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The steady-state and dynamic properties of the transition to oscillatory convection in a low-
Prandtl-number fluid, dilute *He in superfluid *He, are presented. Critical slowing down is observed
and characterized by a phenomenological Landau-Hopf equation in analogy with equilibrium
mean-field critical phenomena. In contrast to the onset of classical time-independent Rayleigh-
Bénard convection, where appreciable rounding is typically observed, there is no measurable round-
ing at the oscillatory onset down to a reduced Rayleigh number of 3 10~*. Possible reasons for
this are discussed. Different functional singularities are observed for the rms amplitudes of the fun-
damental and first harmonic spectral components of the oscillation. Finally, the Prandtl-number
dependence of the parameters of the dynamics is presented.

I. INTRODUCTION

Instabilities in nonlinear systems far from equilibrium
have features in common with equilibrium transitions.' —>
An example is the onset of classical Rayleigh-Bénard (RB)
convection which has been successfully described using a
phenomenological Landau-Hopf equation with the magni-
tude of the convective velocity acting as an effective order
parameter. Both the square-root behavior of the velocity
amplitude and the inverse dependence of the characteristic
time for relaxation of transients on reduced stress parame-
ter are clearly observed in many different fluid sys-
tems.*~7 Sneddon® further strengthened the connection
between the RB instability and an equilibrium phase tran-
sition. He pointed out that contrary to previous descrip-
tions® the broken symmetry at the onset of stationary con-
vection is discrete velocity-reversal symmetry rather than
continuous spatial-translation symmetry. He also noted
the symmetry-breaking properties of lateral side-wall
heating and its effect on the transition.

Another instability common in low-Prandtl-number
convection is a continuous transition from a time-
independent state to an oscillatory state. The steady-state
and transient behavior in the vicinity of this bifurcation
has been studied qualitatively by Libchaber and Maurer'®
and in more detail by Ecke et al.!' An analogous transi-
tion to wavy Taylor-Couette flow was studied by Pfister
and Gerdts.!> Here we present a description of the transi-
tion to oscillatory convection in a dilute solution of *He in
superfluid “He. We also apply a phenomenological equa-
tion which describes the transition very well. The equa-
tion is related to similar amplitude equations derived from
a mode truncation of the Boussinesq equations for low-
Prandtl-number oscillatory convection.!> The resulting
picture is a classic example of a mean-field nonequilibri-
um phase transition. One can also consider this transition
as a forward Hopf bifurcation since a new time-dependent
periodic mode grows continuously from zero amplitude.

The fluid with which we study oscillatory RB convec-
tion is a dilute solution of 1.46% >He in superfluid “He.
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These solutions have been shown experimentally to under-
go effectively single-component convection.!*!* A
theoretical description'®!” predicts negligibly small two-
fluid corrections. The Prandtl number o is both low and
variable (0.04—0.15). No other fluid’s Prandtl number
falls in the same regime. The variability of almost a fac-
tor of 4 in o allows for the determination of how the in-
stabilities in the system depend on Prandtl number. The
low-o characteristic leads to primarily time-dependent in-
stabilities as opposed to stationary spatial pattern transi-
tions seen in higher-o fluids.'®* We emphasize high-
precision measurements of these temporal instabilities
since our cryogenic environment allows for excellent sta-
bility and low intrinsic noise. The disadvantage is a lack
of flow visualization.

In this system the first instability, a transition from dif-
fusive thermal conduction to stationary (time-
independent) RB convection, occurs at a critical Rayleigh
number R.. At higher Rayleigh number a bifurcation to
a limit cycle (single-frequency oscillatory state) is ob-
served. While the first instability point depends only
slightly (if at all) on Prandtl number, the onset of oscilla-
tions is strongly Prandtl-number dependent.'*!> Figure 1
shows the Rayleigh-Prandtl number parameter space for
these instabilities. Instabilities at higher Rayleigh number
are described elsewhere.!®2°

The two dimensionless parameters mentioned above
which characterize the convective state are the Rayleigh
number R and the Prandtl number 0. They are defined as

3
R= paTd and o=v/k , (1)

VK

where g is the acceleration of gravity, B is the thermal ex-
pansion coefficient, AT is the top-bottom temperature
difference, d is the cell height, v is the kinematic viscosi-
ty, and « is the thermal diffusivity. The precise definition
of these fluid parameters for >He-*He solutions is
described elsewhere.!

