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Statistical ray tracing in plasmas with random density fluctuations
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The propagation of light rays in a plasma is considered for smail density fluctuations superim-

posed upon a given background density profile. The lowest-order angular spreading, focusing, and
drift effects are calculated in the geometrical-optics limit using a statistical random-walk approach.
This method is an economical semianalytic alternative to a purely numerical ray-trace approach and
is of particular but not exclusive interest in describing the propagation of laser light in laser-

produced plasmas. The model is applied to a simple fluctuation spectrum characterized by an rms
amplitude and by a correlation length. Results are presented for the evolution of the intensity pro-
files of beams incident on a plane-parallel linear-profile plasma slab as a function of the angle of in-

cidence. Comparisons of these results with numerical Monte Carlo ray-trace solutions show good
agreement. Density fluctuations as small as a few percent of the critical density can, for example,
produce significant angular broadening in the specularly reflected beam and reduce the sensitivity of
the absorption fraction to the incidence angle, particularly near normal incidence.

I. INTRODUCTION

Statistical ray tracing is a method of describing the ran-
dom behavior of light rays in a plasma in terms of the sta-
tistical properties of the random electron density com-
ponent. As in the earliest random-medium propagation
formalisms, this method is based on the use of geometri-
cal optics to sample the random density fluctuations with
light rays. '

The random-walk spreading of beams of light due to
random density fluctuations is of interest to laser fusion
because, for example, spreading reduces small-scale il-

lumination nonuniformities and because the efficiencies of
various energy absorption mechanisms lose some of their
angle-of-incidence dependence as the beam acquires a wid-

er angular distribution. Such considerations could affect
the spherical uniformity of the deposition of laser energy
in the target, which is a crucial quality factor in the suc-
cess of high-compression implosions. The results of vir-
tually any laser-plasma interaction experiment where
properties of reflected or transmitted light are being mea-
sured are bound to be affected at some level by random
density fluctuations. The use of the spreading of
transmitted or reflected laser beams as a corona-structure
diagnostic would not be without precedent; Chan-
drasekhar was among the first to use the random motion
and scintillation of stellar images to obtain estimates of
the relevant scale lengths and density fluctuation ampli-
tudes of the turbulent atmospheric layer causing this
behavior. '

The theory of wave propagation in random media has
advanced beyond the geometrical-optics formalisms ' '

and has been applied to ionospheric scattering and ma-
rine acoustics. Even though the primary concern of this
paper is laser-produced plasmas, it should be noted that
the work to be described is applicable to wave propagation
in random media in other physical contexts.

An important result of this work is the extension of sta-
tistical ray-tracing techniques to problems where the non-

random "background" density component is inhomogene-
ous. It has been found that a strongly refracted beam of
light will not only spread due to the random density fluc-
tuations; its mean (center} ray will also drift slightly from
the path taken by the unperturbed, zero-fluctuation ray
path. To our knowledge, such a drift has never been de-
rived or described in a statistical ray-tracing theory, but it
is a necessary part of a quantitatively complete beam-
propagation theory. A drift term has been formally ex-
pressed in a wave diffusion theory by Carnevale et al. ,
but this term was not evaluated for circumstances general
enough to give a nonzero result for this effect. The
development by Komissarov' of ray statistics for refract-
ing media is very similar to the one to be presented here,
but he ultimately neglects refraction fluctuation terms
that could lead to a drift effe:t.

The calculation of energy absorption efficiencies in the
presence of density fiuctuations superimposed upon an
idealized density profile has been considered elsewhere for
coherent disturbances of the density profile" and for ran-
dom density fluctuations confined to restricted regions
along density gradients near the critical surface where res-
onance absorption occurs. ' ' The formalism to be dis-
cussed here deals more directly with the propagation of
the light and considers random density fluctuations
throughout the plasma, so that the results depend upon
the statistical properties of the plasma as a whole, rather
than on a restricted class of coherent density ripples or on
fluctuations in a restricted region.

To demonstrate the use and validity of statistical ray
tracing, results for the evolution of intensity profiles of
beams incident on a plane-parallel linear-profile plasma
will be presented and compared with numerical Monte
Carlo results.

The statistical ray-tracing approach is applicable only
to problems where the electron-density profile can be
decomposed into a nonfluctuating component and a ran-
dom component that gives each ray in a beam of light a
random perturbation. In hydrodynamic simulation codes,
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the light intensity distribution is often computed by trac-
ing an ensemble of rays, ray by ray, through the plasma.
The electron-density information from such codes does
not include an identification of random and nonfluctuat-
ing components, but the statistical ray-tracing method
could be useful if such a decomposition could be postulat-
ed ad hac. For example, one could model the effects of
fluctuations whose scale lengths are too short to be
resolved by a computational fluid mesh. In the illustra-
tive example to be considered below, the nonfluctuating,
unperturbed density component is represented by an ideal-
ized analytic form. This allows the intensity profile of a
beam of light to be expressed in terms of the solution of a
set of coupled ordinary differential equations. This sim-
plification makes it relatively easy to study the depen-
dence of the evolution of a beam on the statistical parame-
ters of the density fluctuations and on the initial condi-
tions of the beam. A much greater effort would be re-
quired to obtain a large data base from Monte-Carlo cal-
culations.

