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Weakly coupled, nonequilibrium plasmas have often been described by assigning separate tem-

peratures to the electron and ion velocity distributions. In this paper we present a model for the
complete phase-space probability function which describes a two-temperature ensemble for arbitrary
coupling. We discuss the "thermodynamics" predicted by the model, and in the limit of weak
electron-ion coupling, we obtain explicit expressions for both the static and dynamic structure fac-
tors, which remain valid even for strong ion-ion coupling. When the ions become weakly coupled,
our results for the static structure factors reduce to those of Salpeter. However, even in this limit

there remains a small difference from Salpeter's dynamic structure factor due to the nonergodicity
of the ensemble.

I. INTRODUCTION

Many plasmas of practical interest cannot be described
by equilibrium statistical mechanics, and some appropri-
ate nonequilibrium model has to be constructed. A very
successful method for weakly coupled, spatially uniform
plasmas has been to assign separate temperatures to the
electron and ion velocity distributions. Such a model can
be justified because of the relatively long time that it takes
to exchange energy between electrons and ions in compar-
ison to the equilibration times of the individual species. '

In this paper, we are interested in extending the usual
descripions of weakly coupled two-temperature plas-
mas ' to include plasmas in which the ions are cold and
highly charged, and the electrons are hot. In such a plas-
ma the ions will be strongly coupled, even though the
electrons are weakly coupled. As will be discussed later,
the electron-ion equilibration time in such a plasma can
still be expected to be much longer than the individual
equilibration times. Hence, we will attempt to describe
plasmas with strongly coupled ious in terms of a two-
temperature model for the complete phase-space probabil-
ity function. This probability function will then be
used to calculate various ensemble averages of interest to
lowest order in the electron-ion coupling parameter. No
assumptions concerning the strength of the ion-ion cou-
pling, aside from the obvious constraint imposed by
charge neutrality, will be made.

The physical basis of our model is the assumption that
the ions in the plasma move slowly enough that the elec-
trons can view them as the source of a constant external
potential in which they come to equihbrium at tempera-
ture T, =1/kzp, . The given ion configurations are then
weighted by a Maxvrell distribution at temperature
T; =1/kitp;, but with the ion-ion interactions in a given
configuration reduced by the electron-free energy A, in
that configuration. Specifically, we write our model
phase-space probability function as

—P;(H;+A~) —P (0 + V])

where A, is defined by

A, = —P, 'lnQ, ,

and the partition functions Q, and Q are given by
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In the above, dI', and dl; represent integration over the
space and momentum coordinates of the N, electrons and

N; ions.
The Hamiltonian for the plasma is given by

H=(K, +V;;)+(E,+ V„)+V„=H,+H, +V„,
where
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The prime on the sums indicates that the q =0 term is not
included, 0 is the volume of the system, and for ions of
net charge Ze,

(2.4)

1 1 4me
u„(q) = ——u„(q) = u;;(q) =

Z Z 2
g

2
(1.5)

We may now exploit the fact that Pe(r~) is a single-
electron function to obtain, through a standard cluster-
expansion approach, '

It should be noted that when the temperatures are
equal, Eq. (1.1) reduces to the proper equilibrium proba-
bility function for a classical plasma. Furthermore, Eq.
(1.1) could be used, at least in principle, to describe plas-
mas of arbitrary coupling strength. However, in what fol-
lows, we will limit our discussion to cases in which the
electron-ion coupling parameter is small. We define the
electron-ion and electron-electron coupling parameters
through

I

ln( Q, /Q, ') = g, bi, (2.5)

where Q,
' ' is the partition function for the electron gas in

a uniform neutralizing background ne =N, /0, and

bI=— d p'~ ''d p'Ihe ~]& ~I e r] '''
e rI

(2.6)

ZQ
Yei =ZYee =ZPee /~e =

Arrl, A.,
(1.6)

The h,' '(ri, . . . , ri)'s are the total correlation functions
for the electron gas,

where
' 1/2

1/A, , —:k, =(4nP, N, e/0)'~ = k; .

Requiring these parameters to be small should not be a
serious limitation, because of the wide variety of plasmas
which are of this type. In addition, it allows us to use an
approach which is very similar to the linear-response
description of liquid metals and ionic liquids. ' The pri-
mary difference is that here the electrons are considered to
be classical instead of degenerate. In the spirit of these
previous theories, we evaluate lng, to second order in the
electron-ion interaction in Sec. II, and in Sec. III we
evaluate the static structure factors to the same order.
The "thermodynamics" predicted by the model is studied
in Sec. IV, and in Sec. V we evaluate the dynamic struc-
ture factors. The results of the paper are discussed in the
final section.

