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Effect of capillary waves on surface tension
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On fluid interfaces in finite-size systems, capillary waves longer than the system size are cut off,
and the interfacial tension is higher than its infinite-system value o.. We quantify thih increase using
capillary-wave theory to calculate o2 q~, the surface tension of an interface with no capillary waves
longer than l. The effect is small for a liquid-vapor interface near a triple point unless I is on the or-
der of 10 molecular diameters. In contrast, a2 q~/0. near a critical point can be significantly larger
than unity for reasonably large va1ues of l. We find that cr2 qt/tr=1. 6 for 1=20/, with g the bulk
correlation length in either coexisting phase. Because systems on the order of 20$ are physically
realizable, this result has important implications for surface tension in confined geometries. Our
normalization of the capillary-wave partition function implies that o2 /~ also obeys finite-size scal-
ing: ot qI/a =F(l/g), where F(x) depends on the shape of the confined geometry but is otherwise
universal. The implications of these and other predictions are discussed in light of recent develop-
ments involving surface tension and confined geometries.

I. INTRODUCTION

The capillary-wave divergence of the thickness of a
liquid-vapor interface was first predicted by Buff, Lovett,
and Stillinger in 1965. According to their theory, the
mean-square displacement ((g )) of an interface from its
nominal location diverges for an infinite system in the
limit that the gravitational field (g) tends to zero. In
three dimensions, (g ) is predicted to diverge as lng
The physical explanation of this result is that capillary-
gravity waves are thermally excited on the interface
against surface tension and gravity. The long-wavelength
modes, which resemble local vertical translations over
large horizontal distances, require very little energy to
create and exist with sufficient density to lead to the
divergence.

The prediction of a divergent (g ) has been controver-
sial because it raises questions about the commonly in-
voked concept of a density profile that interpolates
smoothly between coexisting densities as one traverses a
thin transition region separating two coexisting phases.
Prior to capillary-wave theory it was thought that such
density profiles were intrinsic to the phase equilibrium it-
self and did not depend for their existence on the presence
of an external field. An important step in reconciling the
two views was made by %eeks, who argued that the two
models apply on different length scales. The intrinsic-
density-profile theories apply to cylindrical subsystems
with interfacial cross-sectional areas on the order of the
square of a bulk correlation length, whereas capillary-
wave theory describes fluctuations between regions of the
interface that are separated by many correlation lengths.
In a very rough sense, density-profile theory provides the
underlying interface whose deviations from planarity are
described by capillary-wave theory. While these argu-
ments are physically appealing, the scale where one
description merges into the other is very difficult to define
unambiguously.

In this paper we calculate the increase in interfacial ten-
sion caused by cutting off capillary waves that are longer
than a given wavelength. We focus for simplicity on
three-dimensional systems and use capillary-wave theory
to calculate ok, the surface tension of an interface where
only those modes with at least one wave-vector com-
ponent (k,', ks) greater than k are allowed. We also calcu-
late the surface tension in the case that

~
k,'

~

and
~

k„'
~

must both be greater than k (all other modes cut off), and
when only

~

k„'
~

must be greater than k. The second case
(tension ok,q „)corresponds to an interface of square
cross-se:tional area (2tr/k), and the third (tension ok, i;t)
to an interface confined in one direction but infinite in the
other. The definitions of these quantities will become
clear in Sec. III. A prominent feature of our analysis is a
new "normalization" of the functional integral that yields
the surface tensions.

The basic idea of capillary-wave theory is to "unfreeze"
longer and longer wavelength distortions on a "bare" in-
terface with bare surface tension ot, . These quantities are
defined here in an a posteriori fashion by estimating the
shortest wavelength distortion that can be described using
capillary-wave theory. We denote this shortest wave-
length alternately by A.

' and 2l' (and the corresponding
wavevector by k'=2m/A, '), and we identify the bare-
surface tension with that of an interface with all modes
longer than A,

' cut off. Modes shorter than A,
' and non-

capillary-wave-like fluctuations cannot be described by
the theory, but they do contribute to, and indeed deter-
mine, o~.

