e', (f;,f, )=e'F et=lt5;, ,. (9)

where 5,J are the elements of the unit matrix. From Eq.
(9) it follows immediately that the Gram determinant
I =g;. oA, ; is non-negative and can be zero if and only if
the functions f are linearly dependent. Let us now sup-
pose that I approaches zero in the course of time evolu-
tion. To obtain the behavior of the coefficients c in this
limit we represent the solution of Eq. (8) as a linear com-
bination of the eigenvectors e'. lf all eigenvalues are
nonzero, Eqs. (8) and (9) yield

r —1 r —1

x= g A, , '(R e'}e'= gA, , '(f;,R)e'. (10)

We emphasize that the derivatives here are independent of
each other and of the order r of the expansion. One may
therefore conveniently omit linearly dependent terms
without changing the remaining derivatives. The coeffi-
cients also directly indicate the relevant order of magni-
tude of the expansion terms.

We now discuss some computational results obtained
for a Fourier-series representation of the potential where

f (x,y)=exp( —my)cos(mx). This expansion describes
the flow when all singularities of the potential lie in the
half-plane below the lowest surface point. It may there-
fore be valid for a transient phase only. Equations (3) and
(13) have been numerically integrated with expansion or-
ders r =10—15, particle numbers s =50—100, constant
acceleration U(y) =y, and initial conditions

c (0)=0,

Zo(x)=A cosx+Bcos(2x)+Ccos(3x) .
(14)

In the given range the results showed only negligible vari-

known quantities at a given time as shown in Appendix B.
The elements of the Gram matrix now are (g,g„)=5 „
and therefore Eq. (8) assumes the simpler form

(13)

i=O i=O

In the limit AJ~O the projection (fJ,R) generally ap-
proaches zero as

~ ~f ~ (
= (tLt )'~ and then the solution (10)

is seen to become singular as At
' . However, in the ap-

proximating series,

r —1 r —1 (fR)f. ,

&m

m=o i=o (f;,f }

the singular coefficient is multiplied by a function of van-

ishing norm so that the contribution there remains finite
and even may be negligibly small.

To avoid the difficulty of singular coefficients in this
case we consider an expansion with respect to an ortho-
normal function system. Suppose the ansatz f has the
form of a series with basic functions f (x,y). Then it can
be rewritten in the form

-4

0 p

f(x,y, t,c ) =pc (t)g~(x,y, t) (12} 'l2

with an orthonormal set I g =h~/( ~h~ ~ ~ J defined by the
Gram-Schmidt orthonormalization procedure where

m —1

h =f g(g;f )g;—
i=0

Note that the set Ig~ I has an explicit time dependence
since the inner product is defined on the time-dependent
surface. The corresponding time derivative B,f in the
function R of Eq. (7), however, can be calculated from

FIG. 1. Evolution of the mode amplitudes in the LSA calcu-
lation. The representation shows the coefficients —c as de-
fined in Eq. (12) vs mode number m. Initially the fluid is at rest
(c =0) with a sinusoidal surface displacement of amplitude
0.1. The different marker symbols denote the subsequent times
t =0.6, 1.2, 1.8,2.4, 3.0,3.6,3.7,3.8,3.9. Note that the time step
has been reduced after t =3.6 because of the rapid increase of
higher harmonics.
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ations with r and s. The numerical analysis has been test-
ed by comparison calculations between the laboratory and
bubble coordinate frames which have been found in excel-
lent agreement.