II. THE ELECTRON PARTITION FUNCTION

h,
'"(r i)=1,

h, (ri —r, )=g, (ri —r, ) —1,(2) (2)
(2.7)

g g'u;;(q) [P,n, u„(q)S, (q) ]e
j,k q

g g'u;;(q)[1 —e, '(q, O)]e
j,k q

etc. In the above, g,
' '(r) is the radial distribution func-

tion for the electron gas. "
To obtain our approximate free energy, we expand Eq.

(2.5) to second order in p, iu, . From Eqs. (2.3) and (2.6), it
is clear that all terms in the series beyond the first two
need not be considered to this order. The first-order term
from bi vanishes, and the second-order terms from bi
and b2 combine to give

2 ¹ N,

ln(g, /Q, ' ')= g g g'u„(q)[1+n, h, (q)]e
j=l k=1 q

In this section we will evaluate the electron-free energy
in an arbitrary ionic configuration to second order in the
electron-ion interaction. Such an evaluation will be ap-
propriate when the electron-ion coupling parameter Eq.
(1.6) is small. In order to evaluate Eq. (1.3a), we first note
that V„may be written in the form

where e, (q, O) and S,(q) are the static dielectric function
and structure factor, respectively, for the electron gas. "
Thus, the electron free energy is, to second order in the
electron-ion interaction,

A, = V;"—Vz —P, 'lng, ' '

V„= g iu, (rj),

where

(2.1) 2
[u;;(r=0)—u;"(r=0)],

where the screened interaction is defined by

(2.9)

Ã,

iu, (r, )= g u„(r, —rk)
k=1

(2.2)

1V" —=—(s)
lj Q

g'u;;(q)e, '(q, 0)e
j,k q

(1&j&k &N,. )

depends upon the position of only a single electron (but all
of the ion positions). By defining j,k

(1 g j&k gN, . )

u" (r —rk) .(s)
ll J (2.10)

P, (r;)—:e

we can write Q, as

(2.3)
Finally, from Eq. (2.9), (1.1), and (1.2), the phase-space
probability function becomes
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(2.1 1)

(2.12)

Formally, the simplest of these correlation functions to
calculate is G;;. From its definition and Eq. (2.11), it is
found to be

G;;(r,r') —= (n;(r)n;(r') )

and we see that it is just the product of the probability
functions for electrons in the external field of the ions and
a system of screened ions.

—P{K,.+ V,.',.")
dI;e ' " n;(r)n;(r')

l

III. DENSITY CORRELATIONS =(n;(r)n;(r'));, „,=G;(r—r') . (3.5)

G~(r, r') —= (n, (r)nb(r') ), (3.1)

The density-density correlation functions for the plas-
ma are very important quantities. Not only are their
Fourier transforms directly measurable through various
scattering experiments, '~ but knowledge of them is suffi-
cient to evaluate the ensemble averages of many quantities
of interest. In this section we will use the phase-space
probability function defined in Eq. (1.1) to evaluate the
density-density correlation functions to lowest order in the
electron-ion coupling parameter.

The density correlation functions to be calculated are
defined by

The structure factor S;; is then given by

S;;(q)=—fd re'q" ''[G;(r —r') —n;]=—S;(q) .
n;

(3.6)

Thus, we see that 6;; and S;; are, to lowest order in y„,
simply given by the corresponding functions for a one-
component system of ions interacting through an
electron-screened potential [screened one-component plas-
ma (OCP)]. In the limit of weak coupling, S; is given by
the well-known result

where the angular brackets indicate averaging with respect
to the ensemble described in the previous sections, and the
densities n, (r) are defined by

q2+kD
(3.7)

n, (r) = g 5(r—r;) . (3.2)

The structure factors for the plasma are related to these
correlation functions through a Fourier transform

while for strong coupling it must be calculated by some
other method, such as solving the hypernetted chain
(HNC) equation. '

The next most difficult correlation function to calcu-
late, 6„,can also be reduced to an average over ions only,
by noting that

(r'r4nrSr(q)= jd rr' " ''[Gr(r, r') —n, nr],

where the average densities are

(3.3) G;,(r, r') = (n;(r)n, (r') )

51ng,
~i &

~ ions. (3.8)

( n, (r) ) =N, /Q=n, . (3.4) Using Eq. (2.5) to evaluate the functional derivative gives