%e are interested in the quantitative behavior of o.k
(used generically in the rest of this section) and its relation
to the surface tension of a finite-size system. Our most
surprising result is that ok can be significantly larger than
the unconstrained surface tension o =pro, even when
k ~&k'. This prediction of an enhanced surface tension,
if correct, will have important implications for interfaces
in confined geometries, where the small physical dimen-
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sions of the system cut off capillary waves with wave-

lengths larger than the system size. We show that this
can cause a 50% increase in the surface tension near a
critical point in physically realizable confined geometries.
The theory also predicts that cr and ok near a critical
point are related by finite-size scaling. One then expects
(k') ' to be on the order of a bulk correlation length,
and we find that crk=crF(k/k'), with F(x) universal.
These issues could be relevant for questions recently
raised regarding two-scale-factor universality. s

Of past attempts to assess the effects of capillary waves
on surface tension, 'i' 'i our approach is closest to those
of Atkins, " Stillinger, ' and Weeks. i (See also Huse, van
Saarloos, and Weeks. '

) Atkins, who built upon the work
of Frenkel, ' showed that a substantial fraction of the sur-
face tension of liquid He II at absolute zero could be attri-
buted to the zero-point vibrations of the interface. He in-
troduced the concept of an intrinsic, or bare, surface ten-
sion, in his case the surface tension of a hypothetical in-
terface with the zero-point vibrations suppressed. Stil-
linger attempted to calculate the surface tension of near-
critical droplets as a function of droplet size. He intro-
duced the idea of renormalizing the surface tension, but
his results depend explicitly on Planck's constant. Weeks
attempted to calculate the difference between the macro-
scopic surface tension and the surface tension obtained
from molecular-dynamics experiments. The periodic
boundary conditions applied in the simulations cut off
capillary waves larger than the cell size. Our analysis is
similar to that of Weeks, although his treatment must be
modified close to a critical point. Finally, Weeks has also
discussed capillary-wave theory in the context of bulk
critical phenomena. (See also Huse, van Saarloos, and
Weeks. '

) Starting with a bulk d-dimensional model, he
argues that one obtains capillary-wave theory by integrat-
ing out degrees of freedom on scales shorter than a corre-
lation length. The resulting model depends on renormal-
ized parameters and describes fluctuations of a (d —1)-
dimensional interface on large length scales. The ex-
istence of an underlying coarse-graining procedure plays
an essential role in our calculation of the surface tension
in Sec. III.

The remainder of the paper is organized as follows. In
Sec. II we review capillary-wave theory and the assump-
tions on which it is based. In Sec. III we calculate the ef-
fect of capillary waves on the surface tension and show
how the theory can be formulated to obtain ok. In Sec.
IV we discuss the limits of validity of the theory and the
choice of I', and in Sec. V we present numerical exam-
ples. We conclude in Sec. VI with a discussion of impli-
cations, problems, and recent experimental and theoretical
results.

~= f dr ob[(l+
~

Vg~')'~' —1]

+ f dz[pb(z g(r)) pb(z)]gz— —(2)

where the first term is the work done against surface ten-
sion in increasing the area of the interface, and the second
term is the work done against gravity. A key assumption
is that the surface tension in (2) is ob, the surface tension
of the bare interface. This assuinption is discussixl in Sec.
VI. For small amplitude oscillations, we have

what larger than the range of correlations in the bulk
liquid, and in particular that I is on the order of 10 bulk
correlation lengths near a critical point. One would there-
fore expect ob near a critical point to scale in the usual
way: ob ~(1—T, /T)", with T, the critical temperature
and @=1.26 the surface-tension exponent. ' It is shown
in Sec. III that this is indeed the case.

We now consider X particles in a volume V. We as-
sume that V has a square horizontal cross-sectional area
A =I. and that X is such that the Gibbs dividing sur-
face for the bare system lies in the xy plane of a coordi-
nate system centered in V. With (x,y, z) =(r,z), capillary-
wave theory treats single-valued distortions of the bare in-
terface in which the local position of the Gibbs surface is
given by g(r). The vertical displacements g(r) play a cen-
tral role in the theory. By construction, g(r) can have no
Fourier components with wavelengths smaller than 2/':
these smaller-scale fluctuations are already included in the
bare-density profile and in ob. The basic assertion of the
theory is that the probability of a spontaneous fluctuation
g(r) is, from thermodynamic fluctuation theory, '

P [g(r)]=C exp( —PW),

where C is a normalization constant, P ' is Boltzmann's
constant times T, and 8' is the reversible work required
to create the fluctuation.

An implicit assumption made in attempting to describe
the fluctuations of the interface in terms of g(r) is that
specification of g(r) alone is enough to determine W. To
calculate 8' in general, however, one must specify not
g(r), but rather the perturbation 5p(r, z) of the density
profile from its pre-fluctuation value pb(z) In fact. , g(r)
does not in general uniquely determine 5p(r, z). The im-
plicit assumption that we make is that 5p(r, z)
=pb(z g(r)) pb(z)—. The —validity of this for a mode of
amplitude go and wavelength iL requires

[ 85p(r, z)/Br
[ « [ B5p(r, z)/Bz

(

i.e., that go«A, . The theory formulated in terms of g(r)
thus applies only to small amplitude oscillations.

