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The three-dimensional diffusion of an asymmetric-top molecule is described in terms of the linked
translational and rotational Langevin equations both written in the moving frame of reference. The
terms appearing in these equations suggest the existence of cross-correlation tensors in the moving
frame (1,2,3) and in the laboratory frame (x,y,z). Their existence has been confirmed by molecular-
dynamics computer simulation both in the absence and presence of a strong external electric field of
force. The symmetry group to which the cross-correlation tensors belong depends on the variables
being correlated, and changes when the field is applied. The latter is capable of generating cross-
correlations which otherwise have no existence, and may therefore be used experimentally to isolate
the cross-correlation functions from the ever-present autocorrelation functions which form the
“background” to the ensemble molecular dynamics. It is shown that some off-diagonal elements ex-
ist in frame (x,y,2) in the absence of the field, thus invalidating the basic hypothesis of the theory of

rotational diffusion.

I. INTRODUCTION

The rotational diffusion in three dimensions of the
asymmetric-top molecule can be described in terms of a
Langevin equation.! This is written? in the moving frame
(1,2,3) of the molecular principal moments of inertia, be-
cause in that frame there is a linear relation between the
angular velocity and momentum. However, when the
center of mass of the rotating molecule is also translating
in the laboratory frame (x,y,z), the problem arises of how
to write down and solve the appropriate Langevin equa-
tions. In this paper progress is made toward obtaining
such a solution by use of a digital computer simulation.®

A translational Langevin equation is written in this pa-
per in a rotating frame of reference (1,2,3)' by making a
transformation from the laboratory frame (x,y,z). It is
then straightforward to derive the moving-frame transla-
tional Langevin equation in which the molecular angular
velocity appears as a natural variable. This variable is
also driven by the standard’® Euler-Langevin equation for
rotational diffusion so the two equations, translational
and rotational, are linked analytically. This procedure
produces six equation in six unknowns and computer
simulation can be used to establish which terms in these
equations are correlated statistically and which are not.
Correlation tensors between these terms can then be com-
puted and their symmetry studied.*

II. THE LANGEVIN EQUATIONS

Consider a coordinate system (1,2,3)" whose origin coin-
cides with that of the laboratory frame (x,y,z) but which
rotates with respect to the latter at the angular velocity o,
defined as being the molecular angular velocity. It fol-
lows from elementary dynamics™® that

[v](x,y,z)=[v+wXr](1,2,3)’ ’ 1)
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[vlnz3r=[v+toXr]xy > 2)
[Vlxyo=[V+20XVv+oXT+0X(@X1)]123) (3)
[91(1_2,3)'=[i'+2wXV+ler+a)X(er)](x,sz) . (4)

The subscripts in these equations mean that every vec-
tor on the right-hand side (rhs) or left-hand side (lhs) is
defined with respect to that frame of reference. The vec-
tor r defines the position of the molecular center of mass;
v is the center-of-mass linear velocity and @ the molecu-
lar angular velocity in either frame of reference, being de-
fined as the angular velocity of one frame with respect to
the other. If a moving frame, (1,2,3), is now defined as
that of the three principal molecular moments of inertia,
and therefore with origin at r in frames (x,y,z) or (1,2,3)’,
then

[r]i,2,3r=[0]11,2,3) (5
[v+oXr]yr=[vlas (6)
[V+20XVv+oXT+oX(@X1)] 23y
=[v+20Xv]i2y, D
(W2 — (Wl - (8)

Note that the root-mean-square components of v in frame
(1,2,3) are not the same on the average, i.e.,

(P12 () V2 (03)12 9)
in contrast to
<v3>1/2=<vy2>1/2___<vzz)1/2’ (10)

the usual laboratory-frame result for an isotropic liquid.
It follows from Eq. (9) that the translational friction coef-
ficient in the moving frame of reference is not a scalar,
but a tensor with three differential diagonal components,
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B, By, and B;. This means that the translational
Langevin equation in frame (1,2,3) is

[V+20XVv+Bv=W]123) (1

or, in component form,

Oy +2(@av3 —03;)+Bw =W, , (12)
by +2@30) —0103)+ By =Wy, (13)
133 +2(CL)1U2—(021)1)+B3U3=W3,, . (14)

In Egs. (12)—(14) it can be seen that the angular veloci-
ty @ is present as a natural component of the Coriolis ac-
celeration [2@ X V] ; ; 3) with respect to frame (1,2,3). The
angular velocity [@](y,2,3) in frame (1,2,3) is also driven by
a rotational Langevin equation in this frame, which can
be written as>

1,6, — (I, —I3)o03+ 1, Bioy =1, Wy (15)
1,6, — (I3 — I}y + 1By, =1, W, (16)
13663—(11 ~12)w1a)2+13§3w3=13 W3 . (17)

In Egs. (15)—(17), I, I,, and I are the three principal
molecular moments of inertia; B8, B,, and B; are the three
rotational friction coefficients of the Euler-Langevin
equation’ and W, W,, and W, are the three rotational
Wiener processes.