II. STATISTICAL RAY-TRACING THEORY

To calculate the behavior of a statistical ensemble of
perturbed ray trajectories, one begins with the ray equa-
tion of geometrical optics'

p v=Vp —v(v. Vp),
ds

p =(1 n, /n, )
'ii—

(la)

(lb)

for the deflection of the ray direction vector v at a point
along the ray trajectory specified by the path-length pa-
rameter s. The index of refraction of the plasma is given
here in terms of the electron density n, and the critical
electron density n, in Eq. (lb). The ray equation relates
ray-trajectory perturbations to zero-mean density pertur-
bations 5n superimposed upon a background density no,
where

and

n, =no+5n, (2a)

(2b)

The brackets denote a local average. This perturbation
approach requires that the rms amplitude of the density
fluctuations cr be small so that the relative fiuctuations of
the index of refraction are small. This condition is

cr «n, no, or 6p/p—«1,

a'=(5n'-) . (3b)

The density fluctuations are characterized by a correlation
length h that must be much smaller than the overall scale
length I. of the problem. For the present, a suitable ex-

ample is

(5n(x) 5n(x+bx))

=cr(x)cr(x+8,x)exp( —hx b,x/h ), (4a)

where

h «L -no/
I
Vno

I

-cT
I

VcT
I

. (4b)

2V.
h (n, no—)

(5)

Equation (5) is obtained by integrating Eq. (la) over a
path interval that is small in comparison with the overall
scale length of the problem, yet long enough in compar-
ison with the correlation length, so that the nonaccumu-
lating effects of the fluctuations average out. In obtaining
Eq. (5), Eqs. (1) and (2) must be iterated at least once for
the lowest-order nonzero-fiuctuation effects to appear.

The first term in Eq. (5) represents the refraction of the
rays due to the unperturbed density gradient. The second
term represents an additional drift due to the gradient of
the fluctuation amplitude, and the third term represents
the foreshortening of the mean direction vector due to the
spreading of the individual rays away from the mean
direction. The net shift and spreading occur because
correlations in the density fluctuations cause the random
impulses to fortuitously reinforce each other. It is signifi-
cant that no drift effect due to the simultaneous presence
of density fluctuations and a nonzero-background gra-
dient is found. The slowing term due to the spreading of
the beam agrees with the earliest results in ray statis-
tics. '2' By removing the slowing term, Eq. (5) becomes
an expression for the rate of change of the direction of the
mean direction vector, so by making the additional change
of substituting v for (v), Eq. (5) becoines an equation for
the trajectory of the mean ray of a beam.

The angular spreading rate of the light beam is obtained
by solving Eq. (la) to lowest order in 6n and forming the
ensemble average of the square of the ray defiections.
This gives

2

(v, v, )=m.1/2

h (n, no)—
which is the growth rate of the mean-square angular ra-
dius of the ray distribution. The growth rate is just what
one would expect for a random walk in the profIle plane,
where each ray receives a random angular displacement of
roughly cr/(n, —no) rad from each independent fluctua-
tion it traverses, or, equivalently, once per correlation
length h along its path. The total rms angular displace-
ment is essentially the displacement due to one impulse, or
one fluctuation, multiplied by the square root of the num-
ber of impulses, just as is indicated by the form of Eq. (6).
Equations (5) and (6) are derived in the Appendix.

This example contains a long-scale-length spatial depen-
dence in addition to the short-scale-length Gaussian cut-
off.

By passing an ensemble of rays, all with an initial direc-
tion vector v (or, equivalently, an infinitesimal element of
a phase-space distribution) through a large sample of
these fluctuations, the following expression for the rate of
change of the mean direction vector &v& is obtained:

[Vno v(v —Vno)] [Va —v(v Va )]+
ds 2(n, —no) 8(n, n—o)

1/2
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III. SOLVING AN ILLUSTRATIVE PROBLEM

The problem to be considered below is that of a beam
spreading as it refracts through a plane-parallel uniform-
gradient plasma. The solution is cast in the form of an el-
liptical Gaussian ray distribution in the profile plane of
the beam. This plane is represented in Fig. 1 by the X- Y
axes placed normal to the trajectory of the mean ray, x(s),
at the point denoted by s. The unperturbed trajectory
xo(s) is assumed to be known from the solution to this
problem for rr=0 Th. e displacement of the mean ray
from the unperturbed trajectory can be found by integrat-
ing the beam-shift term in Eq. (5). The beam-profile dis-
tribution is centered on the mean ray and is represented in
Fig. 1 by an isointensity surface, such as the rms beam-
radius surface. The evolution equation for this distribu-
tion is calculated by propagating each infinitesimal
phase-space element of the distribution an infinitesimal
distance while allowing each element to broaden at the
rate given by Eq. (6). The evolution equation itself and
the details of its derivation and solution are presented in
the Appendix. The beam-profile intensity distribution can
be written in terms of the phase space (Xi,Vi) of the pro-
file plane in the form