We can now write W in the form

II. REVIEW OF CAPILLARY-WAVE THEORY

We begin with a remark on the bare interface and asso-
ciated bare surface tension ob As noted earl.ier, these
quantities are defined a posteriori in such a way that the
shortest capillary wave that can be considered in either
the x or y direction has wavelength k', or in the notation
used below, 2/'. It is shown in Sec. IV that /' is some-

and in the second term in (2) we expand about /=0,
pb(z —g(r)) —p„(z)= —pb(z)g(r)+ —,

' pb'(z)g(r)'+

(4)

The first term vanishes in (2) by definition of the Gibbs
dividing surface
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zpy —00 —pyz = zpyz —py

while the second term is proportional to

dz Pb'(z)z =Pi —P„=hP,

where pi and p„are the mass densities of the coexisting
liquid and vapor phases. The contribution to (2) from the
higher-order terms in (4) is identically zero. Using these
results in (2},we have

W=-,' f dr(ob
~

Vg~'+~pgg'), (5)

g(r)= gai, exp(ik r) . (6)

The allowed wave vectors k are then

k„k„=+2m/L, +2x2m/L, . . . , +[L/(21')] X 2m/L, .

which one might call the canonical form of capillary-wave
theory. Since W is quadratic in the distortions, all aver-
ages, correlation functions, etc., can be calculated exactly,
as in any quadratic field theory.

To further develop the notation, we calculate & g ), the
mean-square displacement of the interface from its nomi-
nal location at z =0. We assume that periodic boundary
conditions apply at the vertical sides of the volume V, and
we expand g(r} in a Fourier series

where we have excluded the k=0 mode and all modes
with wavelengths A, =2~/k &2l'. The requirement that
g(r) be real implies that ab ——a '

b, and one generally intro-
duces a new set of variables [ab,pi„k„&O,k» unrestrict-
ed I by

Ob=&i+iA . (8)

With (6), (8), and the orthogonality implied by (7), (5) then
becomes

W=A g (ai,+pb)(dyg+obk2) .
k„&o,k

The probability of a distortion with ai, in a small inter-
val dai„etc., is now given by

ff dai, dPi, exp( —PW),
k„&0,k

and a straightforward calculation shows that we have in-
dependent modes with

&... , ) =&,')+&p', &

=(kg T/A)(bpg+obkz)

The mean-square displacement is given by

&g ) =A ' f dr&&(r) & = g &aba

=k, T(2~)-' f",dk„f,dk (dyg+o k')-', (12)

where in the last line we have taken the thermodynamic
limit (A~00), and so replaced A 'g by (2m) fdk.
To exhibit the small-g behavior of & g ) derived by Buff,
Lovett, and Stillinger, we replace the integration in (12)
by integration over a circle of radius n /1', whence

& g'& = [kg T/(4mob)]in[1+ '2'ob(~/I')'] (13)

where ab ——[2crb/(+g)]' is the bare capillary length.
&g ) thus diverges as lng ', as asserted earlier. The
divergence is believable because it is caused by small-k
modes. A disturbing aspect of the result, on the other
hand, is that the divergence of &g ) involves ob and not
c», the full surface tension. This erroneous dependence
would disappear in a self-consistent treatinent (see Sec.
VI).

III. CALCULATION OF SURFACE TENSIONS

A. Capillary-wave contribution to o

The calculation of the surface tension in capillary-wave
theory involves the evaluation of the partition function Z,
associated with the surface distortions,

Z=exp( PFcw)= gC f—dai, exp( —PW) . (14)

The surface tension o is then given by the sum of the bare
surface tension and the contribution from capillary waves,

(15)

ocw=~Fcw/i)A . (16)

While this calculation seems straightforward, the litera-
ture regarding o. and crew is very confusing. The results
that we derive below are closest in spirit to those of
Weeks.

When one attempts to calculate o.cw, one immediately
encounters an obstacle: the fiuctuation variables ab have
the dimensions of length, yet Z must be dimensionless.
The unknown reciprocal length C can be evaluated by
changing from the variables Iai, I to a set which is dimen-
sionless. We first write
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Z= g exp( —PW)
g(r)

exp( —P W)
Ig(r, ) j

Pcr=Pcrb+ —,'(1*} '»( —,
' pi'b)+ —,'(1") 'F(G,'),

where

r, =~,1,' j[~(1')'],

(23)