A. Special cases
When there is no rotation, then

[@]1,2,3=0,
and we recover the translational Langevin equation in
frame (1,2,3):

[0 +Bivi=Walazy (i=1,23). (18)

Similarly, when there is no translation, Egs. (12)—(14)
vanish, leaving Egs. (15)—(17), the standard Euler-
Langevin equations. Therefore the system (12)—(17)
reduces to the correct translational and rotational limits.

B. Spherical top and perfect sphere

It is necessary to make a careful distinction between the
perfect sphere and the molecular spherical top of T, or
0, symmetry, for example. This is because there is no ro-
tation to translation cross correlation in the perfect
sphere,7 but this is not necessarily true for the molecular
spherical top, where

IL=I,=I, . (19)

C. A perfectly spherical body
In this case condition (19) is supplemented by

Bi=B=p; (=B),

N . (20)
Bi=B=B; (=B,

and by
0=w,=0; (=0),
(21a)
v =vy,=v; (=v),

so that the Coriolis terms in Eqgs. (12)—(14) disappear, and
the set of translational equations. (12)—(14) becomes fully
independent of the rotational equations (15)—(17).

D. The molecular spherical top

A molecule of O, or T; symmetry is a nondipolar
spherical top. It is also possible to approximate to condi-
tion (19) quite closely with a number of dipolar molecules.
In this case condition (21) is not necessarily true. For ex-
ample, in a T,;-symmetry molecule, such as CCl,, resis-
tance to the translating (1,2,3) frame in the C-Cl axis is
not necessarily the same as that perpendicular to this axis,
SO

iFE (21b)

Bi1#B25#B; .

Condition (21) means that the Coriolis term in Egs.
(12)—(14) is finite even when

0=0,=0; (=),
Bi=B,=B; (=PB).
The three-dimensional roto-translational equations for
the molecular spherical top are therefore

0y 4+ 20(v3 —vy)+ B =Wy, , (23)
Dy +20(vy —v3)+ By =Wy , (24)
b3 +20(v; —v;)+Byws =W, , (25)
Io+IBo=IW , (26)

where 3 is the scalar rotational friction coefficient, and W
is the rotational Wiener process. The set of Egs.
(23)—(25) becomes completely decoupled from Eq. (26)
only when

Uz=U3=0 , (27)

i.e., when the translational motion is constrained to the I
axis of the moving frame (1,2,3). This kind of motion can
be visualized if the rotation is confined to a plane. In this
special case there will be no correlation between the
molecular angular velocity and the center of mass linear
velocity perpendicular to the plane in which the molecule
rotates.

In general, for the three-dimensional diffusion of the
spherical top molecule there will be statistical correlation
between the angular velocity and center-of-mass linear
velocity in frame (1,2,3), according to Eqgs. (23)—(26).

E. Linear, nondipolar molecule (the thin rod)
In this case,

II=12=I9 I3=0 (28)
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The purely geometrical constraint (28) is supplemented
by additional constraints on the friction coefficients,

= :B Py
Bi=8, 29)
B;=0,
hi=ho=p,
lj‘ 2 (30)
B3=0 >
and on the angular velocity,
W =wr=w, (0320 . (31

The set of Egs. (12)—(17) therefore reduces in complexi-
ty, but it is clear that its translational and rotational com-
ponents remain interlinked in frame (1,2,3) so that certain
types of statistical cross-correlation survive in this case
too.