An additional factor which determines the types of con-
vective motion is the aspect ratio. We employ a small-
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aspect-ratio rectangular

PRANDTL NUMBER

FIG. 1. Rayleigh-Prandtl number parameter space.
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geometry with aspect ratios

I'=L/2d=1.0 and I''=W /2d =0.70 where d =0.80 cm
is the cell height and L =1.60 cm and W=1.12 cm are
the longer and shorter lateral sides, respectively. In con-
trast to large aspect ratio convection where unstable roll
structures are typical,?' the lateral side walls in small-
aspect-ratio cells serve to limit the possible roll wave-
lengths. The roll patterns are usually two-dimensional
with the number of rolls dependent on the precise
geometry.

In our cell there are several quite distinct stationary
convective states which probably correspond to different
spatial roll structures.!>?? Here we study the state with
the highest effective heat-transport efficiency. Although
we have no direct observations of the spatial patterns, we
have some evidence that this state corresponds to two
parallel rolls oriented perpendicular to the longer of the
side boundaries with fluid rising in the center.

II. EXPERIMENT

Although an extensive description of the experimental
apparatus and techniques has been presented elsewhere, '’
a brief version is given here. The RB cell in Fig. 2 con-
sists of copper top and bottom plates, a cylindrical
stainless-steel can which confines the fluid and a Vespel®*
graphite polymide-resin insert of low thermal conductance
which defines the cell geometry. The geometry is rec-
tangular with dimensions 0.80 cm in height and 1.60 cm
and 1.12 cm for the longer and shorter sides, respectively.

There is a small (~4% of cell top-plate area) thermally
insulated copper probe located at the center of the cell top

plate which allows for local thermal measurements via a
Au-Fe thermocouple'>?* which is sensed by a supercon-
ducting quantum interference device ammeter. As fluid
motion occurs in the cell, heat fluxes will be different for
the probe and top plate thereby inducing temperature
differences measured by the probe thermocouple.

There are germanium resistance thermometers (GRT’s)
on the top and bottom plates which measure absolute tem-
perature. The bottom plate is temperature controlled, and
a constant heat flow is applied to the top plate (due to the
negative thermal expansion coefficient of the solutions'®).
The top GRT is used to determine the top-bottom tem-
perature difference AT. For time-dependent convective
states AT fluctuates so that both AT and R are defined as
time averages.

The cell was attached to a continuously operating *He
evaporation refrigerator whose dynamic operating range
was 0.4 to 1.5 K. In practice the cell temperature was set
between 0.7 and 1.1 K to obtain the desired fluid Prandtl
number between 0.04 and 0.15. The majority of the work
presented here is for a bottom-plate temperature of 0.850
K, a mean cell temperature of 0.876 K, a corresponding o
of 0.066, and a critical Rayleigh number R, for the onset
of stationary convection of 2017+ 140.

III. DATA

In our previous work!! on the dynamics near the oscil-
latory onset we measured the output of the probe thermo-
couple after a sudden change in top-plate heat flow. The
rms steady-state oscillatory amplitude was observed to in-
crease linearly with R above R, (Refs. 11 and 14) where
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FIG. 2. Rayleigh-Benard convection cell.