(24)

ff C' f dg(r;) exp( —PW),

where we have represented the functions g(r} by sets of
discrete values, Ig(r;)I, the r; defining the horizontal lo-
cations of tall cylinders of cross-sectional area (I') . The
dimension 1' has been chosen to ensure that the number
of variables g(r;) is equal to the number of allowed values
of k, i.e., A/(1') . To determine the new constant C', we
recall that one must integrate out bulk density fluctua-
tions on scales smaller than the bulk correlation length to
obtain capillary-wave theory. Thus, we consider the dis-
placements g(r;) as arising from fluctuations in the num-
ber of coherent density fluctuations of size 10 in each
column, where 10 is the correlation length in the liquid
phase. Denoting the number of such "blobs" in the ith
cell by ¹„wetherefore have

g(r;) =(N; N)lo/(1—') (18)

where N is the average number of blobs in the ith cell.
The main point is that we can now express W and Z in
terms of the dimensionless fluctuation variables N~ —N
and write

Z= g f d(N, N) exp( ——PW), (19)

C =C'[W/(1')']'" . (21)

The combination 2/(1') is again the number of allowed
values of k. Using these results and (8) and (9) in (14), we
obtain the partition function in the following form:

with a proportionality constant of exactly unity. It fol-
lows that C' is given by

C'=(1') /1o . (20)

The constant C in (14) follows upon evaluation of the
Jacobian of the transformation from I g(r;) ] to I ab j, viz. ,

g(r;)= gabexp(ik r;),
k

thus,

Gb 2——(1") +gjcrb, (25)

F(Gb)=(2~) f dq f dqrin( ,
'

Gb—+q ) . (26)

Equation (23) is similar in form to the result obtained by
Weeks [Ref. 3, Eq. (47)], and we have used his notation in
defining I and G . This is not so surprising when one
considers the similarities between his calculation and that
presented here. One difference is that in his formulation
the two terms to the right of ob in (23) involve the surface
tension cr instead of crb He .therefore assumes that capil-
lary waves are unfrozen on an interface with tension o.
We argue in Sec. VI that neither cr nor crb is in fact
correct. A more significant difference is that Weeks
views the displacements g(r;) as arising from fluctuations
in the number of particles in each cell, rather than in the
number of blobs. The definition of the Gibbs dividing
surface then leads to the erroneous result C'=(1') bpjm,
where m is the mass of a molecule. It is essential that
near a critical point one not ignore the coarse graining im-
plicit in the formulation of capillary-wave theory. Far
away from a critical point the difference is inconsequen-
tial: (bp/m) ' and 10 are then comparable microscopic
lengths. The other differences between Week's result and
(23) are minor and arise from his consideration of a par-
ticular discrete model [see Ref. 3, Eq. (34)]. Diseretiza-
tion of the model here leads to g3) through (26), but with

q in (26) replaced by

1 ——,
' [cos(2q, )+cos(2qr )] .

As a final point, the net correction to crb is negatiue, so
that cr & crb This is. expected since crb pertains to a con-
strained interface: when capillary waves are unfrozen
they lower the free energy associated with the interface.

We may simplify (23) by observing that G is negligible
except extremely close to a critical point —so close that
the capillary length is on the order of a bulk correlation
length. As gravity effects then play a major role, ' we
avoid that region and ignore G . (Equivalently, we sim-

ply take the limit g~O.} With the result

(2ir) 2 f dq» f dq„lnq =21nm —3+ln2+m'/2

k &Ok
[2(1') 3/lo]

X f dai, f dpbexp[ —pA(af, +pi, )
we then obtain

pcr =pcrb+ —,
' (1') lnI pcrbl trE/[2m(l') ]), (28)

X(bPg+crbk )]

(22)
The extra factor of 2 arises from the transformation from
(ai„a i, ) to (ab, Pi,).

We can now perform a straightforward calculation of
crew. From (15), (16},and (22) we obtain, in the thermo-
dynamic limit,

where E =4.7275. . . and the leading-order correction is

of order ging '. ' The surface tension cr is thus well

defined in the absence of an external field. An important
consequence of (28) near a critical point follows upon not
ing that 1' is proportional to 10 (see Sec. IV). Because crl~~

approaches a constant at a critical point, this means that
crb and cr both scale as (1—T, /Ty' for T near T„asnot-
ed in Sec. II. This lends credence to our evaluation of the
constant C in (14).
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8. Effects of capillary-wave cutoffs

In contrast to the calculation of cr (where all modes in
the square I

—k ' & k„,k„&k '
J are unfrozen), one obtains

surface tensions larger than o when only subsets of modes
are unfrozen. We consider the three capillary-wave cut-
offs shown in Fig. 1, where the shaded regions denote un-

frozen wavevectors and the unshaded regions wave vec-
tors that are cut off. Case 1 (surface tension ob) does not
correspond to any particular confined geometry, case 2
(surface tension ok ~~,} corresponds to a square confined
geometry, and case 3 (surface tension ob, i;,) corresponds
to a slit, i.e., an interface confined in only one direction.
It is clear that

2k*

+k, square

h-2k+

~k, slit

+k, square & ok, slit & o k ~

because the more modes that are cut off, the larger the
surface tension. The quantity ob is useful as a lower
bound.