F. Rotational motion confined to a plane

In this case the angular velocity reduces to a scalar
quantity, which can be written as

[(O]u,y,z):[w](l,z,s):é . (32)

The moving frame (1,2,3) in this case spins around one
axis, e.g., the I axis, which remains fixed in an axis of the
laboratory frame (x,y,z). Equation (7), under this con-
straint, becomes

[V p=[V1i12,3—26vse,42605¢; (33)

where e, and e; are unit vectors in the 2 and 3 axes,
respectively, of the frame (1,2,3). By definition,

(1)1=9 N

(34)
(1)2=(03=0 N

and the set (12)—(17) simplifies to

v‘1+Blvl=le , (35)
132 —29v3 +BzU2 = WZU , (36)
B3 +260, + By =W, , (37)
6+B6=W . (38)

Equations (35)—(38) describe the Langevin diffusion of an
asymmetric-top molecule whose rotational motion has
been confined to a plane, but which is otherwise free to
translate in three dimensions, i.e., its center of mass can
move in any direction defined by the three axes 1, 2, and 3
of frame (1,2,3). Equations (35)—(38) show that cross-
correlation between rotation and translation survives in
this limit in frame (1,2,3). The cross-correlation vanishes
when, for example, v, =v3;=0, i.e., when the motion of
the asymmetric top is such that its center of mass
translates only in axis I, around which it is simultaneous-
ly constrained to rotate. (This conclusion is the same as
that already reached for the spherical top.) In this very
special limit,

51+3101=W1u, §+39=W , (39)

and there is no analytical link between the translational
and rotational Langevin diffusion. The two equations in
(39) are fully independent in frame (1,2,3). More general-
ly, the two types of diffusion become independent when
any two components of the linear velocity vanish in frame
(1,2,3).

Interestingly, the equations also decouple for all v, if
v, =v3. This follows by setting v, =v; in Egs. (35)—(38)
and then adding Egs. (36) and (37), assuming B3,=p/;.
This limit describes the motion of a perfect disk which is
constrained to rotate around axis I, but whose center of
mass can translate in the plane perpendicular to the I
axis. In this limit there is no statistical correlation be-
tween the two types of diffusion, which therefore have no
influence on each other. This explains, roughly speaking,
why a spinning top will remain in one spot if its axis of
rotation remains vertical, i.e., as long as it rotates in a
plane. As soon as it is tilted out of that plane, the point
of contact with the ground will move, or attempt to move,
as the center of mass of the top attempts to translate.

If the molecule is not a perfect disk, then in the pres-
ence of the constraint v, =0 the Langevin diffusion is
described by

by — 26003+ Byvy = Woy (40)
ﬁ3+2902+B3U3=W3U N (41)
6+B6=W , 42)

and there is cross-correlation in frame (1,2,3).
The nature of this mutual influence of rotation upon
translation can be shown clearly in the limit

B,=B;=B=0, 43)

i.e., when the frictional potential energy is removed from
the Hamiltonian. The Langevin equations then become

Uy —26v3 =0, (44)
U3 +26v, =0, (45)
6=0. (46)

Rearranging Eqs. (44)—(46) gives
U, 4+46%,=0, (47)
which is Hooke’s law, with
‘..
0= fo 6dt=const .
Similarly,
U3 +46%;=0. (48)

Depending on the magnitude of the constant angular velo-
city, ©, therefore, the translational velocity components
v, and v; move in an oscillatory fashion. This type of
motion is that of an asymmetric top initially set spinning
in a plane about a point which is not its center of mass,
and then left to translate free of any Langevin friction.
Equations (47) and (48) [written as they are in the moving
frame (1,2,3)] describe modulations of the center-of-mass
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velocity [v](x,,z due to the spinning motion, taking place
with an angular velocity 6, which is, of course, the same
in both frames of reference. This simply means that the
center of mass of the molecule will translate alternatively
more quickly and more slowly in the laboratory frame
(x,y,z) as the molecule continues its offset rotation. The
autocorrelation functions (ACF’s) of v, and v,y from Egs.
(47) and (48) are

(vp(Dv,(0)) = (v3(0) YcosOr , (49)
(v3(1)v3(0)) = (v}(0))cosO1 . (50)

These clearly depend on © [ =6(t)=const] and this illus-
trates how rotational motion can affect translation in one
simple limit.