(3.9)

When this is expanded to second order in P, iu„ there are contributions from all terms in the series for which 1(3.
Evaluating the electron total correlation functions in these terms to lowest order in y«(Ref. 14) yields, after a fair
amount of manipulation,

P~ nq n).
G;, (r, r') n;n, = — — g u„ (q)S, (q)S;.(q)e'q"

e&e+l+ 2 g u„(q)S,(q)u„(q')S, (q')S, .(q +q')C~I (q, q')e'q+q "' (3.10)
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where the triplet correlation function in the above is de-

fined by

f Cd3r d3r eiq {r'—r)eiq' {r"—r)
C;;; &q, q &=—~" ~" r r'e e

X (5n;(r)5n;(r')5n;(r") );,„, , (3.11)

where 5n, (r) =n, (r) n-,
From this result we find S„ to be

S„(q)=Z(k, /q )S,(q)S;(q)

S;;(q)=S;(q)

d re'q" ''(n;(r)n;(r'));, „, ,
1

n;

S„(q)=~Z(k, /q )S,(q)S;(q), (3.15)

k,
S„(q)=S,(q)+ZS;(q} S,(q)

These results are very similar to Salpeter's, and generalize
his results to include strong ion-ion coupling.

Z 3/2

+ S,(q)
ne

k, k,
X

(2n. )' q'~
~ q —q'

~

'

XS,(q')S, (q —q')C"'(q' q' —q) . (3.12)

The first term in this equation is Salpeter's result, gen-
eralized to include strong ion-ion coupling effects. Essen-
tially, this term represents the correlations between an ion
and the electrons in the induced "cloud" surrounding
another ion. The second term represents distortions of the
cloud by the presence of a third correlated ion. By scaling

q and q' to k„ this term can be seen to be of higher order
in the electron-ion coupling y„.

Similarly, we find for G„,

IV. "THERMODYNAMICS"

In standard textbook derivations, ' the connection be-
tween thermodynamics and equilibrium statistical
mechanics is established by making statistical-mechanical
definitions of the thermodynamic functions, and then
proving that the relationships among them are the same
as predicted by their thermodynamic definitions. In this
section, we will define the internal energy, the entropy,
and the pressure in terms of appropriate two-temperature
ensemble averages and then show that these definitions
are consistent with a plausible two-temperature generali-
zation of ordinary thermodynamics.

The most obvious definition is that of the internal ener-

gy U in terms of the ensemble average of the Hamiltoni-
an. From Eqs. (1.3) and (1.4) it is easy to establish that

T

Bing P Bing
(4 1)

ap,

G (r, r') = {n,(r)n, (r') )

5 lng, Mng, 51ng,
p2 5w, (r)5w, (r') 5w, (r) 5w, (r')

(3.13)

3X, 3X;
U= + +(Z+1)!

In addition, since H is expressible entirely in terms of
one-particle and two-particle functions, its average may be
written in terms of the structure factors defined in the
previous section. Specifically, we find

e Xe f dq[S (q) —1],

If we once again evaluate the functional derivatives to
second order in p, w„and the ii,'"'s to lowest order in y„,
we obtain

S„(q)=S,(q)+ZS;(q)[(k, /q )S,(q)]

+ f S;(q') S,(q')Z d&q' k,

(2n ) q'

X [S,(q' —q) —1]S,'(q) . (3.14)

The first two terms reduce, in the limit of weak ion-ion
coupling, to Salpeter's result, and represent, respectively,
the density correlations in an electron gas and the correla-
tions between electrons in the clouds surrounding two
correlated ions. The third term represents effects due to
"cloud polarization, "and is also higher order in y„.

In summary, the structure factors representing the den-
sity correlations in a two-temperature plasma are given to
lowest order in yei by

S~(q) = [S„(q}+ZS;;(q)—2v ZS„(q)] . (4.3)
1

xf Z+1 ee

The entropy of the plasma can be defined in terms
the average of lnp,

S—:—ks fdI;dI, plnp, (4.4)

where the overbar is to prevent confusion with symbol for
the structure factors. It will prove useful in what follows
to break S into electron and ion contributions. This may
be accomplished by defining

—P; H; +A ) $ —Pf{K, + V(( )

g g(s)

and

(4.5)

Pe =P~Pi = 1 —P {H +V;)
e (4.6)

(4.2)

where S~ is the charge-charge structure factor defined by
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The entropy may now be written as A=U —T,S,—TS; . (4.16)

S=S,+S;,
where

S;=——kii fdroop;lnp;=kg(lng+Pq(H, +A, ))

~k~(lng;"+p;(K;+V ))

and

S,= —k—,fdr, p, fdl, p, lnp,

=k, (&l.g. &+P.&H. + ~., &) .