To calculate ok we first rewrite (22) in the form

exp[ —2PFcw (k )]

= ff [2(I')'~/I,']
kl

+k' kexP —Q Qk +

FIG, 1. Capillary-wave cutoffs in k space and their associat-
ed surface tensions. The shaded areas denote allowed wave vec-
tors, and the unshaded regions wave vectors that are cut off.
All modes ~ould be allowed on an unconstrained interface and
the squares would be entirely shaded in. %e associate oh, ,q „

with the surface tension of a square interface of edge l =2m/k
in real space, where modes with

~ k„~&2n/I or
~

k»
~

&2n/I
are cut off. Similarly, we associate ok, ];, with an interface
which has width l in the x direction but is infinite in the y
direction.

X(+g+ oh k') ]

(29)
The product is over the shaded region for ok in Fig. 1,
and the factor of 2 in the exponent on the left-hand side
arises on elimination of the restricted product in (22).
Since Fcw(k) gives the lowering of the free energy due to
the unfreezing of modes in the shaded region, we have

Equation (31) is convenient for studying orb in the
neighborhood of k". It is more convenient to have an ex-
pression for ok that is accurate for small k. We set
G =0 (as noted above, we assume that this term is negli-
gible), subtract (23) from (31), and use (27). Writing
k =2m/I and k' =2m. /(2I'), we obtain

orb =oh+ t}F (k)/t}A . (30) Po'2«i=Po' 21 lnIPobl—pF[2n(I') ] '(21'll) I . (32)

X Vx q&ln 2 Gb+g
kZk~p Iq I lq

(31)

Note that o.k reduces correctly to ob in the limit k =k',
while in the limit of zero k it gives (23).

To exhibit an explicit equation for ob, we need only carry
out the integrations and pass to the thermodynamic limit.
Doing this, we obtain

perk =pob+ —,
' [(k'/m) —(k/m) ]ln( ,

' pl b)—
+ —,

'
(k /m ) (2m )

The bare surface tension can be eliminated completely by
solving (28) for ob (see Sec. IV).

Equation (32) implies that Po2 /i approaches the un-
constrained surface tension slowly with increasing I, i.e.,
Poz«i —Po Ocl lnl for large 1. Because lp is a bulk
correlation length near a critical point and I' is a multiple
of Ip 0'i /i also obeys finite-size scaling: o2 /t =oF(l/g).
The function F(x} depends on the shape of the allowed
region in k space but is otherwise universal.

To calculate ok~„„,and ok,l;„oneneeds to evaluate
the product in (29) over the appropriate shaded regions in
Fig. 1. Proceeding as for

hark,

we obtain

F2~/i ~~„pa 2[(1 I) ' I—]in—I po'blp/[2m—(1 ) ] I + —,
' (I ) [I(21 /1, 21"/I) —I(0,0)],

~o2«i siit=I3o (I I) 'ln{poblo/[2n(1 ) ]I+ T~(1 ) [I(21 l1,0)—I(0,0)],

I(a,b) =4(2n') I dx I dy In(x 2+y i)

=(1—a)(l —b)(2lnm —3)+ln2+n/2+(a —1}tan 'a+(b 1)tan 'b —a ln—(1+a ) b ln(1+bi)—
+abln(a +b ) —a tan '(a/b) b tan '(bla) . — (35)
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Like t72&/i CT2&/l, gqmra and tT2+/I, lit Obey fini«-»Ze SCahng

near a critical point, but with different functional forms
for F(x}. That all three surface tensions obey finite-size
scaling is a consequence of our normalization of the
capillary-wave partition function. For large I we have the
results

0+2rr/I, slit 5 ( P~2sr/I, square P~ ) /2

= —(I'/) '[2(inn —1)+ln( —,'PI b)], (36)

which imply that pa2 /l, l;t and pcr2 /l z „approach per
very slowly (as 1 ) with increasing 1. The numerical im-
plications of (32) through (34) are investigated in Sec. V.