R, is the onset Rayleigh number. The oscillation fre-
quency increases as (R —R.)!/? and is 0.45 Hz at onset
for 0=0.066. The rms amplitude of the oscillation de-
cays to a new steady-state value with a characteristic re-
laxation time which diverges as R is approached from ei-
ther above or below. To measure quantitatively the relax-
ation time we digitally recorded the probe-temperature os-
cillations using a 12-bit analog-to-digital converter. The
oscillation envelope was then numerically fit by a non-
linear equation which described the linear increase of the
steady-state amplitude with R (as discussed below). We
obtained good agreement between the phenomenological
equation and the static and dynamic data. However the
scatter in the oscillation envelope was too large for good
stability in the curve fitting. In fact, below onset we had
to use an asymptotic exponential equation rather than the
full nonlinear equation. Here we describe an improved
method for measuring the relaxation which dramatically
increases the signal-to-noise ratio. The lower noise com-
bined with higher system stability allows for measure-
ments almost a factor of 100 closer to onset.

The method we employ here to measure the relaxation
of the oscillations is as follows: First the oscillatory state
is allowed to relax to a steady state above onset, at
R/R.=5.35. Next, the top-plate heat flow is suddenly
decreased so that the resultant R is decreased to a value
either above or below onset. Immediately following the
sudden decrease in heat flow, there is a rapid change in
the measured top-bottom temperature difference which
has a characteristic time 7,. This characteristic time,
probably due to thermally diffusive relaxation and to re-
laxation of the stationary convective velocity, is indepen-
dent of R to experimental accuracy over the transition re-
gion. For the 0.85 K (0=0.066) data 7.=2.3+0.2 sec.

This is to be compared to the vertical thermal diffusion
time 7,=d?/m*k=3.8 sec at 0.85 K. After a time greater
than 47, we record the transient response, amplified and
filtered by a Princeton Applied Research 113 preamp with
a low pass of 3 Hz and a high pass of 1 Hz. The high-
pass filter was used to avoid saturation of the preamp due
to the large nonoscillatory change of the probe output as-
sociated with the rapid relaxation described above. The
frequency response of the preamp was measured and all
rms amplitudes reported in this paper are correctly com-
pensated. Two time series of the measured probe output
which illustrate the transient response are shown in Figs.
3(a), R/R,=5.138, above onset and 3(c), R/R.=5.082,
below onset. To obtain a better signal-to-noise ratio we
divide the time series into segments and obtain via a fast
Fourier transform the power spectral density for each seg-
ment. From the power under one of the spectral peaks in
a frequency interval of about 0.5 mHz we obtain a
narrow-banded rms amplitude for that frequency com-
ponent. Since the change in the frequency over each seg-
ment is small and the period of the oscillations is short
compared to the relaxation time, the measured rms ampli-
tude is a good representation of the relaxation of the oscil-
lations. In Fig. 4, two power spectra, uncorrected for the
frequency response of the preamp, are shown. The upper
figure is for R/R.=5.250 which represents the largest
value of R /R, studied. The bottom power spectrum is
for an R /R, =5.150, much closer to onset. Close to on-
set only the f and 2f components are visible while further
away higher harmonics appear. Both spectra have less
background noise at 2f than at f. By considering just the
2f harmonic and dividing the transient time series into
segments as discussed above, we obtain the rms ampli-
tudes in Figs. 3(b) and 3(d) for the corresponding time



POWER

AMPLITUDE (uK)

CRITICAL DYNAMICS AT A HOPF BIFURCATION TO . ..

I T T T ] 150
' - (a) | h

— 10.0

= 5.0

00! 00— e
2.0 - 30— T
I, ()
—— QUADRATIC NONLINEARITY 2‘5

== CUBIC NONLINEARITY

20"

1.0 -

0.5 -

i

b 1

300 600 900 1200 1500 1800

TIME (s)

-

0O 150 300 450 600 750 900

1873

FIG. 3. Transient time series for (a) R /R, =5.14 and (c) R /R.=5.08. The binning times are about 100 sec for (a) and 30 sec for
(c). Spectrally binned data (b) and (d) for time series (a) and (c), respectively, with quadratic nonlinear fits as solid lines and the cubic
nonlinearity as a dashed line in (b).
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f data as discussed below.
1000 —
IV. ANALYSIS
]
sible in terms of a power-series expansion of 87(z),
] 8T(t)=Cv(t)+CooXt)+
]
— then we can write
v(t)=vy(t)cos(wt) ,
|

satisfies
dUO

and 5.15 for upper and lower figures, respectively. dt

——=r(R—Ry)vg—sv} .