(4.7)

(4.8)

{4.9)

Thus, to this point, we have related the internal energy,
entropy, pressure, and free energy of a two-temperature
plasma to the partition function, Eq. (1.3b), and, there-
fore, to each other. It remains to determine how these
quantities change when a small quantity of heat dg is ab-
sorbed by the system and, thereby, establish their thermo-
dynamic relations.

To this end we generalize the first two laws of ordinary
thermodynamics to include this two-temperature system.
The first law of thermodynamics is just a statement of en-

ergy conservation, so it remains essentially unchanged,

, ap lg
S~ ———kiiP;

ap;

aP, 'lnQ

aT
C

(4.10)

The ion contribution, for ye) &~1, is just the entropy of
the screened OCP, and the electron contribution is the en-
tropy of the electrons in an external field, averaged over
ionic configurations. The connections between both con-
tributions and the partition function are easily established,
and we obtain

(4.17)

The second law of thermodynamics relates the heat ab-
sorbed in a reversible process to the entropy change of the
system. To generalize this law, we view dg as the sum of
an electron and an ion contribution, each of which is re-
lated to the change in the corresponding contribution to
the entropy in the usual way. In other words, we general-
ize the saand law by writing

and dQ =dQ, +dQ; = T,dS, + T~dS; . (4.18)

aP; 'lng
S,= —kiiP,

e

aPi 'lnQ

aT.
(4.11)

fe') ea.e.( )+ fe'ee~.e;(e)
me l

X [g.'."(r)+g;"(i) —2g,';"(r)]

(4.12)

Similarly, the pressure of the plasma can be related to
the average of the stress tensor. Taking into account the
translational and rotational symmetry of the plasma, we
find'6

This expression is certainly rigorous for two isolated sys-
tems for which reversible processes can be independently
defined, and such a separation of dQ makes sense physi-
cally, since it is possible to pump heat into either the elec-
trons or ions along. For example, electromagnetic radia-
tion is absorbed by the electrons, while shock waves heat
the ions.

Hence, Eq. (4.18) is a plausible two-temperature gen-
eralization of the second law for infinitesimal processes
that are reversible in the sense that they leave the func-
tional form of Eq. (1.1) unaltered. In addition, we note
that by combining the first and second laws, as stated
above, and using Eq. (4.16), we can reproduce the relation-
ships among A, p, S;, and S, previously derived. A final
self-consistency check on the thermodynamics and statist-
ical mechanics can be obtained by demanding that dS,
{and dS~ }be exact differentials to arrive at '

where P, (p) is the normalized Maxwell-Boltzmann distri-
bution for species a, and the pressure is

aU
aQ aTe Q, T,

(4.19)(4.13)

It is straightforward to verify that Eqs. (4.1) and (4.14)
satisfy this relationship.

Having previously established the relationship between
the internal energy and the ensemble average of the Ham-
iltonian, it is interesting to look at the fiuctuations of the
energy in the "canonical" ensemble defined by Eq. (1.1).
Differentiating U with respect to p; and combining the
result with its derivative with respect to p, yields

This result is identical to that obtained by scaling the
lengths in Eq. (1.3b) to 0'~ and differentiating lng with
respect to Q. Hence, we have established that

aP lng
(4.14}

All of these results suggest that we define the total free
energy by

8 5p= + +(Z+1) f dq[S (q) 1]. —
1

0

A= —Pi lng . (4.15)

By combining Eqs. {4.1), (4.10}, and (4.11), we see that,
with this definition, the free energy and the internal ener-
gy are related through a two-temperature Legendre
transformation

aU
apq Q.p,

p.+
p

aU
aPe Q, Pq

(4.20}=fdI;dI, pH 3 —T; —T, H—aa
8Tg 8T~
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TC, +T,C, =((U H—)') tk, T, . (4.21)

In the above we have identified the heat capacities C, by

From Eq. (4.15), we obtain

Q (N, —N, i,N; N—i i, Q —Q;, T„T;)
ln

Q(N„N;, Q, T„T,)

BU
~Tg Q, T

(4.22) 13;p—Q+ i3; (N, ip, +N; ip; ), (4 28)