To verify the validity range of the present approxima-
tions we first examine the case of a purely sinusoidal ini-
tial perturbation where A =0.1 and 8 =C =0. Figure 1

shows the mode spectrum given by the amplitudes c~ up
to c» of the series (12) at a sequence of times. The coeffi-
cient co describes only the gauge of the potential and
therefore has been omitted from the representation. No-
tice that in an initial stage the fiow is well approximated
by a few terms of the Fourier series. At time t =0.6
the mean error of the approximating series

oc g —R)~/[~R)( is found to be of the order
10 '2. However, during the time evolution the conver-
gence of the series becomes increasingly worse. At the fi-
nal time t =3.9 the mean error has grown up to the order
10 ' and the Fourier ansatz then ceases to be an appropri-
ate representation. %e also considered the expansion
coefficients obtained from Eq. (8) without the orthonor-
malization procedure. These have been found to depend
strongly on the expansion order and the calculations there
failed around the time t =3.6 where the matrix became
algorithmically singular. Figure 2 shows a sequence of
surface profiles at the times indicated in Fig. 1. One can

/

i
t

/

0
0 2 t

FIG. 3. Evolution of bubble (1) and spike (2) amplitudes.

recognize the formation of a rising gas bubble around
x =0 and of a falling spike around x =m. In the present
description this is a result of nonlinear mode coupling be-
tween the fundamental mode and the first ten harmonics.
To study the asymmetrical growth in detail the bubble
and spike amplitudes have been represented in Fig. 3.
There symmetry deviations already become appreciable
for amplitudes larger than about 0.3—0.4. At the final
time the total bubble spike separation is about 4, which is
somewhat larger than half a wavelength. I.et us finally
consider some examples of multiple-wavelength perturba-
tions. The evolution can be drastically changed if neigh-
boring modes reach the nonlinear regime simultaneously.
The situation is illustrated in Fig. 4 for the fundamental
mode with initial amplitude A =0.1 and the first har-
monic with initial amplitudes 8 =+0.01. Note that the
first harmonic reaches large amplitudes during the calcu-
lation (a) so that the nonlinear superpositions (b) and (c)
yield strongly disturbed profiles. Similar results for the
second harmonic with C =+0.005 are given in Fig. 5.

0

C3
4

f

Q. DO 0.25
-3

0 05 0.5

FIG. 2. Surface profiles corresponding to the initial condi-
tions and time steps given in Fig. 1. In the nonhnear evolution
the sinusoidal perturbation becomes asymmetric, leading to the
characteristic bubble-spike shape.

FIG. 4. Multiple-wavelength surface perturbations mth ini-
tial conditions (a) A =0.0, 8 =0.1, (b) A =0.1, 8 =0.01, and
(c) A =0.1, 8 = —0.01. The time step is 0.6 up to t =3.6 in (a)
and (b), and then 0.1 up to t =4.0 in (c).
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IV. SINUSOIDAL FLO%'8
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y =ln[sinx/(x h)], h—=xp —e 'sinxp . (21)

The asymptotes to the streamlines for y~+ oo are given

by x =b and the separatrix between streamlines entering
at y =+ ao and —00 is obtained by setting b =0. Fluid
motion along the separatrix is seen to determine the final
bubble shape (Fig. 6).

Having reviewed the fiuid motion for general sinusoidal
flows we will now discuss the corresponding gravitational
potentials. These are obtained by inserting Eq. (15) into
Eq. (4), yielding

U(y)=( ——,'A e +He»cosx —Pp)
~ z (22)

where x is determined by its value on the free surface

y =Z(x). The inverse function Z ' always exists if
Z'(x)&0 in 0&x &n.. The gravitational potentials (22)
are time varying as well as spatially nonuniform. For spe-
cial evolution laws of the amplitude one can, however,
model conditions of general interest.

A particularly simple example is obtained by setting

Pp ——0 and A =1. Then Eq. (22) reduces to a time-
independent potential of the form U(y) = —e «/2. Ac-
cording to Eq. (17) the bubble and spike amplitudes grow
as y =ln(1+t), respectively. The bubble velocity is given
by the square root of the local acceleration, v» =(8» U)'~,
and the spike tip falls freely with velocity

v» = —( —2U)'« . As a result of the exponentially increas-
ing acceleration it reaches infinity at the finite time t =1.
Because of its inherent simplicity this solution may be
used as a convenient test for general computational
methods.