As stated in Sec. II, the theory in its present form is re-
stricted to the treatment of small amplitude oscillations of
the interface. Recall that for an individual mode of am-
plitude gQ and wavelength A, this meant that gQ((A ~ For
many modes present simultaneously, on the other hand,
we assumed that

~ Vg
~

&&1. The validity of the theory
thus rests on the inequality'

(37)

When this condition is not satisfied, modes with different
wave vectors are strongly coupled, and it is not permissi-
ble to expand (1+

~ Vg~ )' as in (3).' As a practical
matter we will deflne (37}to be satisfied when

IV. CHOICE OF I, CALCULATION OF nb ( i
Vgi') &0.1. (38}

To determine the range of validity of capillary-wave
theory, we need to estimate the largest k for which we can
believe calculations of crk, ok~ „,and teak, i;t. Since
km =k =2ir/(2l'), we must choose f' in such a way
that the assumptions that we have introduced are valid.

The leading-order term in the expansion of
(1+

~
Vg

~

)' —1 is then 20 times larger than the first
correction.

It is as straightforward to calculate (
~
Vg

~
) as it was

to calculate (g ) in Sec. II. We find

(~Vg( )=A '
J dr(~Vg(r)( )=yk (til, t2 l, )

=kgr(2~) ' fdk f, ,dkyk'(dpg+a, k') (39)

I';„=(0.1PolQ)
'

IQ .

Here, I';„is the smallest value of I' for which capillary-
wave theory can be considered valid, 2l';„is the shortest
wavelength, and 1Q is an arbitrary scale factor (i.e., f';„is
independent of lQ). For a pure fluid near its triple point
we take lQ to be a molecular diameter. For a near-critical
interface we take lQ ——g, with g=gQ~ 1 —T/T,

~

" the
bulk correlation length of either coexisting phase. Here
v=0.630 is the correlation length exponent' and (Q is a
nonuniversal amplitude on the order of 1 —2X 10 cm.

Let us first consider the simple fiuid SF6 near its
triple-point temperature T, . Assuming the values'

T, =223 K, o =11.4 dyn/cm, and lQ ——3.1X10 cm, we
find

I';„=5.3lQ (41)

It is simplmt to replace this exact expression by an upper
bound obtained by setting g =0 and substituting cr for rrb.
With (38) we obtain a result that can be written in the
orID

I',„=10$ . (42)

This result is consistent with assertions by Weeksi and
Huse et til. ' that I';„=M/, with M a fixed number
much greater than unity. It would seem that at wave-
lengths of 21 =20/ most of the fluctuations responsible
for the critical phenomena would have already been in-
cluded in the parameter crb characterizing the bare inter-
face.

According to this, the th~0 corr~tiy dmcrib distor
tions with wavelengths as short as about 10 molecular dj
ameters. We also record results for Ar near its triple
point. With the values tr= 14 dyn/cm, T —85
fQ =3 4X 10 cm, we find 1';„=2.71Q.

Fo«pure fluid near its critical point, we can use two-
scale-factor universality to express I';„in a universal

According to this principle, the combination pog2
approach& a constant, independent of my particular
fluid, as T approaches ?;. Moldover's recent anaiysiss of
a wide variety of fluid data gives ptrg2=0. 1(}, where we
have used the amplitude ratio2' gQ(?' ~?;)/gQ(?' &?;) —2
to write perp in terms of (Q(T & T, ). Equation (40) with
Ill ——( then becomes

TABLE I. Relevant data for SF~ and Ar near their triple points.

Fluid
Ttriple

fK.)

223
85

(dyn/cm)

11.4
14.0

Io

(A)

3.12
3.40

5.3
2.7

Po la

0.36
1.38

Clb /0'

1.38
1.19
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TABLE II. The ratios ok ~,/o. and ek,~;t/0. for SF6 and Ar near their triple points, with k =2m/I.I;„is 33.1 A for SF6 and 18.4 A for Ar.

SF6

1

1.5
2
3
4
5
6
7
8
9

10
25

&k,square/O

1.379
1.342
1.294
1.224
1.179
1.149
1.127
1.111
1.099
1.089
1.081
1.034

k, .ut/O

1.379
1.264
1.203
1.139
1.106
1.085
1.071
1.061
1.0&4
1.048
1.043
1.018

k, square /~

1.187
1.172
1.151
1.118
1.095
1.080
1.069
1.061
1.054
1.049
1.044
1.019

O k,slit/0

1.187
1.137
1.107
1.075
1.058
1.047
1.040
1.034
1.030
1.027
1.024
1.010

With (41) and (42) for I', we can calculate ob/tr from
(28). The results for SFb and Ar near their triple points
are collected in Table I, while near a critical point crb/a
always has the value 1.57. That crblo is significantly
larger than unity is important because 02~~I, o'2~~1 ~~„,
and cr&~/I, II, each reduce to crb as I decreases to its
minimum value 21'. The smaller the value af I';„the
larger the ratio trb/o, and vice versa.