IV. STATISTICAL AND MONTE CARLO RESULTS
FOR THE ILLUSTRATIVE PROBLEM

n, = (x /L )n, +5n (x,y,z),
where

(8)

nc
sin[(2n/L)(P x+q y+r z+p )],

(9a)

The plane-parallel plasma considered here is illustrated
in Fig. 2 with constant rms amplitudes of 4%%uo and 1% of
the critical density. Density fluctuations such as these are
generated for the Monte Carlo solutions to this problem.
These fluctuations are expressed within the Monte Carlo
calculation as a Fourier series with the amplitude of each
term set so that the correlation function in Eq. (4a) is ob-
tained from the discrete spectrum with phases taken from
a random-number generator. The Fourier components in
frequency space are chosen such that the fluctuations and
the correlation function are periodic in space with the
period chosen to be equal to one scale length L. The elec-
tron density is written

F(Xi,Vi }~ exp
2XVX V~'

+ +
ax(s) bx(s) cz(s)

where P~, q, and r are integers specifying one of M
different modes, where P is the phase of the mode, and
where

y2 2VYz Vz
+ +

ai (s} br(s} cy(s)
(7) 1/zh

' 3/2

L
mh

exP z (Pm+qm+ "m)
2Lc

where either of the principal (X or Y) axes remains paral-
lel to the constant-density surfaces of the unperturbed
plasma, and the other principal axis remains in the plane
of the mean ray path as the refraction of the mean beam
rotates the profile plane. The evolution equation for F
reduces to a set of coupled ordinary differential equations
for the six parameters in Eq. (7), az(s), ar(s), etc. For
cases without the high degree of symmetry of the plane-
parallel problem, there may not be well-defined principal
axes of the beam profile, and more terms and parameters
may be needed [e.g., XF/P (s), XV&/q (s), etc.). 2,0

a = 4/o a =1&o

(9b)

The sum in Eq. (9a) is taken over all distinct modes such
that the exponential factor in Eq. (9b) exceeds 0.01. At
this level, the Monte Carlo results are not changed notice-
ably by adding more modes to the sum. For typical pa-
rameters (h =0.1,L =1.0), M =678. For a purely 2D
calculation (i.e., with 5n z independent}, these criteria
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FIG. 1. A statistical description of a light beam consists of
an intensity distribution in the phase space transverse to the
mean ray trajectory, x(s), at a pomt specified by the path-length
parameter s. The mean ray is generally shifted from the path of
the unperturbed ray, xo{s}. The beam envelope, defined by the
rms displacement of rays from the mean ray along any direction
in the profile plane, provides a concrete visualization of the
beam.

FIG. 2. Plane-parallel uniform-gradient plasmas with super-
imposed density fluctuations indicated by isodensity contours.
Cases with rms fluctuation amplitudes o/n, =0.01 and 0.04 are
sho~n. The correlation length h is chosen to be Itt/I. =0.1.
The contours of n, /n, =x/I. +5n(x,y, z)/n, are in intervals of
0.1. Each frame shows how a typical ray wanders from the un-

perturbed path due to the given fluctuations.
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would give M =72. The correlation length in the exam-
ple of Fig. 2 is chosen to be h/L =0.1. Each frame
shows how a typical ray ~anders from the unperturbed
path due to these fluctuations.

Figure 3 shows how 49 different rays propagate
through these same two plasmas. For each ray, the
phases of the Fourier components are changed by shifting
the density perturbations 5n relative to the starting point
of the beam by amounts corresponding to a uniform sam-
pling of the unit cube of side L. The rms spatial widths
of these beams calculated according to the statistical ray-
tracing method can be used to construct the rms beam en-
velope. The boundaries of this envelope in the plane of re-
fraction of the unperturbed ray are drawn in Fig. 4 so that
Figs. 3 and 4 can be compared by superposition. Most of
the Monte Carlo rays lie within the rms boundaries. It is
interesting to note that qualitative features, such as the
focusing of the beam just after the turning point, are
reproduced. This focusing by the background density gra-
dient gives the beam an elliptical profile. Earlier statisti-
cal results predicting a circular beam distribution for a
similar problem are incorrect. '

A more quantitative comparison of the Monte Carlo
and statistical methods is sho~n in Fig. 5 where the rms
angular radii (at the point of emerging from the plasma)
are plotted as functions of the angle of incidence. The
emerging beam profile is elliptical with principal axes in
and normal to the unperturbed plane of refraction. Here,
o/n, =0.01 and h/L =0.1. The scatter of the Monte
Carlo points is due to the limited number (27) of trials
taken per run. The agreement of these points with the
statistical theory curves is well within this scatter. The
spatial width of the emerging beam obtained by both
methods is plotted in Fig. 6, where the agreement between
the statistical curve and the scattered Monte Carlo points
is also apparent. The isolated X in both Figs. 5 and 6
represents a statistical result for the singular normal-
incidence case. As the initial beam approaches normal in-
cidence, the distance of closest approach to the critical
surface of the unperturbed ray path becomes smaller, and

g=4% 0 — 1'/o

1.0 0.0 1.5 1.0 0.0

FIG. 4. The outlines of the rms ray-displacernent envelopes
obtained from the statistical ray-tracing theory for the same
conditions as in Figs. 2 and 3. The agreement between the sta-
tistical and Monte Carlo calculations is apparent from the su-
perposition of the corresponding frames of Figs. 3 and 4.