’

series. The solid and dashed lines in Fig. 3 are fits to the

— The quantity measured in our experiment, the probe
top-plate temperature difference 87(¢), is not necessarily
simply related to more fundamental measures of the oscil-
latory convective state such as the oscillatory component
of the convective velocity. McLaughlin and Martin'®
] studied low-Prandtl-number convection and calculated
various convective modes which vary as different powers
of the oscillatory velocity. Our measurement probably
couples to different modes and therefore might be expres-

(2)

where v(t) is the oscillatory convective velocity and C,
and C, are constants which may depend on o. Suppose
that the oscillatory velocity is composed only of the fun-
_ damental f and furthermore has a cubic nonlinearity as
for a typical Landau-Hopf singularity. If the amplitude
relaxes slowly with respect to the oscillation frequency

(3)

15 20 25 30 35 where vo(t) is the rms oscillatory velocity amplitude and

FREQUENCY (Hz)
FIG. 4. Power spectral density of oscillations at R /R, =5.25

(4)
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FIG. 5. The rms amplitude of the 2f harmonic plotted in
units of 107° K vs R /R, where R,=2017. Inset is in units of
10—°K.

The constants r and s are taken to be positive. Combin-

FIG. 6. Relaxation time for the transient relaxation of the 2f
harmonic of the rms oscillatory amplitude. Here 7,=3.8 sec
and R,=2017.

dA (1)

(R . 2\ 43
ing the leading terms in Eq. (2) with Eq. (3) and using dt =r(R—Ro)d—(s/C})4 (6)
cosX(wt)=[1+ cos(2wt)]/2, we obtain
c and
- 2,2
6T(t)= > volt)+Cvg(t) cos(wt) dl;!iit) —2r(R—Ry)B—(4s /C,)B . 7
C
+ —;—ué(t) cos(2wt) . (5) These equations can be explicitly integrated to get
Let A(¢) and B(t) be the rms amplitudes of the f and 2f A= |72+ 1 i T2t /7, -1 ©
components of 87'(¢). From Eq. (5) we get 4(¢)=C,v,(t) ISR T TIE
and B(1)=C,v3(1)/2 where A(z) and B(r) satisfy the
dynamic equations and
10* o l |
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FIG. 7. 7/7, plotted versus reduced Rayleigh number, (R —R,)/R, where Ro=10344.3 and 7,=3.8 sec. Data points, @, corre-
spond to R > Ro and Ato R <R,.



33 CRITICAL DYNAMICS AT A
B -1
B(t)= 1 Ft/7, ) 9
)= |y2+ B(0) Y2 (e 9
where 7=1/r|R—Ry|, m=1/2r|R—Ry|, y\=s/

rCi(R —Ry), and y,=s/rC,(R —Ry). For later conveni-
ence we define r=7,=7,; /2. The — and + in the ex-
ponential factor correspond to above and below onset
respectively. Above onset, y;=1/4%») and
v2=1/B( ) which gives a square-root dependence of the
rms amplitude of the f component on R and a linear
dependence of the 2f rms amplitude on R. Also, there is
a divergence in the relaxation time of the form
(R—Ry)~!. In a stationary Taylor-Couette flow experi-
ment Gollub and Freilich” studied the different singular
dependences of spatial Fourier modes of the velocity field.
They observed some agreement with the prediction?® that
the asymptotic (close to onset) limit of the expansion coef-
ficients should scale as p /2 where p labels the pth Fourier
coefficient. For p=1 they obtain 0.5 but the second
mode gives 0.76 rather than one. Here we have performed
a similar time Fourier expansion of an oscillatory convec-
tive temperature mode. The first and second Fourier
coefficients of the oscillatory temperature amplitude
should have square-root and linear dependences, respec-
tively, as described above.