V. NMNERICAL EXAMPLES

Equations (32)—(34) are useful for computation. Infar-
mation for SF& and Ar near their triple points is given in
Table I, and calculated values of oq /t ~~„/cr and
cri /t, I;,/tr as functions of III;„aregiven in Table II.
The surface tension ratios near a critical point are present-
ed graphically in Fig. 2—these are universal when plotted
as functions of I/(. Unscaled parameters are tabulated
for SFs in Table III.

For SFs near its triple point„(41) implies that

I~;„=2l';„=10.61o. Far Io ——3.12 A, we have I;,=33. 1

A. We see from Table II that oz /t~ „/a=1.38 for
Ill;„=1,corresponding to a 38% enhancement of the
surface tension over its infinite-system value. This is
presumably what one would find in the computer simula-
tian of a system of SFb 10.6-molecular diameters across.
For Ar we find I;„=5.4lo —18.4 A, and we obtain

I I I I I I (t I t I I I I I

CÃ b /CÃ -1—

0.3

0 0.q

o2 /t ~ „hr=1.19 for Ill;„=1.This increase pertains
ta the computer simulation of a system of Ar 5.4-
molecular diameters across. For a more realistic system
10.8 diameters across, we would predict a 15% enhance-
ment, which is not unreasonable in terms of simulations
that have been done and in view of the difficulties in
simulating interfaces (see Ref. 4, Chap. 6). The predicted
finite-size effects depend weakly on I in the range of sys-
tem sizes accessible to simulation.

Near a critical point (42) implies that I;„=20lo——20$,
with g a bulk correlation length. We find o2 /t/cr=1. 57
for 1llm;„=1,and an identical result holds for the square
and slit geometries (see Fig. 2). Taking the reduced tem-
perature

~
t

~

=10 as an example, we find I;„=6220A
for SFb. This might mean that measurements of capillary
rise in a capillary 0.6 p, m in diameter would lead to
anomalausly large apparent surface tensions. Alternative-
ly, if one thought that one knew the surface tension, the
fiuid would rise 1.57 times higher than one would think.

TABLE III. Data for SF6 for the critical curves shown in

Fig. 2. Here t =(T—T, )/T„T,=319E, cr=4SX
~

t
~

'
dyn/cm, and /=0. 94X

~
t

~
A (see Ref. 19). I;„is equal

to 20$ and crb/cr=1. 57.

0.03—

0.01
10 30 100 300 1000

10
10
10-4
10-'
10-'

(dyn/cm)

1.45 X 10-'
7.97 X 10
4.38~ 10-4
2.41 ' 10-'
1.32 g 10-'

(A)

17
73

311
1328
5664

(lcm)

0.03
0.15
0.62
2.66

11.33

FIG. 2. Log-log plots of cr2 zt/cr —1 vs I/g near a critical
point, with g the bulk correlation length of either coexisting
phase. The curves depend on the geometry of the allowed re-
gion in k space (see Fig. 1} but are otherwise universal. All
curves converge to crb/cr —1 at I;„=20/,our estimate of where
capillary-wave theory breaks down. Values of o, g, and I,

„
for

SF6 are given in Table 3.



33 EFFECT OF CAPILLARY %AUES ON SURFACE TENSION 1955

Note that the effects of capillary-wave cutoffs decay very
slowly with increasing I for the square and slit geometries:
for 1=100/, we find o2„~1,~ „/a=1.22 and

~2wlf, slit/~= 1 12. F«SF6 at
I

r
I

= 1o ' 100' equals
3.2 pm, a system size which is easily realized experimen-
tally. While the surface-tension enhancement factors are
certainly significant for T near T, and I near I;„,the
surface tension itself is very small. This is shown in Table
III, where we collect results for SF6 at several reduced
temperatures.

UI. CONCLUDING REMARKS

We have usixl capillary-wave theory to calculate the ef-
fect that cutting off capillary waves has on surface ten-
sion. The fact that modes are cut off causes the surface
tension to be larger than its unconstrained value ~. The
surface tensions ok, ok ~ „,and oi, @, pertain to infinite
interfaces with certain sets of capillary waves cut off (see
Fig. 1). We have shown in Sec. V that the ratios of these
constrained tensions to cr can be significantly larger than
unity, especially near a critical point and for the smallest
k's (k =2m/I) that the theory can be said to legitimately
describe. Results for SF6 and Ar near their triple points
are given in Table II, while results for any system near its
critical point are presented in Fig. 2.