8.0

x Statistical
~ o Monte Carlo (30)

4.0—
Out- of-Plane

(o)

the small-perturbation condition, Eq. (3a), is eventually
violated. The calculation of the isolated normal-incidence
point avoids this difficulty by siinply neglecting any beam
spreading that occurs within one correlation length of the
unperturbed critical surface. This ad hoc "fix up" affects
only a small fraction of the total ray path, so it is not un-

2.0
a =4+p o = &p&o

2.0—

In- Plane
(~ )

0.0
0

h/L = 0.1
l i

20 40 60 80

ANGLE OF INCIDENCE (degrees)

FIG. 3. Bundles of 49 rays propagating in the same condi-
tions illustrated in Fig. 2. Each ray shown propagates according
to a statistically independent sample of the fluctuation distribu-
tion. The bundles are Monte Carlo representations of a spread-
ing beam.

FIG. 5. The principal rms angular radii of the elliptical pro-
file of the beam (at the point where it emerges from the slab) are
plotted as functions of the angle of incidence of the initial pencil
beam. The conditions cr/n, =0.01 and h /L =0. 1 are assumed.
The statistical ray-tracing results fall within the scatter of the
dots representing Monte Carlo calculations.
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of refraction for an angle of incidence of 20'. The Monte
Carlo runs verify this linear scaling up to a fluctuation
level of cr/n, -0.1. At the point along the unperturbed
ray most closely approaching the critical surface, density
fluctuations of this magnitude typically give index-of-
refraction fluctuations comparable to the unperturbed in-
dex of refraction, which violates the small-perturbation
condition, Eq. (3b). The verification of linear scaling for
such large fluctuation amplitudes is a strong indication of
the reliability of the statistical method, even when the
small-parameter conditions are strained.

It has been observed experimentally that angle-of-
incidence dependences of energy absorption efficiencies
are weaker than predicted by simple analytical models. '

In some cases, such an effect may be attributable to densi-
ty fluctuations. Figure 8 shows the absorption fraction
for inverse bremsstrahlung for the plane-parallel
uniform-gradient plasma considered above, plotted as a
function of the angle of incidence. The circles represent
individual two-dimensional Monte Carlo calculations for
o/n, =0.05 and h/L =0.1. These are to be compared
with the solid curve obtained analytically for the o=0
case. ' For an isothermal unperturbed plasma, the ab-
sorption fraction A is evaluated by integrating

0
0

I I
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I
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I

60
I I

SO

ANGLE OF INCIDENCE (degrees)

~o(n, /n, )'
A =1—exp — ds

(1—n, /n, )'~ (10)

FIG. 6. Same as Fig. 5, except that the principal rms spatial
radii, rather than angular radii„are plotted.

reasonable that the statistical result should be in rough
agreement with the Monte Carlo results.

According to the o scaling of the angular spreading
rate given by Eq. (6), the angular and spatial widths given
in Figs. 5 and 6 should scale linearly with 0. This scaling
is verified in Fig. 7 for the spatial beam width in the plane
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FIG. 7. The rms width, in the unperturbed plane of refrac-
tion, of the emerging beam plotted as a function of the rms
density-fluctuation amplitude for an angle of incidence of 20'
and for h/L =0.1. The predicted linear scaling of the beam
width with the fluctuation amplitude is verified by Monte Carlo
calculations, up to a fluctuation level of o/n, =0.1.

FIG. 8. Monte Carlo I,'circles) and statistical ray-tracing
(dashed curve) estimates of the inverse-bremsstrahlung absorp-
tion fraction are plotted (left-hand scale) as functions of the an-
gle of incidence for the o/n, =0.05, h/L =0.1 case. The ab-
sorption coefficient is chosen to give 80% absorption at normal
incidence for the cr =0 result shown by the solid curve. The sta-
tistical estimate of the absorption is obtained using penetration-
depth distribution results represented by the upper-boundary
and lower-boundary curves {right-hand scale).
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along the ray path, which takes into account the density
dependence of the electron-ion collision frequency and the
group velocity of the light. In these calculations, the ab-
sorption coefficient iLO was set such that 80%%uo absorption
would be obtained for normal incidence with cr=0. The
pair of dashed curves, read with the right-hand scale,
gives the statistical theory results for the upper and lower
rms beam boundaries at the point of closest approach to
the critical surface, as a function of angle of incidence.
The leveling of the Monte Carlo angular dependence
occurs at angles of incidence below about 15', roughly
where the statistical theory predicts a significant concen-
tration of rays grazing the critical surface, a region acces-
sible only to normally incident rays in an unperturbed
plasma. Further decreases in the angle of incidence do
not increase the concentration of near-critical rays signifi-
cantly, just as if the beam were incident on the unper-
turbed plasma with an initial angular radius of about 15'.