III. BACK-TRANSFORMATION
INTO THE LABORATORY FRAME

Any of the moving-frame equations in the preceding
section can be back-transformed into the laboratory frame
(x,y,z) with the general relations® for any vector quantity
A:

A1=Axelx+Ayely+Azelz ’ (51)
A2=Axe2.x+Ay32y+AzeZz ’ (52)
A3=Axe3x+AyeSy+Aze3z ’ (53)

where e, e,, and e; are unit vectors in the three principal
molecular moments of inertia. The Coriolis acceleration
2w(t) X v(t) also back-transforms as

(@XV)=(@XV)ze;x+(@XV)e,+(@XV)ey,, (54)
(@XV)=(@XV)er+(@XV)er+(@XV)e,,, (55)
(@XV)3=(@XV)ies+(@XV)yes,+(@XV)es, . (56)

The original translational Langevin equation in the labo-
ratory frame is well known to be'

[v+3vv](x,y,z)=[W](x,y,z) (57)
and, therefore, by back-transforming Egs. (12)—(14) into

frame (x,y,z) and comparing term by term its components
with those of Eq. (57), we obtain

|
6x +EuvxEl}x(elx+e2_x+e3x)+2(wxv)x(elx+er+93x)+vx(Ble1x+B2elx+B3e3x) ’ (58)
vy +Byvy =V, (e, +ezy+e3,) + 2@ X V), (e, +eyy+e3,)+0,(Biey, +Brey, + Biesy) (59)
13z +BuvzE&z(elz+eh+e32)+2(wXV)z(elz+e?J+e3z)+Uz(Blelz+BZeZZ+BBe3z) . (60)

These identities show that the original translational
Langevin equation contains equivalent roto-translational
components, namely the components 2(w X v),, 2(@ X V),
and 2(e@ X v), of the Coriolis acceleration in the laboratory
frame (x,y,z). (Confirmation of the existence of these
terms in the laboratory frame is given later in this paper
by computer simulation.) Therefore, as soon as considera-
tion is taken of @540, the basic structure of the original
translational Langevin equation itself is changed. In the
limit @ =0 (i.e., if, and only if, @ =0) the structure of the
original 1906 equation of Langevin is regained if we make
the identities

elJl:'*"eZX"I"eZ'm'E'1 ’ (61)
Bieix+Brer+Presx =8, . (62)

Note that Egs. (61) and (62) are not necessarily true for
w#0.

It is especially interesting to note the effect of an exter-
nal electric field on a dipolar asymmetric top diffusing ac-
cording to Egs. (58) to (60). The electric field is known'
to take effect through a torque —u XE on each molecule
of the ensemble. If for the sake of argument the axis of y,
the net molecular dipole moment, coincides with the 1
axis of the principal molecular moment of inertia frame
(1,2,3), and if the field E is applied in the z axis of the
laboratory frame, then the average value of e;, at time ¢
over each molecule in the ensemble will increase. The dis-
tribution of components of orientation among Egs.

I

(58)—(60) is therefore changed. In contrast, it is not possi-
ble to say anything about the effect of an external electric
field from the original Langevin equation (57), whereas it
is known from computer simulation that certain cross-
correlation functions (CCF’s) between the molecular linear
center-of-mass velocity v and its own angular velocity be-
come directly visible in the laboratory frame (x,y,z) when
the field is applied and the sample becomes anisotropic.’
IV. CROSS-CORRELATION FUNCTIONS

From the set of Eqgs. (12)—(17), we can choose nine
cross—fluctuation-dissipation terms

(Wi, (OW(0)),
(Wa(DW,(0)) , (63)
(W3, (hW53(0)) ,
(W (OW,(0)) ,
(Wa(h)W5(0)) , (64)
(WL(OW,(0)),
(W, (OW5(0)) ,
(W3, (OW,(0)) , (65)
(W3, (h)W,(0)) .
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In Langevin dynamics’? each of these is proportional
to a frequency-independent diffusion coefficient, which is
the result both of translation and rotation. More general-
ly, each is a time-dependent memory function.! Each can

J

(W (OW1(0)) = {v1()+2[()v3(1) —

The existence of statistical cross-correlation between the
two Wiener processes in this equation can now be ascer-
tained by calculating or computing each term on the rhs
of Eq. (14), i.e., each CCF of time. This can be achieved
by molecular-dynamlcs computer simulation.'°

A. Computer-simulation algorithm and methods

The sample used in this simulation consisted of 108
CH,Cl, molecules at 296 K with a molar volume of
8.0x 103 m>. The pair potential was a simple 3 X 3 site-
site type with interaction parameters as follows: 39

€(C1-Cl)/k =173.5 K, €(CH,-CH,)/k =70.5 K ,
o(CH,-CH,)=3.96 A, o(Cl-C1)=3.35 A,

ga=-0.15]e|, qcu,=0.30]e | .