We consider the behavior of the 2f rms amplitude data
first because of the lower system noise at that frequency.
The transient time series, recorded as described above, is
numerically fit to an equation of the form of Eq. (9) with
an additional term which represents the system noise. We
suppose that the noise is uncorrelated with the oscillation
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amplitude. Therefore we use a fitting equation of the
form

E(t)=[BXt)+N?)'/?, (10)

where E(t) is the experimentally measured probe output
and N is an rms-averaged noise constant. The additional
noise term is essential for obtaining a good fit below onset
since the experimental time series has a finite rms ampli-
tude even at large times due to the noise.

The transient time series for the 2f component are fit
very well by Eq. (10) as seen in Figs. 3(b) and 3(d), where
the solid lines are the numerical fits. For comparison a fit
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FIG. 9. The rms amplitudes for the f (®) and 2f (/\) components of the oscillation. Here R, =2017. The dashed line below onset
is the average rms noise at the frequency f. Above onset, the dashed line is a guide to the eye and the solid line is the least-squares fit

described in the text.
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to an equation of the form of Eq. (8) which has a cubic
nonlinearity with an added noise as in Eq. (10) is percepti-
bly inferior, dashed line in Fig. 3(b); an exponential is far
worse. From the fits to an equation with quadratic non-
linearity plus noise, Eq. (10), we obtain the steady-state
amplitude above onset and the characteristic time both
above and below onset. The steady-state amplitude is very
stable with respect to the fitting procedure since in most
cases the last part of the time series has reached a steady
state. The error in the amplitude is estimated at 1%.
Figure 5 shows the rms amplitude of the 2f component as
a function of R /R, where R, =2017. The rms noise am-
plitude N was determined to be (6+3)x107° K. The
linear dependence of the amplitude on R is in agreement
with the fitting equation; a power law fit yields
0.996+0.005. Also, there is no perceptible rounding, inset
of Fig. 5, in the vicinity of onset down to within
(R—Rg)/Ry~3Xx10~% where the Rayleigh number at
onset, R;, is determined to be 10344.3 from a linear
least-squares fit to the steady-state amplitude data. In our
system the onset of stationary convection is rounded at
(R—R,)/R,~1072. This rounding may be attributable
to imperfections in the cell boundary conditions such as
variations in cell height. Such imperfections would also
seem likely to round the oscillatory onset. The fact that
we observe much less rounding at the oscillatory onset
suggests that either the region driving the oscillations is
spatially localized or that some boundary condition cou-
ples differently to the different transitions. There is evi-
dence that the oscillation does have some localized proper-
ties.22 From another perspective, side-wall heating can act
as a symmetry-breaking field for stationary convection
and cause an imperfect, rounded bifurcation. However,
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for the oscillatory onset the analogous symmetry-breaking
field would be periodic side-wall heating; the phase of the
periodic field would break the continuous phase symmetry
of the oscillatory state. In other words, the constant side-
wall heating breaks the velocity-reversal symmetry for the
stationary state but does not affect the oscillatory state.
One could in principle test this hypothesis as suggested by
Sneddon.® We plan to investigate the effects of periodi-
cally forced side-wall heating as a symmetry-breaking
field for the oscillatory onset. Until such time we have no
way to distinguish whether localized driving or side-wall
heating is responsible for the differences in rounding be-
tween the stationary and oscillatory instabilities.
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FIG. 11. 7/7, plotted vs (R —R)/R, were 7,=3.8 sec and Ro=10344.3 for the fundamental, f (®) and the first harmonic, 2f

(A).
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TABLE 1. Prandtl-number dependence of dynamical parameters.