In terms of sinusoidal flow fields the closest approach
to classical uniform acceleration is obtained by the re-
quirement of constant acceleration g near the bubble ver-
tex. This condition is most easily taken into account in
the comoving frame where Eqs. (5) and (20) define the
gravitational potential,

It describes a bubble of amplitude a (t) at x =0 and a jet
extending to infinity at x =mr .It is important to note that
the bubble shape is independent of the initial profile and
the special evolution of a (t). Thus it is a common feature
of the whole class of flows described by Eq. (15). Another
peculiarity of these flows consists in the fact that the fal-
ling jet reaches infinity at a finite bubble amplitude,
a =ap+InI1+exp[yp(n) —ap]j. Then fluid is continu-
ously absorbed at infinity which, however, does not
violate the flow within a finite region. The analysis is
even more straightforward in the comoving bubble coordi-
nate frame. There the flow will be described by

P=Pp —a(y+e»cosx),

f=Pp+a(x —e "sinx},

and the streamlines P(x,y, t) =f(xp, y p, t) have the form

The amplitude a(t) now is determined by the condition
U' (0)= 1 and y = —cx /2 near y =0. Expanding in Eqs.
(2) and (23} about x =y =0 up to the order 0(x ) one
finds coupled equations governing the evolution of the
bubble amplitude and curvature,

a2
a+

1 —c 1 —c
=0, c =a(1—3c) . (24)

U(y+ap) —U(ap)=[(ap+y)e» —ap]/(1 —ap) .

The steady-state gravitational potential is obtained from
Eqs. (19) and (23) by setting ii=0 and a = —,. These po-

-2-

Integration yields

c =(1—fh)/3,
(25)

2 .2
—,(1—h) —h[2f (a —ap) —ap(2+f)]

2+fh

with f=1—3cp, h =e, and where the index 0
denotes the initial value of the corresponding variable.
For large amplitudes one has h «1 and then Eq. (25)
reduces to c = —, and a =1/W3. This limit describes the

steady bubble (19) rising with a constant velocity. It is
usual to express the bubble velocity in units of ~gA, as the
Froude number F and the curvature ~ by the dimension-
less number ~A, . Then their steady values are given by
F =a/v 2m =1/V 6m and vA, =2mc =2m/3

Let us now discuss the validity of these results for uni-
form acceleration. The accuracy of the approximation
there may be judged from a comparison of the gravita-
tional potentials. For an initial perturbation

y =ap(coax —1), ap ——0 the initial gravitational potential
follows from Eqs. (23}and (24) to be

U(y +a) —U(a) =[ii(e»cosx —1)
~ 2+ ,'a (2e»cosx—

=z-'( )
'

(23)

0.0 0.5 —Y 1.0 1.5

FIG. 8. Gravitational potentials for prescribed constant ac-
celeration at the bubble maximum. The initial potentials as
given by Eq. (26) are shown for different initial amplitudes ao
and the steady-state potential is marked by a dashed line.



H. J. KULL 33

V. SOURCE FLOWS

To obtain a better approximation for uniform accelera-
tion we now consider a larger class of steady flows which
includes sinusoidal flow as a special case. Such a generali-
zation proves possible in terms of a source model. To
satisfy periodicity requirements such flows will consist in
the simplest case of an infinite row of equally spaced iso-
lated sources. A single plane source at the origin is
described by a complex potential W =/+if of the form
8'=cLnz ~here z=x+iy and c denotes the source
strength. The potential of a row of sources of strength
c =1 at the points x =2mn, n =0, +1,+2, . . . , on the x
axis then follows to be

W= g Ln(z 2nn—)

z 00

=Ln —g 1—
2 n=1

z/2 +const

=Ln sin(z/2)+const . (27)

Separating real and imaginary parts Eq. (27) yields, up to
a constant,

P = —,
'

in[cosh(y) —coax],

P= arctan[cot(x /2)tanh(y /2) ] .
(28)