After equilibration the CCF’s were calculated with the
use of running-time averaging'' using segments of about
2700 time steps each of 5.0X 10! sec recorded every
three time steps. Using two or more segments provided
an estimate of the reliability of the computed CCF’s. Us-
ing the field-on method of computer simulation,
developed and described elsewhere,"® the simulations were
repeated in the presence of a z-axis electric field E.

B. Cross-section functions from the computer simulations

Nearly all the different possible types of CCF which
appear in the expansion of (63)—(65) were simulated in
this way, both in frames (1,2,3) and (x,y,z). Note that
these results are not solutions of the Langevin equations
but computer simulations based on classical nonequilibri-
um statistical mechanics.°

In the moving frame, the following results were ob-
tained (for all ¢):

(v1(1)w,y(0)w;3(0)) =0, (67)
(vy(w3(0)w,(0)) =0, (68)
(v3(Dw(0)w,(0)) =0, (69)
(v1(1)w3(0)w(0)) =0, (70)
(v5(0)@,(0),(0)) =0, (71)
(v3(Nwy(0)w;3(0)) =0, (72)
(v1(1)01(0)w,(0)) =0, (73)
(v2(1)w2(0)w3(0)) =0 , (74)

(v3(Nw3(0)w,(0)) =0, (75)

(B, ()]+ B,y (2)
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be expanded as a sum of cross-correlation functions in the
moving frame (1,2,3) and these CCF’s can be back-
transformed into the laboratory frame (x,y,z). For exam-
ple,

I161(0)— (I, —I3)0y0)03(0)+1; Bi0(0)]) . (66)

[

Similarly, for all ¢,

(2w X v)(Dw,(0)w3(0)) =0 (76)
(2w X v)y(1)o;3(0)w(0) ) =0, (77)
(20 X v);(1)w;(0)w,(0)) =0, (78)
(20X v)1(1)w;3(0)w,(0)) =0 (79)
(2@ X v)1()w(0)w,(0)) =0, (80)
(2o X V) (1)w,(0)w;3(0)) =0, (81)
(20 X V),(1)01(0)w,(0)) =0, (82)
(20 X v)3(t)w,(0)w5(0) ) =0, (83)
(2o X v);(t)w3(0)w,(0)) =0 . (84)

Results for some of the other types of CCF’s are summa-
rized in Table I, where a + sign denotes the existence of
the CCF for t>0. The symbol 8§ means that none of the
elements of the CCF could be detected above the comput-
er noise. It can be seen, for example, that the diagonal
elements of {(v(t)o’(0)) [i.e., the three elements of
(v(t)-@(0))] all vanish in the moving and laboratory
frames, but some elements off the diagonal of the tensor
CCF exist"*%12 in frame (1,2,3). The same is true for
(VDo T(0)), (V(De'(0)), and (v(1)a T(0)).

Therefore, there is enough information available from
the computer simulation to show that all the CCF’s on the
rhs of Eq. (66) vanish for all ¢. This confirms, therefore,
that every term in the expansion of (W,v(t)Wl(O)) is
separately zero, and similarly for ( Wz,, t)W,(0)) and
(W,,(t)W(0)). The cross-diffusion coefficients associat-
ed with Eq. (63) therefore all vanish:

(W, (DW,(0))=0,
( Wy () W,(0)) =0, (85)
(W, (1)W3(0)) =0 .

TABLE 1. Some cross-correlation functions from the com-
puter simulation.

Frame

Cross-correlation function (x,y,2) (1,2,3)

(v(t)xo(t)-v(0))
(v()o™(0))
(v(t)Xo(t)vT(0))
(@)X Vv(w™(0))
(@(t)Xv(t)-0(0))
(v(t)-@(0))

P>+ » o>
>» o+ + +
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This means that the CCF of these Wiener processes in
frame (1,2,3) contains only off-diagonal elements: in gen-
eral, memory functions.! This result receives further con-
firmation from Egs. (67)—(69), (76)—(78), and from Table
I

There is, however, clear evidence from the computer
simulation for the existence of the cross-correlations in
Egs. (64) and (65) for ¢t>0. These “cross-memory” func-
tions are sums of the following CCF’s which exist for
t>0.