The dashed absorption curve in Fig. 8 is a simple
statistical-theory estimate of the change in the absorption
efficiency due to the given fluctuations. Since the
inverse-bremsstrahlung absorption cross section increases
rapidly with electron density, it is assumed that the energy
absorbed from a ray is most strongly dependent on the
maximum penetration depth and less sensitive to the
shape of the path, as long as the perturbed paths remain
reasonably smooth. The statistical estimate is obtained by
convolving the analytical zero-fluctuation result with a
penetration-depth distribution obtained from the statisti-
cal calculations. As can be seen in Fig. 8, this statistical
estimate gives results similar to the Monte Carlo results.
The crudeness of the quantitative agreement is not unex-
pected, given the simplicity of the estimate. Nevertheless,
both the statistical and Monte Carlo calculations give
curves that cross the zero-fluctuation result near a 35' an-
gle of incidence, and the distinct flattening of the angle-
of-incidence dependence of the statistical results occurs
very near where Monte Carlo results suggest. Closer
agreement would certainly be obtained by making fuller
use of the statistical ray distribution over the entire path
of the spreading beam. This has yet to be done. It should
be emphasized, however, that the statistical absorption-
efficiency results are encouraging as examples of what can
be obtained using relatively simple estimates, without
resorting to lengthy Monte Carlo calculations.

V. CONCLUSIONS

In this work, statistical ray-tracing techniques have
been extended to strongly refracting plasmas. The agree-
ment obtained between the statistical and Monte Carlo
methods verifies the reliability of the statistical results. It
should be noted that density fluctuations as small as a few
percent of the critical density with about ten correlation
lengths per scale length can result in angular spreads in
reflected beams of the order of 10'. The statistical
method offers a means to obtain estimates of density fiuc-
tuation effects that are otherwise obtainable only by time-
consuming Monte Carlo methods. Finally, although we
have concentrated on laser-fusion applications, it should
be stressed that theories of wave propagation in random

media are of general applicability. The work we have
presented is potentially applicable to a number of other
areas.
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APPENDIX:
DETAILS OF THE STATISTICAL-RAY-TRACING

FORMALISM

where v is a distance along the ray path that is small in
comparison with the overall scale length of the problem,
yet long enough for the nonaccumulating effects of the
density fluctuations to average out. This represents an in-
termediate scale length for which we assume

h «r«L . (A2)

The index notation for vectors and tensors is adopted for
the Appendix ( i =x, y, or z, repeated indices are summed,
and O'1 is the Kronecker 5 or the unit dyad). To leading
order in 5n, we have

[u'(r) —uo(r)] —[u'(0) —uii(0)]

5"—u 0(0)u Jo(0)
VJ5n (s)ds

2[n, —no(0)]
(A3}

for the deviation of the perturbed ray from the unper-
turbed direction. Since fluctuations vary over the scale
length h, which is the smallest relevant scale length, the
nongradient fiuetuation terms have been neglected in Eq.
(A3). The velocity uo(s) is the unperturbed ray direction.
Equation (Al) shows explicitly that 5n in the integrand is
to be evaluated at points in space along the perturbed
path, not the unperturbed path. This distinction can be
disregarded in calculating the leading-order spreading
rate, but it will become important in the next section.

The angular spreading rate for an ensemble or beam of
rays is the tensor square of du'(r) averaged over an en-
semble of fluctuations along the path of the mean ray
which, to an adequate approximation, is the path along
the initial ray direction. This gives

Angular spreading rate

The solution to the ray equation, Eq. (1), in the pres-
ence of density fluctuations, such as those described by
Eqs. (2)—(4), is

1 ' 5"—u'(s)u'(s)
u'(r) =u'(0) ——

2 o n, —no(s) —5n(x(s) }

X [Vjno(s)+ VJ5n(x(s))]ds, (Al)
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(bu'b, v'),
pikpj/ f Vk5n (s)ds

4(n, —np}

quantity immediately following it. All unperturbed quan-
tities written without the path-length parameter are un-
derstood to be evaluated at s =0. A simple rearrange-
ment gives

T

)( f Vt5n($ )dS

~here the transverse projection operator

(A4)
(

T Tf Vk5n(s)ds ~ f Vt5n(s')ds'

= f f (Vk5n(s) Vt5n(s'))dsds'. (A6)

P' (Js) =5'i up—(s)ug(s) (A5)

simplifies the notation. The gradient operates only on the
This double integral can be reduced to a single integral
over correlation functions by using the relation

i g t' i t'

w —s fog to+s + tog to —s + iog to —s — tof to+s s,$(T $) —d
0 2 dfp dtp

(A7a)

where

tp=r/2 . (A7b)

d (~u'~uj)