0 8

In the bubble frame this source row has to be combined
with a uniform stream perpendicular to the row. The re-
sulting flow can be described in the form

FIG. 9. Evolution of the bubble amplitude a and the Froude
number E=i /V2n in Layzer's model. Comparison is made
with the LSA calculations (marker symbols). The agreement is

found best for small initial amplitudes where Fig. 8 shows

smaller deviations in the initial gravitational accelerations.

tentials have been compared with their linear approxima-
tion at y =0 (Fig. 8). It can be seen that the actual gravi-
tational acceleration here is rapidly increasing below the
stagnation point and that this increase becomes worse for
larger initial amplitudes. The time evolution of the bub-
ble amplitude and the bubble velocity as given by Eq. (25)
is shown in Fig. 9 for sinusoidal initial perturbations with
Qp =0.01 0. 1 0.5 and ~p ——0. Comparison is made with
the numerical results for uniform acceleration as obtained
by least-squares approximation (Sec. III). The agreement
is found to be surprisingly good, indicating only weak
dependence of the bubble velocity on the acceleration
nonuniformities along the falling spike. The analytic
model tends to slightly overestimate the velocities which
may be expected from the increasing acceleration there.
A more sensitive parameter, however, is the bubble curva-
ture. The steady-state value is only about —', of the values
obtained by computational methods. To account for this
discrepancy an improved model of steady-state bubbles
will be considered in the following section.

y = ln[sinx /sin(qx )], (30)

with x =x/(1 —q). Expanding about x =0 one finds the
bubble maximum at y = —lnq and the curvature by

Kk= 2 1+q
3 1 —q

(31)

It is noted that the above result (19) here is recovered for
q~0. In this limit the bubble maximum lies far above
the source row where the velocity potential (29) ap-
proaches sinusoidal form. For finite q, however, one can
model different bubble shapes which allow better agree-
ment for uniform acceleration (Fig. 10).

The gravitational potentials are determined by Eqs. (5)
and (30). They describe a potential difference

P =[u/(2q)] I
—(1+q)y+(1 —q)in[cosh(y) —cos(x)]I,

(29)
f= [u/(2q)][(1+q)x

+2(1—q)arctan[cot(x/2)tanh(y/2)]) .

The parameter u & 0 denotes the velocity of the incoming
stream at y =+ ao where P~ —uy. At y = —oo one has
P~ —(u/q)y corresponding to an outgoing stream of
velocity u/q. To imitate bubble flows the parameter q is
restricted to the values 0& q & 1. The bubble surface is
obtained by the streamline f= u (1 q)n/(2q) th—rough the
stagnation point at x =0 yielding
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2.0.

Y

(b) I

.2.0

~ &0

values are found in excellent agreement with recent corn-
putational results. To discuss the amplitudes of the har-
monics in this solution we derive the Fourier-series repre-
sentation of the source potential (28) in the half-planes

~ y ~
& 0. It is convenient to start here with the series of

00. 00
00

8„(()= + g u~cos(mx),
2

(33)

-&.0 -1.0 where the coefficients are given by

-2.0
0.0 EXP(U) 0.5 i.0 0.0

-2.0
0.5 X/~ ).0

FIG. 10. (a) Gravitational potential and (b) corresponding

bubble shapes in the source flow model. The source is located at

the origin x =y =0 and the curves emanate from the stagnation

point at y = —lnq. The parameter q is varied in steps of 0.1

from 0.1 to 0.9.