From the combined first and second laws, we also find
that

(4.23)
b =e,i

where we have used Eq. (4.14), and the definition
r

(4.29)

where

as.
C~b = T~

i3Tb 0, Tr
(4.24}

Thus, we obtain for the grand partition function,

Q g g &
iIi&i& @~i&eQ(N N } e ~li

N, ( p0) N,.( &0)

represents the amount of heat absorbed by species a when
the temperature of species b is changed. '

It is particularly interesting to calculate the "cross"
heat capacity C„. From its definition, we get

(4.30}

Note that both sums are independent, and charge neutrali-

ty is guaranteed by requiring

(N, ) =Z(N, ),
where

= —kiiP, , u; (q)
d'q ~,i

(2m)'

and using the weak-coupling estimate of S;, we find

kD —k, k, Pze~ P, Bn,
C —+ —kg@ 1+'kD+k; kD A,, n, Bp,

(4.25}

(4.26)

Bln
(N, ) =P,-'0 i 0, Te) T),/l

(4.31}

, B(N;)
( N. Nb ) —(N. ) (Nb ) =p; =Qn. nbS.b(q =0),

BPb

(4.32)

Fluctuations about the average densities are measured

by

If the density of free electrons does not change with T„
then this should always be a small number. However, if
the system is still ionizing in the temperature range of in-
terest, then'

ne—P, -5—10'n, BP,

and this term may be significant.
To study fluctuations in the number densities of the

plasma requires that we create the grand ensemble corre-
sponding to Eq. (1.1). To do this, we concentrate on a
subvolume of the system which is small compared to Q,
but is still macroscopic. By neglecting surface effects,
and generalizing a standard argument, ' the probability of
finding N, i electrons and N~ i ions in the subvolume Qi in
a given configuration is found to be

which establishes another connection between the thermo-
dynamics and statistical mechanics of the plasma. Note
that only P; appears explicitly in the above. The thermo-
dynamic derivative in Eq. (4.32) may be related to the
compressibility through a standard derivation, ' and we
obtain the following expression for the compressibility
sum rule:

~n, nb n;I, T,~-'= —n
BQ r, z, P;S,b(q =0) S;(q =0)

(4.33)

Self-consistency between this result and Eq. (4.13) is
achieved by only a very few of the available methods for
calculating structure factors. ' '

V. DYNAMIC STRUCTURE FACTORS

Q(N, N, i,Ãi —N;i, Q —Q;, T„T;—)
Q(N„N;, Q, T„Ti)

—P(~'"+~" ) l —p (0 +v. )
e ' i e e e ei

(1)
e

(4.27}

where the superscript 1 on the right-hand side indicates
that all the spatial coordinates must be in the subvolume.

The dynamic structure factors for weakly coupled two-
temperature plasmas were first investigated by Salpeter
who calculated the density-density time correlation func-
tions, defined in terms of a long-time average, from the
solution to the Vlasov equation. In this section we will
define the density-density time-correlation functions in
terms of an ensemble average, and then derive a short-
time kinetic equation from which we will evaluate them.
As with the static structure factors, we will obtain results
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which include strong ion-ion coupling effects. However,
we will also find small differences from Salpeter, which
persist even for weak coupling, that are due to the noner-
godicity of the ensemble.

The density-density time-correlation functions are de-
fined by

G~(rr';t) =—(n, (r, t)nb(r', 0)), (5.1)

=5f, (rp, t)+ (f, (rp, t)) (5.2)

through

and they can be expressed in terms of the correlation of
the phase-space density

f, (rp;t)= g 5(r—r;(t))5(p —p, (t))
j=1

U, b.(1,1'
~

t)= —(5f, (r&p„'t)5fb(r', pI,'0)) .

Using standard methods it can be shown that the La-
place transform of Eq. (5.4},

U, .b(1;1'~z)=——i f dte~U, b(. 1;1'~ t),
obeys a formally exact kinetic equation of the form

(5.5)

(z+i p& V ~/m~)U, .b(1;1'
~

z)

—ig fd 1@,.,(1;1
~
z)U~. b(1:1'

~

z)
a

= U. .„(1;1'
i
t =0), (5.6)

U, .b(1;1'
i
t =0)

= n, y, (p] )[5,b5(1 —1')+nb/(pi )h,'b'(r] —ri )]

where 4, .b is referred to as the memory function, and the
initial value of U, .b is given by

G,b(rr', t) (n(t))—(nb) = fd pid piUa;b(1 1'I t»
(5.3)