It is assumed that the correlation function
(f(tp)g(tp+s)) has distinct long-scale (tp-dependent)
and short-scale (s-dependent) behavior as in the example
shown in Eq. (4) so that the approximation

(f(t)g(t —$))

=(f(tp)g(tp —s) ) +(t tp) (—f (tp)g(tp —s) )
dtp

suffices. For calculating the angular spreading rate, the
leading-order terms suffice, and we write, ignoring terms
smaller by factors of order h /~ and h/1. ,

f,
'
f'(f(t)g(t'))dtdt'=~ f (f(tp)g(tp+s))ds.

p+pj~ f (Vk5n(tp) Vi5n(tp+$))ds
4(n, —np)

x= vot (A 1 la)

for the tensor rate of angular spreading in terms of the
correlation function for the gradients of the density fluc-
tuation.

Equation (A10} is now evaluated in terms of the chosen
density fluctuations specified by Eq. (4a). The correspon-
dences between the path-parameter arguments of the
correlation function in Eq. (A10) and the spatial positions
in Eq. (4a) are assumed to be

kx =v(p (Al lb)

Using Eq. (A4), this gives

(hv'bvj)

pskpj'I

f (Vk5n(tp) Vt5n(tp+s) )ds . (A9)
4(n, —np)

Equation (A9) gives the instantaneous rate of angular
spreading in the neighborhood of s =tp The limit. s of the
integral are essentially infinite, according to Eq. (A2), so
we write

This use of straight path segments to approximate the ac-
tual curved path of the mean ray is valid because the actu-
al and approximate paths differ by very little over the
path segment where the integrand is significant, and the
statistical properties of the fluctuations being sampled
differ negligibly over distances that would separate the ac-
tual and linear paths. To simplify the notation, vs—=s
will be used, and a comma before a vector subscript will
denote partial differentiation with respect to a spatial
coordinate (e.g., f;=8f/Bx'). From Eq. (4a), one obtains

(5n, (x)5n i(x+s))

l(O'1 —2$'sj)u(x)o(x+s)+ o(x)cr )(x+s)—
2

o g(x)o(x+s)+o';(x)o )(x+s) e2$ g2/$ 2
(A12)
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The path integral of this quantity is

f (5n;(x)5n J(x+s) )ds

1/2 2

I +2ct(5 Ju pot+'Upo' —U ocr;

—2uououoo', t }i j l

tributions of terms of nonleading order in the small pa-
rameters cr/n, and h/L must be kept. Again, we begin
with Eq. (Al), this time respecting the distinction be-
tween density fluctuations along the perturbed and unper-
turbed paths. The density fluctuation can be written in

terms of the fluctuation along the unperturbed path as

(A13) 5n(x(s)}=5n(xo(s})+[x(s)—xo(s)].V5n(xo(s)) . (A18)

which is used with Eq. (A10) to obtain

1/2 2

(a 'a &)=
ds 2h (n, —np)

(A14)

The leading-order o; terms in Eq. (A13) are shown for
reference but are discarded in Eq. (A14) because they
make a negligible (down by order -h!L) contribution to
the spreading-rate tensor, comparable to terms neglected
in writing Eq. (AS). Because of the transverse projection
property

This linear expansion is valid as long as the perturbed and
unperturbed paths are separated at any given value of s by
much less than one correlation length. The order of mag-
nitude of this separation after a propagation distance s & r
can be obtained from Eq. (6), which gives for this condi-
tion

~

x(r}—xp(r)
~

-or ~ /h '~ &&h, (A19)

which can be written as a restriction on the amplitude of
the density fluctuations

p'JUJ =0 (A15) cr «(h!r) (A20)

(5 'UE 'U)= (V, V, )
ds ds

which, with Eq. (A14) and the property

pll

(A16)

(A17)

gives Eq. (6).

(recall that repeated indices are summed), the spreading-
rate tensor is nonzero only in the plane transverse to vo.
This implies the identity

As was stated in the main text, Eq. (5) is obtained from
Eq. (1) by averaging the solution Eq. (Al) over the ensem-
ble of density fluctuations. The integral in Eq. (Al) must
first be written entirely in terms of the path of the unper-
turbed ray and the density fluctuations along the unper-
turbed path and then expanded at least through second or-
der in the density fluctuations. The lowest-order accumu-
lating effects of the density fluctuations will be ensemble
averages of these second-order terms that are linear in r
Over the length of the ray path, the approximation

Equation for the mean-ray direction vector no(s)=np(0)+sUp(0)V np(0) (A21)

The derivation of Eq. (5) resembles the derivation of
Eq. (4) in many formal respects, particularly in that we
are led to an intermediate result given entirely in terms of
correlation functions of the density fluctuations. Consid-
erably more work is involved, however, because the con-

is used. Corrections due to the curvature of the unper-
turbed path or deviations of the perturbed path from the
unperturbed path are negligible. The velocity appropriate
for iterating into the transverse projection operator in Eq.
(Al) is

plJ s
u'(s) =up(s)—

n, no(0)—
t "Vknp+5n(t) [t"Vkno+5n(t))