' 1/2
1 —q

6m
(32)

Comparing the gravitational potentials for different q
with their linear approximation at the bubble maximuin
one finds the best approach to uniform acceleration for
q-0.2 (Fig. 11). In this case Eq. (31) yields the curvature
aA=n and E, q. (32) the Froude number E-0.226. Both

.0

AU=u /(2q ) between the stagnation point and the
asymptotic regime at y = —~. Imposing the normaliza-
tion condition U'(y)=1 at the bubble maximum the
Froude number is found to be

1
' ~ sinh(y)u~= . dse~

cosh(y) —cosh(s)
' (34)

The integrand has poles at the points s =s~ =+ ~y ~
on

the real axis. In their neighborhood the denominator is
represented by cosh(y) —cosh(s) ——sinh(sz )(s —sz ).
Choosing the integration contour connecting the points
—in, +in, —no+in, and .—ao in, one—finds, by the
residuum theorem,

=sgn(y)e — ~& ~, (35)
sinh(y)

—sinh( —~y ()

where sgn(y) =+1 for y = ~&0, respectively. From

Eqs. (33), (35), and the boundary conditio~ P( ~y ~

~ 00)
= ——,

' ln2+
~ y ~

/2 the Fourier series of the potential (28)
is found to be

+ ' —g m 'e ~~ ~cos(mx) . (36)
ln2

2 2 =1

Note that far from the sources where
~ y ~

&&1 the contri-
bution of the harmonics decreases and the flow becomes
approximately sinusoidal. At the bubble vertex where

y = —lnq the Fourier coefficients are given by q /m.

+e sinh(y)
u = dx cos(mx)Nl cosh(y) —cos(x)

Introducing a complex integration variable with imagi-
nary part x then yields

VI. CONCLUSIONS

Y

- -1.0

--2.0

--3 0

-3.0 - 2.0 -1.0 0.0

FIG. 11. Comparison of gravitational potentials for constant
acceleration (straight line), steady sinusoidal flow (q =0), and
source flow with q =0.2. At y = —1.5 where the potential for

q =0.2 starts deviating from the linear potential the fluid is al-

ready close to free faH.

In this paper we analyzed the free-surface RT instabili-

ty by the general method of LSA and by analytic models
based on sinusoidal and source potentials. The LSA re-

sults have been found satisfactory for the initial and tran-
sient stages of the evolution, but the method fails in the
final steady-state regime. This is a consequence of an
only poor convergence of Fourier series, which will even

fail to converge when flow singularities develop. Such
failure can be expected for quite general reasons. Let us

assume steady bubbles rising with velocity u and
described by time-independent Fourier coefficients P' in
the comoving bubble frame. The Fourier coefficients in
the laboratory frame then will be given by P~ (t) =P~e
for m & 1. These correspond to modes having an initial
spectrum P' and dimensionless growth rates y =mu.
Note that these steady-state growth rates increase even
faster with the mode number than the linear ones,

y = i/m. Therefore, if the initial spectrum P' includes
an infinite number of modes, the Fourier series must fail
to converge after a transition time of order t u'. Fur--
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ther improvement of the LSA method will possibly re-

quire the use of other sets of approximating functions.
Better convergence properties may be expected for eigen-
function expansions. However, the calculation of eigen-
functions, corresponding to the instantaneous shape of the
fluid, will greatly complicate the computational effort.

The sinusoidal flow model treats the evolution exactly
for specific initial conditions and accelerations. Remark-
ably, the same asymptotic bubble shape can be found for
substantially different types of acceleration. In the first
example of Sec. IV the evolution starts from a large velo-

city perturbation and the acceleration at the bubble max-
imum decreases in time as (1+t) . These conditions are
qualitatively similar to impulsive acceleration as produced
by shock waves. 3 In the second example of Sec. IV the
interface is initially at rest and the bubble maximum is
subject to constant acceleration. This corresponds closely
to the classical instability problem and the bubble veloci-
ties there are found in close agreement with the LSA re-
sults. As a simple application of this model we will esti-
mate the critical wave-number regime for foil breaking.
We define foil breaking by the condition ai ——a2+d,
where tt i denotes the displacement amplitude at the front,
az at the rear side of the foil, and 1 the unperturbed foil
thickness. The amplitude tie is only appreciable for thin
foils. There the foil breaks at small amplitudes, so that