(i) Some off-diagonal terms of (v()@(0)) already
known in the literature.!*8 12

(ii) Some off-diagonal terms of (Vv(t)@ 7(0)).

(iii) Some off-diagonal terms of (V(t)o 7(0)) [and of
(v(ine 7(0))].

Although this is not a direct solution of Egs. (12)—(17)
for these CCF’s, their existence from computer simulation

strongly suggests that the structure of these equations is
correct, within the severe limits"? of Langevin dynamics
in general. It will probably take a technique akin to
analogue circuit simulation! ! to solve the actual equa-
tions themselves, in the continued absence of suitable
analytical methods.

It is especially interesting to note the effect of an elec-
tric field"® on this type of CCF. The electric field pro-
motes their appearance directly in the laboratory frame
(x,p,z). This has been reported in full elsewhere.” Again,
the electric field promotes the existence of two off-
diagonal elements of (w(z)Xv(t)@7(0)) in frame (1,2,3).
In the absence of E it vanishes in frame (1,2,3) but exists
in the laboratory frame (x,y,z). Its direct existence in the
laboratory frame means that a description? of molecular
diffusion in terms of pure rotation or translation is not
suitable in any frame of reference, and that the “classical”

00br—T—T1T17 II!IJ

0.02

FIJI_III

I!I‘XIII]

| |
0.60 03 06 0 0.3

0.60 03 06
ps DS DS DS

FIG. 1. (a) Illustrations of some of the elements of the cross-correlation tensor {w(t)X v(¢)@7(0)) moving-frame, field on. The
(3,2) and (2,3) elements exist, but the (1,2) element seems to be noise only. (b) The off-diagonal elements of

{(a(t)Xv(t)®T(0))
Cult)=
(D= 20)) (02(0)) 2

for E=0 in the laboratory frame (x,y,z). Each element is triple-checked with three nonconsecutive segments of 2700 time steps each.
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1.0 ] ; 1.0 T T T
= (a) - (b) -
050 0 .
;
-\ il EIA )
O 5 +— 0 —3‘ : S ]
i
| | _O'BEU z : i
0 03 06 ps 0 0.6 1.2ps

FIG. 2. Correlation functions of the Coriolis acceleration: (a) field off: 1, laboratory frame (x,y,z); 2, moving frame; (b) field on:
laboratory frame (solid line); moving frame (dotted line): component ACF (Ref. 3) of the complete Coriolis acceleration (dashed line).

theory of diffusion is in need of extension along the lines
suggested in this paper. Some illustrations of
(@(t) X v(t)o"(0)) are given in Fig. 1 in the presence and
absence of the field.® The existence of the ACF of the
Coriolis acceleration® both in frame (x,y,z) and frame
(1,2,3) is illustrated in Fig. 2.

V. USE OF THE ROTATING FRAME (1,2,3)

The analysis can be extended considerably with a rotat-
ing frame (1,2,3)" as defined in Sec. II of this paper, be-
cause this provides the opportunity to introduce into the
translational Langevin equations the position vector r of
the molecular center of mass as defined in Egs. (2) and (4).
The translational Langevin equation in frame (1,2,3)" be-
comes>

[V+20XVv+oXT+o X (@XT1)]2,3y

+§u'[v+w><f](x,z,s)'=[w]<n,z,3)' ,  (86)

where the translational friction coefficient in frame
(1,2,3) is, in general, a diagonal matrix, and the Wiener
process [W],,,3y is generated from [W](w’,) by the
frame transformation (x,y,z)—(1,2,3)".

The particular importance of Eq. (86) is that it intro-
duces into the analysis the center-of-mass position vector
r and therefore provides a link with equilibrium theories
of liquid structure!” and atom-atom pair distribution
functions. It has been shown elsewhere® that ACF’s of all
the individual terms appearing on the lhs of Eq. (86) exist
in the moving frame (1,2,3) and in the laboratory frame
(x,y,z). Therefore the three frames provide us with a
depth of insight to the inter-relation of liquid structure
and clioynamics16 with the help of digital computer simula-
tion.

Again, this is especially interesting in the context of
cross-correlation matrices such as (Figs. 3 and 4)
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FIG. 3. Elements of C, that seem to exist above the back-

ground noise in the presence of an electric field E, laboratory
frame.
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(o(t) Xr()o'(0))

Cit)= ,
! (0X(0))(rX0))!172

(87

and

{(o(t) X [o(t) X 1(1)][(0) X r(0)]T)

C =
) (0%0)) (@X0))2(r%(0))

) (88)

computed both in the laboratory frame (x,y,z) and the
moving frame (1,2,3). These CCF’s deal with the inter-
relation between terms such as w(¢) X r(¢), which appear in
the translational equation (86) and the angular velocity @
which appears in Eqgs. (15)—(17).