= limzU, .b(1;1'
~

z) .
Z~ 00

(5.7)

where the two-point function is defined by
The key approximation of this second is to replace 4, .b

by its high-frequency (short-time) limit B,.b given by

B,,
b(1;1')= g fd2d2 V)v„(12).

where

U —.g(12;2 i
t =0)Ug, b'(2;1'

i
t =0),

pi
(5.8}

U~b(12;1'
~

t =0)=n, nap, (p& )pa(p3) tg'"(r& —r2)[5 b5(1 —1')+5»5(2—1')]+nbpb(pI )[g'sb(r&r2ri ) —g~'(rt —r2)] J

= limzU~. b(12;1' ~z)
Z~ 00

(5.9)

U, b(1;1'
~
t =. 0) =n, '[5,bp, '(p) c,b(r) ri —)] . —(5.10}

Substituting Eq. (5.8) into (5.6} gives us an explicit kinetic
equation to solve subject to the above initial conditions,

(z+t p, V, /m. )U. .b(1:1'
~

z)

—ig fdl B,. (1;1)Usb(1;1'~z)
ir

= U, b(1, 1'
i
t =0) . . (5.12)

This equation is valid for any plasma density or tempera-
tures, provided the frequencies of interest are much larger

In the above, h~' ——g~' —1, g~' is the radial distribution
function for species a and I3, and g,'b,' is the triplet corre-
lation function for species a, b, and c. The direct correla-
tion functions c,b are deftned, just as in the equilibrium
case, from the Ornstein-Zernike equations

c~(r~ —rz) =h~'(r& —rz)(2)

—dna fd r3h~ (r] 13)cab(I3 I2) . (5.11)
S,b(kz;p)=—fd re'"" 'fd p'U, b(1;1'~z) .. (5.13)

By integrating Eqs. (A 1 1) and (A 12) over d 3p ' and
Fourier transforming them on the relative spatial variable,
we obtain

(z —p.k/m, )S,b(kz;p)

—p, n, p p, (p)g(o„(k)fd pS b(kz;p)
PBg

=Qn, nb/, (p)S,b(k), (5.14)

than the frequency of collisions. This limitation is not a
serious one though, since the "equilibrium" described by
Eq. (1.1) will be destroyed in several collision times.

In the case of equilibrium statistical mechanics, it is
possible to ex ress B,b(1, 1') entirely in terms of two-body
functions. This may be accomplished only approxi-
mately for the two-temperature problem, but it is shown
in the Appendix that the corrections, all of which involve
three-body functions, are small whenever y„« 1.

The notation used in the Appendix can be made more
compact by introducing the functions
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where the effective potentials iu,&(k) are

co„(k)=u„(k),

cu«(k) =u„(k),

cu;;(k)=u;;(k) —[P, 'C;(k)+u (k)] .

(5.15)

(5.16)

(5.17)

%e note that when the ions are also weakly coupled,
C;(k)~ —P;u (k), and Eq. (5.14) represents the usual

S,b(k, cu)= —2 Im fdip S,b(k, co+i' p)

= —2ImS, b(k, cu+ig) .

Solving Eq. (5.14) for S«(k,z) gives

(5.18)

linearized Vlasov equations for a two-temperature plas-
ma. "

The electron scattering function can now be found from
the relation

S~(k,z) = e;(k,z)[n, +P, X,(k,z)]S„(k)+
ze(k, z) n;

1/2

X,(k,z}[n;+P; 'X;(k,z)]iu„S„(k) (5.19)

where

and

e, (k,z) = 1 —8~ (k)X, (k,z},

e( k,z) =e, (k,z)e&(k, z) —iu„(k)X;(k,z)X, (k,z),

X,(k,z}:P, n—,fd p
(p k jni, )P, (p)

z —p'k vi~

(5.20)

(5.21)

Taking the imaginary part of the above gives

ImX, (k, ) ~;(k, )
~ „~X,(k, )

~
ImX;(k, )

S~(k,cu)= —2 z +
P, cu

~
e(k, co) ~'

~
e(k, cu) ~' P cu

ImX, (k, cu)
+2 —1 S,(k)8„(k)

)
e(k, co)

( P,n, [ReX;(k,cu}—8-(k
1 ~co

IrnX;(k, c0) P;
P;n, ReX, (k,cu)+

'
~X,(k, cu) ~' (5.22)

P,n, iu„.(k)
S„(k,co}~S,(k,cu}+ S;(k,cu), (5 23)

e, (k,O}

where

ImX, (k, co)
S,(k, co) =

P, co
i e, (k,co)

i

(5.24)

The first line of Eq. (5.22) reduces in the limit of weak ion
coupling precisely to Salpeter's result. The remainder of
Eq. (5.22), proportional to the temperature difference, sur-
vives even in this limit, but we note that due to the large
ratio of the electron to ion plasma frequencies it is never
numerically significant (on the order of two percent in ion
peak of hydrogen). The source of this small discrepancy
is the fact that the ions are not really stationary, and their
motion over long times alters the ensemble in Eq. (1.1).