V/5n(t)+Vjnp 1+ +
n, —np(0) [n, —np(0)]'

dt. (A22)

The needed expansion of Eq. (Al) is obtained by substituting Eqs. (A18), (A21), and (A22) into Eq. (Al). The expression
for the perturbation of the ray path needed to evaluate Eq. (A18) is the integral of the first-order fluctuation terms of Eq.
(A22),

plJ s l
x '(s) —x o (s)=-

2[n, no(0)] f——
The result is

5n( u) V, n(ou)
+VJ5„(u) du dt .

nc —no 0
(A23)

( u'(r) —U'(0) ) =—p'JVJ-no f (5n(s) )ds
2(n, —n, ) (nc no

pkl s l
Vtno f f f (Vk5n(s) 5n(u))dudtds

C

+ f f f (Vk5n(s). Vt5n(u))dudtds
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p&J
VJ ns s

2(n, —n, )

+p"' f f f (VkVJ5n(s) 5n(u))du dt ds
(n. -no) o

+ f f f (, VkVJ5n(s). Vi5n(u))dudtds

v'(0)PJ"+u J(0)P'"

4(n, no)— f f (Vk5n(t) VJ5n(s))dtds

+ z f f (5n(s) 5n(t) )dt ds
(n, —no)~

+ " f f (VJ5n(s) 5n(t))dtds
(nc no—

Vjno ~ s
+ f f (Vk5n(t) 5n(s) )dt ds

nc no— (24)

Equation (A24) is written neglecting terms that are obviously higher than first order in r. These terms represent
higher-order iterations of effects already represented by first-order terms, and they will vanish when the limit

d ( u')
I, ( u'(v') —u'(0) )

ds g~o "r
(A25)

is taken to obtain an equation of the form of Eq. (5). At this point in the discussion, r is still a finite averaging length.
The mean ray has a continuous well-defined path, so it is clear that the incan ray velocity and acceleration are also well-
defined over this interval and that the limit indicated in Eq. (A24) must be permitted eventually. In Eq. (A24), w must be
finite in order for the individual rays in the ensemble to experience the net effects of random forces that are correlated
over finite distances. The result obtained is an average acceleration that the mean ray experiences over the finite interval.
Since nothing physically distinguishes any one point in this interval from another, one is free to use Eq. (A25) to obtain
the average acceleration over an infinitesimal portion of the interval.

The integrals in Eq. (A24) can be written in terms of correlation functions of the density fluctuations and their gra-
dients, just as Eq. (A9) was obtained from Eq. (A4). The required integral formulas are

f f (f(s)g(s ))s)s s(s sf, '&f('s=/2)g(sag s))ds— (A26a)

I

t" gt t" t' t=~ s ~ 2g~ 2 —s s, (A26b)

where Eqs. (A7b) and (A7c) have been used. These formulas are used with Eq. (A24) to obtain the more useful expres-
S10Il

( u'(~) —v'(0) ) 1+ 5n(s) ds
2(n, no) —(n, —n())~ o

pkl Qo

Vino f s(5n(r/2) Vk5n(r/2 .s))ds—
2(n, —no) 0

+ f s(Vt5n(r/2) Vk5n(r/2 s) )ds—
plJ ] f VJ. (,5n(s) )ds +Pkt

2(n, —no)

VIno f s(,5n(~/2) VkV 5n(~/2 s))ds-
(n, no)—

f s(Vi5n(~/2) Vt, VJ5n(7'/2 —s))ds
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u'(0}PJ"+u~(0)P'

4(n, —n, )' VJ5n~ 2 V'k n~ 2 —s s

VknQ VjnQ co

+ z f (5n(r/2) 5n(r/2 s—))ds
(n, —no)'

VknQ
+

(n, —np)
V n~2 ~ n~2 —s s

~in+
(ne —no } f (5n(r/2) Vk5n(r/2 —s) )ds (A27)

To obtain Eq. (5) from Eq. (A27) requires Eq. (4a) plus
various intermediate results such as Eqs. (A12) and (A13).
The various correlation functions are obtained from Eq.
(4a) and the identities

(f(x)g, ;(x+s))=,. (f(x)g(x+s)) (A28a)

From this point it is tedious but straightforward to obtain
Eq. (5). Equation (5) includes all terms within the first
two leading orders in the small parameter h /L.