The computer simulation provides the results summa-
rized in matrix form in Table II. This table illustrates the
different symmetries of the various cross-correlation ma-
trices listed below. Out of the very many possible new
CCPF’s suggested by the structure of the rotating-frame
Langevin equations, ten are given below:

TABLE II. Symmetry of the CCF matrices.

Matrix (x,y,2) (x,y,2)+E, (1,2,3) (1,2,3) + E,
Cy(t) ) 8 8 8 + 8 ) ) 3} 5 o) 8
8 5 b} + o} 8 8 8 o} 8 5 8
5 8 L} b} ) 8 8 8 ) 8 5 8
C,y(1) ) 8 8 8 5 8 + s} [} + 8 8
) 5 8 8 ) ) 8 + 8 5 + 8
8 8 ) ) b} 8 8 s} + 8 8 +
Cs(2) 5 8 ) b} 8 8 + 8 8 + 8 8
8 b} 5 ) o} 8 8 + 8 o} —+ 5
5 8 o] Lo} 8 8 8 6 + ) ) +
Cy(t) 8 + + 8 + 5 8 8 8 8 s} 8
+ 8 + + 8 e} o} 8 o} 8 b3} +
+ + 8 + + 8 ) 8 ) 8 + 5
Cs(1) o} 3} 3} 5 8 8 8 o} ) 5 8 8
5 8 8 4] 5 ) ) 8 ) 8 8 8
o} o} 8 ) 8 Lo} 8 8 3} 8 o} 8
Ce(2) 8 8 8 1} 5 b} + b} 5 + 8 )
8 8 5 8 5 ) o} + s} 8 + )
5 5 5 5 8 5 ) 5 + 8 ) +
C(t) 8 ) 4} o} I} 5 ) 8 8 8 8 8
L} ) 8 8 8 8 5 8 8 8 8 5
8 8 5 5 8 5 8 8 5 8 5 5
Cs(?) ] o} 5 o} 8 8 e} 8 8 8 8 5
5 5 5 5 8 8 ) 5 5 ) 8 8
8 8 8 8 5 8 8 8 5 8 8 8
Cy(2) 8 ) 8 8 8 ) ) ) 8 5 8 8
8 ) 8 8 8 8 ) 8 8 1} 8 8
) 8 ) 5 ) ) ) 5 8 3} 8 o}
Ciol2) S} ) 8 b3} 8 8 8 ) 8 5 8 Lo}
8 ) 8 b} 8 ) ) ) 5 ) ) L}
5 8 8 8 3} 5 ) } 8 8 ) )
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Ci(t), Cy(1),

(v(t) X a(t)vT(0))
Ci(t)= ,
= 200) (02(0))1 2
_A{o()xXv()eT(0))
ChO=2 200y (w2012
Cult)= (o(t) X [o() X1(1)]’(0))
5 - ((1)2(0))((L)Z(O))l/2<r2(0)>1/2 ’
(r(t) X o()r7(0))
Celt) = ,
= 20)) (02(0)) 2
C-(t)= (v() X&(1)rT(0))
T (0%0)) 2 02(0) )2 r}0))172
Cilt)= (w()Xr(t)vT(0))
= (020))172(r2(0))1/2(2(0) } 172 ’
c(n= S Xe0]{00) X [0(0) Xr(0)]}T)
ST (020))172(0X(0)) 2 0X(0) ) (r0)) /2
Cyolt)= (@) Xr(Ha(0))

T {0 (r}0))2

The nine elements of each of these CCF’s have been
computed in both frames in the absence and presence of
the z-axis electric field E. Here, r is the position vector
of the molecular center of mass as defined already (see
Appendix). It can be seen from Table II that few of the
CCPF'’s exist above the noise. In other words, the dynam-
ics of cross correlation is highly selective in nature in both
frames. From the perspective of Table II it can be seen
that the effect of the electric field is to promote the ex-
istence of a number of off-diagonal elements, e.g., those of
C,(¢) in the table in the laboratory frame and those of
C,4(2) in the moving frame.