Finally, the size of the ratio of the ion and electron
plasma frequencies can be exploited to write an approxi-
mate expression for the electron scattering function,

ImX, (k, cu)
S;(k,cu) =

~1+p, 'c;(k)X;(k, co)
~

(5.25)

VI. DISCUSSION

The model phase-space probability function proposed in
Sec. I of this paper describes a noncxluilibrium ensemble
of classical ions and electrons, which have established
separate equilibrium states at temperatures T, and T;.
For this model to be plausible, the electrons and ions must
establish these equilibria very quickly in comparison with
the time required for them to come to equilibrium with
each other. Using stopping-power arguments, it can be
shown that the ratio of the electron-ion equilibration time
v« to the ion-ion equilibration time ~;; is well estimated
bye, 24

In other words S (k, co) can be approximately expressed
in terms of the dynamic structure factors for the electron
gas and the screened OCP.
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']j2
m; T, lnA;;

T 1Ame ei
(6.1)

nAsv-0. 347I s

"
where

I;=(Z e 2/k~ T; )(4n n; /3 )
' ~ .

(6.2)

Using this estimate for lnA;; and the standard weak-
coupling expression for lnA„, 3 we find that for I; & —,',

' 1/2
mg

~„/~;; &
Zme

(6.3)

whenever

I'" &0 115Z(ZT /T )'~ /ln(ZT, /T;)' (6.4)

Therefore, we see that there exists a large, interesting re-
gion in which our results are applicable.

The principal thrust of this manuscript has been to ex-
tend the existing weak-coupling expressions ' for the den-
sity correlation functions in a plasma to include the possi-

where lnA;; and lnA„. are the "Coulomb logarithms"
describing the ion-ion and electron-ion collisions in the
plasma. For weakly coupled plasmas, their ratio is of or-
der unity, so it is clear that r„»r;;, as desired. If the
ions become strongly coupled, however, it is possible that
lnA;; will be much smaller than lnA„. , and the desired
condition is not guaranteed. Recent computer sj.mula-
tions appear to show that r„( and, therefore, lnA„) is
well approximated by its weak-coupling form even in
strongly caupled systems. If this turns out to be true also
far ~z, then it would seem that r„&&~;; is guaranteed vir-
tually everywhere.

However, from molecular-dynamics studies of self-
diffusion in a classical one-component plasma, it seems
that the effective value of lnA;; may behave as

bility of cold, highly charged ions. This was accom-
plished by using our two-temperature ensemble to evalu-
ate the static and dynamic structure factors to lowest or-
der in y„. While the static structure factors obtained here
reduce exactly to Salpeter's in the limit of weak coupling,
the dynamic structure factors do not. The differences,
propartional to T, —T;, are attributable to the fact that
Salpeter's structure factors were defined in terms of long-
time averages, while those calculated here were defined in
terms of ensemble averages. The ergodic theorem requires
these two averages to give identical results only in equili-
brium. There remains a serious theoretical question as to
which type of average is really measured in an experi-
ment, but it appears from Eq. (5.22) that any discrepan-
cies between the averaging procedures will never be very
large.

In Sec. IV, we demonstrated that the statistical mechan-
ics implied by Eq. (1.1) is consistent with a plausible two-
temperature thermodynamics. In particular, we have
shown that knowledge of the static structure factors is
sufficient to calculate many ensemble averages with clear
thermodynamic significance. In addition, we demanstrat-
ed that one of the most stringent self-consistency checks
on the structure and thermodynamics of a system, the
compressibility sum rule, can be generalized to a two-
temperature plasma.
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APPENDIX

The purpose of this appendix is to demonstrate that
8, b(l, l') defined in Eq. (5.8) can be approximately ex-
pressed entirely in terms of two-body functions. We begin
by noting that

Vig"'(ri —r2) = —P,g' '(r~ —r2)Viu„(r, —r2) —P, gn, J d'r3g~(rir2E3)V iv,s(ri r3), —