a& can be well approximated by linear theory as
tie ——ate . The critical amplitude for ai, where foil
breaking occurs, then is given by a, =d/(1 —e }. For
thick foils it is determined by the foil thickness, a, =d,
and for thin foils by the wavelength, ktt, = l. In Fig. 12
we compare the growth of perturbations with different
wavelengths for given initial amplitudes, kao=0. 01, as
determined by Eq. (24). It can be seen that the maximum
growth occurs for intermediate wavelengths of the order
of the foil thickness. Large wavelengths are suppressed

during the linear growth regime and small wavelengths
during the final steady state. The time evolution can be
described by the parameter Q = ,' g—t /d, which is the ratio
of the acceleration distance of the foil over the foil thick-
ness. The critical amplitude here is reached first for the
wave numbers kd =2—3 when Q-20.

The source model improves the estimates of the
relevant bubble parameters. There the Froude number F
and curvature x are given by

1/2
2] 2

(37)
6~

2 1+q
KA, =

3 1 —g

The parameter q in the interval 0 & q & 1 describes a fami-

ly of possible bubbles when the fluid is falling through a
potential difference b, U = u /(2q ). The best approach to
constant acceleration is found for q =0.2 with F=0.226
aild KA, =fr
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APPENDIX A: TRANSFORMATION
OF BERNOULLI'S EQUATION

UNDER TINE-DEPENDENT TRANSLATIONS

We consider Eq. (5) under the coordinate transforma-
tion

x' =x, y' =y —a (t),
where a(t) denotes the bubble amplitude. The transfor-
mation (Al) conserves vorticity and therefore potential
flow in the frame F can also be described by a potential
P'(x', y', t) in F'. The corresponding transformations of
the potentials and velocities are

a
ac

ka =0.01 P' (x',y', t}=tti(x, y, t) ay' +go(t),—

Ux ="x ~ Uy ="y
(A2)

)00

&0-

where 1(o(t) allows for an arbitrary gauge of iI)'. Consider-
ing ttt(x, y, t) =ttt(x', y'+a, t) as a function of the primed
arguments yields

(A3)

Inserting now Eq. (A2) into Eq. (A3), one finds

t),P =B,P' ~, +tty' —go —tt(v''+a) . (A4)

iQ2
&0-'

T

)0-1 )0 kd lp'

Using Eqs. (Al), (A2), and (A4) it is easi1y seen that Eq.
(4} transforms into

t),P' ~, + —,(v' ) + U(a +Z' ) —U(a)+HZ'

FIG. 12. Stability of an accelerated foil of thickness d under
free-surface perturbations of amplitude a and wave number k.
The foil is expected to break when the amplitudes have grown
from the initial value ao to the critical value a, =d/(1 —e ).
This occurs first for kd-2 —3 when Q = zgt !d-20.

= —,a +go —U(a} . (A5)

Choosing now the gauge, $0 U(a) ——,'a, one o—b—tains

Eq. (5). With this choice the velocity potential i)) is con-
stant at the origin, where U' =Z' =O.
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APPENDIX 8: DERIVATIVES
OF THE ORTHONORMAI. FUNCTION SYSTEM I g

To evaluate the function R of Eq. (7) one has to know
the partial derivatives of the orthonormal function system

I g J. The spatial derivatives i) g and Byg are readily
obtained from the corresponding derivatives of h as de-
fined under Eq. (12). The time derivative is somewhat
more involved and therefore will be given here explicitly.
From thedefinition g =h /~~h ~[ one has

where
d

t I(g f )=(c)tg +&t) g +pdyg f
+(gxB f +yByf )

g cmt)xgm ~ y g cm't)ygm

The derivative (d/dt)( ~h
~ ~

then may be eliminated from
the identity,

(81) ~g+ ~g+J~,g )

yie1ding

(83)

The derivative r), h can be calculated from

m —1

a,h. = —g (g, ,f.)a,g, +g, (g, ,f )—
=o dt

d h /llh il+ d.g +J"d g ).

Equations (82) and (83) express the derivative (81) by
known quantities at a given time.
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