The following can be seen in Table II.

(i) None of the off-diagonal elements can be observed in
frame (1,2,3) for E=0.

(i) CCF matrices of the type ( A(z) X w()AT(0)) [e.g.,
Cy(2), Cs(t), and Cg(t)] belong to the same symmetry
group and indeed behave similarly, in that only the diago-
nal elements of frame (1,2,3) exist for E>0. All the
cross-correlation in this case is “concentrated” into these
elements, which are, consequently, quite intense (Fig. 5).

(iii) As already mentioned, only C,(¢) in Table II exists
for E=0 in frame (x,y,z), and then only the off-diagonal
elements. These have been illustrated elsewhere!® in full
detail, and are summarized in Fig. 1(b). The existence of
these interesting functions of time implies that a complete
theory of molecular diffusion cannot be made purely rota-
tional'” or purely translational for the sake of mathemati-
cal convenience. Other off-diagonal elements of this type
may exist!® or other types of cross-correlation and this
will be the subject of further work with different molecu-
lar symmetries.!”

As for (ii), the CCF’s C (1), C4(t), and Cs(t) are the same
type, {@(t)XB(t)®’(0)), but for this group, elements of
C, and C; do not seem to exist in the laboratory frame, or
if they do, are so weak in intensity that they could not be
detected above the noise of the simulation. These results,
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FIG. 5. Moving-frame, diagonal, elements of Cy(z): (a) field
off; (b) field on.

and others like them, cannot be explained easily on the
grounds of parity inversion symmetry;'? the symmetry ar-
gument becomes inapplicable in the presence of the elec-
tric field, because the classical Hamiltonian is then no
longer invariant to parity reversal. This leaves computer
simulation as the only available contemporary method of
investigating single-molecule CCF’s in the theory of dif-
fusion. It is anticipated that analytical technique' and
analogue circuit simulation!>'* will soon develop to the
stage where they could provide independent checks on the
results presented in this paper.

Finally, we can identify the symmetry properties of C;
in the laboratory frame (x,y,z) with those of the matrix’

Cu(={(v(a’(0)) .

Previous work has shown that the response of C;; to an
electric field’ is, in terms of symmetry, identical with that
of C, i.e., the (x,y) and (y,x) elements appear when the
electric field E is applied in the z axis of frame (x,y,z).
This is important from an experimental point of view, be-
cause spectral data in the presence of an electric field con-
tain information on statistical cross-correlation which
does not exist in the absence of the field. The application
of an electric field to a molecular liquid promotes the
existence of new cross-correlations. This finding invali-
dates theories, for example, of electric-field-induced
birefringence based purely on rotational diffusion.! Note



1912 M. W. EVANS 33

that the basic assumption of rotational diffusion theory it-
self? is incompatible with the existence of off-diagonal ele-
ments of C, directly in the frame (x,y,z) in the absence of
an electric field. This is another important finding of di-
gital computer simulation if verified independently.
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APPENDIX: DEFINITION OF THE POSITION
VECTOR r IN FRAME (1,2,3)

For the purpose of computing the cross-section func-
tions C,(#) to Co(2) in the text, the position vector r is
defined for each of the 108 molecules by

rl=rxelx+ryely+rzelz ’ (A1)
r2=rxelx+rye2y+rze22 ’ (A2)
ry=ryey +ryes, +r.es; . (A3)

These three equations define a frame rotation from the
laboratory frame (x,y,z) to the frame of the principal
molecular moments of inertia. Equations (A1)—(A3) are a
special case of Egs. (51)—(53) of the text with A=r.

Note that there is an apparent contradiction between
Eq. (5) and (A1)—(A3). The explanation of this is that
Eq. (5) always refers to an origin at each molecule’s center
of mass (where the axes of the three principal moments of
inertia intersect), whereas in definitions (A1)—(A3) one
takes r for each molecule as first defined with respect to
an origin in the laboratory frame (x,y,z) and then projects
the laboratory frame on to the principal moment of iner-
tia axes of each molecule in the ensemble at each time
step.

The moving-frame translational Langevin equation (11)
and the well-known moving-frame rotational Euler-
Langevin equations? (15)—(17) contain no explicit term in
r because they are not explicitly defined with respect to
any fixed point in the laboratory space. Equation (11)
does, however, contain r implicitly through the extra equa-
tion

[v](x,y,z)z{i'](x,y,z) . (A4)
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