Tx fO
o Ry (sec) (Hz) z 70 /T
0.0454 7898.0 2.09 0.617 1.01£0.01 0.315+0.005
0.0661 10344.3 3.80 0.448 1.003+0.004 0.247+0.002
0.0979 13511.0 6.50 0.316 1.01+0.01 0.199+0.005
0.1203 15694.3 9.27 0.266 1.01+0.01 0.181+0.004
0.1476 17911.6 13.27 0.215 1.01+0.01 0.142+0.005
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The characteristic time, as measured from analysis of
the transient time series of the 2f spectral component,
diverges at the onset, see Fig. 6. A divergence of the form
T=79[(R —Ry)/Ry]™? is expected from Eq. (9) with
z=1. To determine z and 7, from the data we plot, Fig.
7, logyo of 7/7,, where 7, is the vertical thermal diffusion
time, vs log;o of (R —Ry)/R,. The data above and below
onset fall on a single curve with z=1.003+£0.004 and
To /T.=0.247+0.003. The point closest to R, was not
used due to its 50% uncertainty compared to 10% for
other values of 7. The value of R, which was used corre-
sponds to the one obtained from a least-squares fit to the
steady-state amplitude data, Ry=10344.3+5. R, was
varied within these error bars to obtain the best agreement
in terms of the time constant data above and below onset
falling on one curve. Actually, the final value used was
the steady-state value given above but that is probably for-
tuitous considering the error bars. The data very close to
R, make the logy plot very sensitive to the value of R,
so that variations of as little as ARy ~0.5 affected the fit.
Fitting each region separately yielded values of
z+=1.000+0.004, z~ =1.008+0.006, 77 /7,=0.250
+0.003, and 179 /7,=0.242+0.005 where + and — refer
to above and below onset, respectively. The value of z
very close to one is further confirmation of the validity of
the nonlinear equation used in the fits.

There are two points which need to be mentioned re-
garding the use of the Rayleigh number as the indepen-
dent variable in our analysis. First, one must be sure that
the state of the oscillations is determined only by its final
state value of R. This will be true provided the gross con-
vective and thermal flows relax quickly on a time scale set
by the relaxation time of the oscillatory amplitude. The
oscillatory frequency should act as a measure of the relax-
ation of the major flows. We observe that the oscillatory
frequency relaxes quickly to a value close to its steady-
state value but does change further by a small amount as
the amplitude relaxes. This is a small second-order effect
which brings us to the second point regarding R. As
mentioned earlier, R is a time-averaged quantity whose
rms-averaged value is a function of the oscillatory ampli-
tude. Actually the voltage applied to the top-plate heater
is a better measure of the boundary conditions but not
necessarily a better measure of the state of the fluid flows
which depends on R; besides R is a more intuitive param-
eter for describing the state of the system. Therefore, we
fit R as a function of heater voltage over the region of in-
terest and use the interpolated values of R in the analysis.
Only close to onset where the oscillatory amplitude decays
slowly is there substantial deviation from a smooth fit; the
fractional deviation is only about 1% to 2%.

According to the phenomenological description above,
Eqgs. (2)—(9), the rms amplitude of the f component of the
oscillation should have a square-root dependence on
R —R,. The increased scatter in the f rms amplitude,
Fig. 8, makes fitting less reliable; fits to either quadratic
or cubic nonlinearities give similar results. However, fits
to Eq. (8), which corresponds to the cubic nonlinearity,
yield the square-root amplitude dependence, Figs. 9 and
10, and the same characteristic dependence of response
time on R —R,, Fig. 11, as the 2f component. The
values of 7 plotted in Fig. 11 are 7=7,=7,/2 from Egs.
(8) and (9). A power law fit to the steady-state rms ampli-
tude of the f component vs R —R, yields an exponent
0.48+0.05. Fitting to Eq. (9), corresponding to a quadra-
tic nonlinearity, also yields the square-root dependence of
the rms amplitude in contrast to the linear dependence
predicted by the fitting equation and yields values of the
characteristic time which show no relation to the values
obtained for the 2f component. The dashed line below
the onset in Fig. 9 represents the fitted value of N which
is about 6 10~% K, an order of magnitude larger than for
the 2f component.