Vig;;(ri —r2) = —Pg;; (ri —r2)Viu;;(ri —ri) —P; gn, d rig, ,—,(rir2r3)Viv, —,(ri —r3)
(2) 3 (3)

—(P, —P;)[g;;(ri —ri)Viu;;(r~ —r2)+n; d rig;;; (rir2E3)Viu';(Ei E3)
3 (3)

+5 f3g" I]r2r3 ]O' I] r3 (A2)

Vig;, (ri —r2)= —P;g;, (ri —r2)Viu;, (ri —r3) —P;gn, d r3g,.„(ririr3)Viu, —,(r~ —r3)(2) 3 (3)

—(P, —P;)[g;, (ri —r2)Viu;, (ri —rz)+n; d r3g;„(Eir2E3)ViQ''(E] 13).(2) 3 (3)

+ I 3g; (rir2E3)Vlv (Ei —3)], (A3)

where ui; ——u;i —uq~". Using the first of these, and Eqs. (5.7) and (5.9), we obtain
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Pl Vl
B,.b(1;1')=n,g, (p) c,b(rl —rl)

me

which is precisely the usual equilibrium answer.
From Eqs. (A2) and (A3) and Eqs. (5.7) and (5.9), we get

(A4)

Pl ~1
B; b(.1, 1') =n;Q;(p)

mI.

where

c; b(rl —rl)+(p, —p;)&; b(1;1') (A5)

Pl Vl, 3 —,Pl Vl 3 —,Pl Vl
b,;;(1;1')= u;;(r, —r', )+n; d rzhh;;;(rlrlrz) u;;(rl rz—)+n, d rzbh;;, (rlrlrz) u;, (r, —rz)

m, m,
e we (A6)

Pl Vl, 3 q Pl Vl 3 —,Pl'Vl
5;,(1;1')= u„(r, —r', )+n; d rzbh;„(r, rlrz) u;;(rl —rz)+n, d rzhh;„(rlrIrz) u;, (r, —rz) .te ~ e&

m,

In the above, we have defined

bh, b, (rlrzr3)=Ah, 'b,'(r, rzr3) gns—fd'r4hh, '~(rlrzr4)c, ,(r4 r3)—

(A7)

(AS)

with

b, h,b, (rlrzr3) =h,b, (r,rzr3) —h,b, (rlrzr3) .(3) (3) (c)

The quantity h,'b' (rlrzr3) is the "convolution approximation" to the triplet correlation function

h,'b' (r1 rzr3) =h,'b'(rl —rz )hb, '(rz —r3) +h,'b'(rl —rz )h~ '(rl —r3)

+h~ (rl —r3)hb, (rz —r3)+ g ns d r4h~ (rl —r4)h~ (rz —r4)h,s (r3 —r4) .(2) (2) 3 (2) (2) (2)

(A9)

(A 10)

The third terms in Eqs. (A6} and (A7) are higher order in y„ than the first terms and are therefore negligible. Because
of the cluster property of hh, b, and the fact that u;; is the difference between the screened and unscreened potentials, the
second terms may be shown to be of order Ti/ZT, . If the ions are strongly coupled and the electrons are weakly cou-
pled, then this must also be a small parameter.

Therefore, we obtain the following kinetic equations, valid for weakly coupled electrons, but arbitrarily coupled ions,

-Pl Vl
(z+ip, V, /m;)U; b(1;1'~z). in;p;(p) —dl [c;;(rl—rl)+(p, —p;)u;;(rl —rl)]U;.b(1, 1'~z)

m;

-Pl Vl—in;p;(p) d 1 [c;,(rl —r, )+(p, —p;)v;, (rl —rl)]U, .b (1;1'
~
z) = U, b(1;1'

~

r =0.) (Al 1)
m)

and

(z + ip 1 V 1 /m, }U, b( 1;1'
~

z ).
—in, p, (p) g fd 1 c„-(r —r )U b(1;1'

~

z)
a me

c (r) = —p, v„(r),

c„(r)= p, u„(r), — .

c;; (r) =c;(r) p, [u;; (r) u;"(r)]—, —

(A13)

(A14)

(A15)

= U, .b(l;1'
~

t =0) . (A12) where c;(r) is the direct correlation function for the
screened OCP,

In order for these equations to be consistent with the re-

sults of Sec. III, the direct correlation functions must be

given by
c;(r)=—f [1—1/5—;(k)]e'"' .

(2m. )'
(A16}
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