Evolution of the beam profile

The purpose of this final section is to describe the evo-
lution of the beam profile by deriving the equations for
the evolution of the six parameters in the profile distribu-
tion given by Eq. (6). As the beam propagates over an in-
finitesimal path length M along its mean path, the profile
distribution spreads and focuses according to a propagator

F(X,V,s+M)
= f f G(X,V;X',V', M)F(X', V', s)d'X'd'V',

(A29)

where

G(X,V;X', V', M )

I
X—V'M —X'

I

g~Q E

I
V —V' —A X' EL' —8 V M

IX exp
yM

(A30)

where vector components are expressed relative to the
profile-plane coordinates, and where Go is a constant
chosen so that this propagator conserves rays. The first
exponential factor is a form of the 5 function chosen to

and

(f(*}g,;(x+s)) + (f,;(x)g (x+s) )

, (f(x)g (x+ s) ) . (A28b)

X(s)=x2(s') —xi(s) . (A32}

Since the profile plane is normal to the motion of the
mean ray, we have

vi(s) X(s}=0 (A33)

At an initial point s, one can set s'=s. Over the interval
(s,s + M), s' —s continually changes as the profile plane
rotates, staying normal to vi(s) as it follows the mean ray.
If the trajectories x&(s) and x2(s) are known, then Eqs.
(A32) and (A22) determine X(s). The position of the in-
tersection of the second ray with the profile plane is re-

facilitate the use of Eq. (A29) with Eq. (7) by reducing the
integral to a simple convolution of Gaussian functions.
This first factor propagates each infinitesimal element of
the beam distribution over the step M according to its
original velocity V'. The second exponential factor
spreads each element of the velocity distribution accord-
ing to the spreading rate

(7
2

(A31)
h(n, —np)

given by Eq. (6). The quantities A and 8 represent focus-
ing terms. The force of these terms is linear in the phase-

space separation of a given ray from the mean ray. A real
force arises from the spatial and directional dependence of
the refractive acceleration due to the background density
gradient, and a pseudoforce arises from the rotation of the
reference frame of the profile plane as it follows the mean
ray. It is these focusing terms that allow the statistical
theory to reproduce the elliptical beam profile and the
focusing of the beam seen in Fig. 3 just past the turning
point of the beam. The ray-statistical equations of Kom-
issarov do not include the phase-spatial dependence of the
refractive force due to the background refractive index. 'o

Consequently, his solution for a spreading beam refracting
in a uniform refractive-index background gradient does
not give an elliptical beatn profile, which is incorrect.

To obtain the focusing terms, first consider the separa-
tion X(s) in the profile plane between the points of inter-
section of the mean ray x, (s}of the entire distribution and
a second ray x2(s'),
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ai(s) Xvi(s)
ex(s}=

/ai(s) [

(A34a)

ferred to the profile plane coordinates using the unit basis

vectors

(sin8e„—cos8eY),
sin8

(A38a)

the right give the needed expressions for A and B.
For the specific example of Eq. (8), the unperturbed

motion of rays is simple:

ai(s)er(s)=— (A34b)

v=cos8e, +sin8ey, (A38b)

which are directions out of and in the plane that momen-
tarily contains the arc of the path of the mean ray. The
trajectories xi(s) and x2(s) [and their respective velocities
v(s} and accelerations a(s)] are obtained from Eqs. (la)
and (lb). The fluctuation-induced corrections to the path
of the mean ray given by Eq. (S}make a small and quali-
tatively uninteresting contribution to the focusing effect.

If one sets path parameters such that [xi(so) —x2(so)] is
in the profile plane, then

V(so+& } X(so+&)

=V(so}+[X(so) ~x]at(so)~

+[V(so).V, ]a,(so~

—[vi(so)+2ai(so)~][at(so)'X(so)] (A35)

is the expression obtained for the mean velocity of a pen-
cil of rays, projected on the profile plane at the point of
intersection of the pencil with the profile plane, at a point
along the mean trajectory of the entire distribution near
the initial point so, where the initial phase-space position
of the displaced pencil is given by [X(so),V(so)]. The
components of V(so+&) relative to the profile-plane
coordinate system are obtained with the unit vectors given

by Eqs. (A34) which we rewrite as

(L —x)sin 8=L sin 8o, (A38c)

cos8
XX YY (A39b)

Evaluating Eq. (A29) using Eqs. (7), (A30), and (A39)
and taking the limit &~0 gives

2dai ai
+22;, (A40a)

ds b; b;

db; b;=b
ds 'a; c;

a;b;+ +&;;
c)

(A40b)

and

dci ct=2 — +y+28-c;
ds b;

for i =X or 1; which are a set of coupled ordinary dif-
ferential equations governing the evolution of the distribu-
tion of the form of Eq. (7). The rms quantities of this dis-
tribution in terms of the distribution parameters are

where 8o is the angle of incidence of the beam entering the
layer at the n, =0 surface. The nonzero focusing terms
obtained are

3 sin 8
Ayy ————

4 (L —x)

ez y(so+&) =ex y(so)+& e» y(so) (A36) x, ')-,=
2(1 a;c; Ib; )— (A41a)

By identifying the V(so+&) thus obtained as

V(so+&)=V(so)+[A X(so)+B V(so)]M, (A37)

terms on the left corresponding to the A and B terms on

and

CI
~I llllS

2(1 a;c;/b; )— (A41b)
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