From the analysis, Eqgs. (2)—(9), which leads to the
correct description of both the f and 2f components, we
should also expect a nonoscillatory component which de-
cays with the same time constant. Although we qualita-
tively observed this phenomenon, no quantitative analysis
was attempted since for the data presented here the
preamp high-pass filter at 1 Hz effectively kills the nonos-
cillatory component. Another point related to the
analysis is that it was observed experimentally that as the
higher harmonics start to become visible, as in Fig. 4, the
dependence of the rms amplitude of the 2f component on

8.0

0.0 | 1 ]
0.00 0.05 0.10 0.15 0.20

PRANDTL NUMBER
T« /7o plotted versus Prandtl number.

FIG. 12.
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R —R, departs from linearity. This observation is con-
sistent with the picture described above since the next
higher term in the expansion, Eq. (2), is cos*(wt) which
contributes a different nonlinear part to both the f and 2f
components.

Finally, we consider the Prandtl-number dependence of
the parameters which describe the dynamics. We restrict
ourselves to the 2f components for simplicity. The
Prandtl-number dependence of R, was previously stud-
ied'* and can be seen in Fig. 1 for the new data reported
here. Table I shows values of o, Ry, 7., fo (the oscillation
frequency at onset), z, and 74 /7 (z and 7y /7, are the
average for both R <Ry and R > R,) for five different
data sets. The larger errors in z and 7, /7,, for the data at
temperatures other than at 0.85 K stem from the coarser
detail used to study the transients at those temperatures.
Also in several cases the range of reduced R contains sub-
stantial higher harmonic content indicating a breakdown
of the simple decomposition of Eq. (5). The variation of
T« /To Vs o is plotted in Fig. 12 and indicates that 7 is
varying roughly as 1/0. A linear least-squares fit to an
equation of the form 7, /ro=mo +1 yields m =36+3 and
1=1.6+0.2. A theoretical description of low-Prandtl-
number oscillatory convection due to McLaughlin and
Martin!® predicts a linear dependence of 7 on o in con-
tradiction to the 1/ dependence we observe.

V. CONCLUSIONS

We have drawn a detailed and precise picture of the
static and dynamic response of an oscillatory convective
state near a forward Hopf bifurcation. The different
singularities of the rms amplitudes of the fundamental
and first harmonic are probably a consequence of the par-
ticular way in which we obtain the oscillatory probe tem-
perature signal. The exponent of the characteristic relaxa-

tion time is z=1.003+0.004 for the extensively studied
data set corresponding to 0 =0.066 and z=1.01+0.01 for
the other mean cell temperatures studied. This dynamic
exponent is reminiscent of classic dynamic relaxation in
equilibrium critical phenomena for mean-field phase tran-
sitions. Since critical fluctuations are small near hydro-
dynamic bifurcations®® one expects the mean-field
behavior which is observed.

Direct observations of intrinsic noise amplification near
the bifurcation point are beyond the range of this experi-
ment, primarily due to the critical slowing down which
makes observations at small (R —R;)/R, untenable in
practice. However, the growth rate of the oscillations
when the system is changed from a state below onset to
one above onset may given an indication of the intrinsic
noise of the initial state. Preliminary measurements indi-
cate a much lower intrinsic noise than the measured ex-
perimental noise background.

Finally, the Prandtl-number dependences of the dynam-
ic parameters, i.e., 7o and z, are obtained. No theoretical
framework exists to explain the inverse dependence of
To/TeONO.

Note added in proof. It has been pointed out to us by
Busse that since the toroidal velocity field is the main
component of the oscillatory motion,”’ the dynamics
should be governed by the characteristic relaxation time
for vorticity, 7,. Since 7,=d*/v we get 7,=7, /o with v,
d, 0, 7o, and 7, defined in the text.
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