There are two predictions of the theory. The first of
these is that the surface tension of a fiuid in a confined

geometry can be 1.5 (or possibly more) times larger than

the surface tension in a large system. This effect might

provide some insight into the results obtained by Mold-
over and Gammon, who measured the capillary rise of
SF6 between two very closely-spaced (1—4 pm) laser mir-

rors. They observed rises substantially larger than

predicted by hydrostatic theory with the macroscopic sur-

face tension —for example, a 30—40 % increase for

~

t
~

=2.1X10 and a spacing of 1 pm. Our results for
cri &&,b, imply a 24% enhancement Moldo.ver and Gam-
mon tried to explain their results in terms of wetting

layers on the glass plates (which were envisioned to effec-
tively reduce the plate spacing), but this led to the predic-
tion of anomalously thick wetting layers. We now believe

that the wetting layers in their system would have been

too thin to explain the capillary rise measurements.
Moreover, we now know that there was a significant un-

certainty in the determination of the plate spacing because
of an unknown phase shift arising from the use of the
multilayer dielectric mirrors. In light of this, it would be

very interesting to do the Moldover-Gammon experiment
over again. It is encouraging that the shapes of the
capillary-rise curves as a function of plate spacing in their
experiment do not vary as the reciprocal of the real or ef-
fective plate spacing, as they would if the conventional
theory of capillary rise were applicable. Rather, the
discrepancy between the measured and theoretical values
of the capillary rise increases as the spacing between the
plates decreases. This is consistent with an interpretation
of their experiment in terms of finite-size effects. We re-
mark that interface curvature and the effects of wetting
layers need to be considered to deride what interface Auc-
tuations are actually cut off.

The second prediction deals, with how Ok and the other
constrained surface tensions scale near a critical point.
According to (32), a2~qilo is a universal function of I/g,
where g is the correlation length of either bulk phase. The
results are thus in agreeinent with the proposal of finite-
size scaling for the surface tension.

The finite-size effects shown in Fig. 2 may be relevant
for questions recently raised concerning two-scale-factor
universality for fiuids, according to which Pap is a
universal constant. Moldover has recently sho~n that
Perp for a wide variety of fiuids apparently is a constant,
but its value is about 1.4 times larger than that predicted
theoretically. Most of the measurements were extrapolat-
ed to T, from far from T„however, and it is possible
that those made near T, were infiuenced by finite-size ef-
fects. Such effects would lead to apparent surface-tension
amplitudes which would be too large. Note that the range
of significant finite-size effects in Fig. 2 decays very slow-

ly with system size near a critical point.
We conclude with a discussion of two open questions.

The first concerns the smallest length scale 21';„on
which capillary-wave theory can be applied. As noted in
Sec. IV, our results for ob/cr depend sensitively on this
length. Near a critical point we have estimated that
21';„=20/, but the value could be somewhat lower or
somewhat higher. It is often stated that I';„is on the or-
der of g. To estimate Im;„more accurately would require
the development of a theory that bridges the gulf between
length scales somewhat smaller than g and length scales
much greater than g. An experiment designed to probe
finite-size effects would provide valuable information in
this regard.

A second question concerns the way in which distor-
tions are usually unfrozen in capillary-wave theory. Let
us imagine that we unfreeze all modes with wavelengths
greater than X' but less than some arbitrarily long wave-
length A, . If we inquire as to what surface tension the
mode of wavelength A, sees, capillary-wave theory
responds Ob, the bare surface tension. But the long-
wavelength mode should see essentially o, the uncon-
strained surface tension. We conclude that the long-
wavelength mode sees a "renormalized" surface
tension —a surface tension that differs from ob because of
the unfrozen modes of shorter wavelength. Such effects
have not been included in the version of capillary-wave
theory considered here. At the very least, one would have
to replace crb in (29) with a generalized wave vector-
dependent quantity u(k', k, k') representing the surface
tension that a mode of wave vector k' sees given that
modes with wave vector components between k and k'
have been unfrozen. Limiting cases are
o(0;k,k')=Ok,

q „,which is one of the surface tensions
calculated in Sec. III, and cr(k;O, k ):cr(k), which is—the
response of an unconstrained interface to a mode of wave
vector k. One would also expect cr(k';k, k') to be a
monotonically increasing function of k (because larger k's
correspond to more constrained interfaces), and of k' (be-
cause the renormalizing effect of modes in the interval
(k,k') should diminish as k' increases). While a theory
for o(k';k, k') does not yet exist, its effect on our calcula-
tions would be to increase the ratios of ok, ok~ „and
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trt, ,i;, to cr. The response function cr(k) would be interest-
ing to calculate for two-scale-factor universality because
o(k) is the surface tension measured in quasi-elastic light
scattering from capillary waves. If tr(k) were significant-
ly larger than o, this mould help to reduce the present
discrepancy between experiment and theory.
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