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We present theoretical and experimental evidence for a new type of multimode instability in a
homogeneously broadened ring-laser system. The unstable behavior discussed in this paper is the re-
sult of multimode competition and can manifest itself either through self-pulsing or hysteretic
behavior of the bistable type in the laser output intensity and operating frequency. We have verified
some of our predictions with the help of a C02 laser whose observed bistable behavior is in good
qualitative agreement with the theoretical predictions.

I. INTRODUCTION

The evolution of a multimode laser is a problem of con-
siderable complexity because of the large number of
dynamical variables and system parameters that may af-
fect its behavior. ' Even when the optical resonator is
designed to support only a single transverse mode, several
longitudinal modes can be excited even at moderate pump
levels, so that different optical frequencies may coexist in
the output field. Normally, under these conditions the
output intensity is expected to display a complicated
modulation that reflects the competition of the various os-
cillating modes and the degrees of their mutual entrain-
ment.

There is considerable experimental evidence that inho-
mogeneously broadened gain lines tend to favor the
development of multimode action; on the other hand, also
homogeneously broadened lasers, such as COi or high-
pressure gas lasers, can be affected by mode-mode com-
petition. In spite of the fact that significant efforts have
already been devoted to the analysis of this problem, a
complete physical picture of the evolution of a multimode
system is still lacking, mainly because of the large number
of factors that can influence its behavior. Numerical
studies have clarified some qualitative features of the ob-
served dynamical patterns, " but have been unable, in
general, to provide sufficient information on the physical
origin of the breakdown of stability. The situation is
complicated by the simultaneous occurrence of single and
multimode instabilities (especially with inhomogeneously
broadened systems) which makes it very difficult to
unambiguously sort out the role of the various dynamical
variables that become involved in the evolution.

In an attempt to get to the root of at least some of these
problems, it is best to focus our attention on the simplest
possible laser model which is capable of multimode opera-
tion with the least number of additional complications.
For this reason, we propose to investigate the dynamical
evolution of a multimode unidirectional ring laser with a

homogeneously broadened atomic profile. We ignore the
effects of the transverse-field distribution, in spite of its
expected relevance for a quantitative comparison with the
experiments, and we limit our considerations to optical
cavities with high reflectivity mirrors and to active media
with a low enough gain per pass so that we may take ad-
vantage of the so-called mean-field approximation. The
exclusion of counter-propagating fields inside the resona-
tor will remove the complications associated with spatial
hole burning and, in general, with a spatially modulated
gain profile, while the mean-field condition will enable us
to focus on the stability properties of longitudinally uni-
form steady states. On the other hand, we allow for an
arbitrary detuning between the center of the atomic line
and a selected reference cavity mode, as well as for an ar-
bitrary intermode spacing.

The chosen physical setting is very similar to the one
analyzed in the pioneering contributions by Risken and
Nummedal and by Graham and Haken; a significant
departure is provided by the extra degree of freedom af-
forded by our choice of a variable detuning parameter. In
addition, unlike these earlier studies, we consider the sta-
bility of all the possible steady states (usually, more than
one stationary configuration can be supported by the
equations of motion) and analyze their behavior as the
center of the atomic line is progressively detuned away
from the selected reference cavity mode.

In some simple instances, it is intuitively clear what
must be expected; for example, if the intermode separation
is sufficiently large, a single longitudinal mode should be
active under resonant conditions. Upon increasing the de-
tuning its intensity should decrease steadily until this
mode is driven below threshold, and laser action stops.
For larger values of the detuning, the nearest-neighbor
mode, eventually, should turn itself on, go through an
emission maximum, and then switch itself off, in turn. In
general, of course, the situation may be more complicated.

One of the advantages of the model selected in this
study is that the behavior of a single-mode system is well
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understood, ' at least with respect to its response to small
perturbations around steady state. Furthermore, when

dealing with high-reflectivity mirrors and intermode spac-
ings of at most a few gain linewidths, one is unavoidably
involved with good-cavity systems (as we show explicitly
in the main text), so that single-mode instabilities are au-
tomatically ruled out. " In addition, a detailed linear-
stability analysis can be developed without excessive com-
plications, and the destabilization mechanisms can be
traced out rather easily. Finally, the evolution equations
can be solved under the guidance of the linear-stability
analysis. In this way, we can focus directly on the com-
binations of system parameters that can be expected to
yield significant dynamical features. These can be
analyzed in greater depth with the help of both homodyne
and heterodyne spectral techniques to visualize the role of
the competing modes in creating the observed output pat-
terns.

In our study, we use the term "instability" to denote the
occurrence of conditions leading to both discontinuous
variations of the steady-state output intensity, and long-
term output modulation, upon changing some of the con-
trol parameters. According to this nonmenclature, our re-
sults indicate that a multimode hamogeneously broadened
laser may display unstable behavior leading to self-pulsing
or hysteresis even under conditions where the single-mode
approximation would predict a stable configuration.

The appearance of hysteretic behavior is a new feature
of this model, but also the self-pulsing instability, while
apparently similar in character to that uncovered in ear-
lier studies, '9'2 emerges out of a different physical mech-
anism, at least for certain ranges of control parameters.
In fact, in resonance, an instability of the Risken-
Nummedal-Graham-Haken (RNGH) types' is triggered
by the eigenvalue of the linearized problem which is most
closely related to the mode-pulled field-amplitude mode.
Out of resonance, hysteresis and output pulsations evolve
as a result of a phase instability (the so-called phase eigen-
value develops a positive real part). This is reminiscent of
the results presented by Gerber and Buttiker, 'i with the
important difference that in this case we drop the reso-
nance condition between the center of the atomic line and
one of the cavity modes. Thus, in our context, we can
offer a clear prescription with regard to the experimental
parameters that are to be varied, and predict the oc-
currence of unstable behavior with the simple application
of a detuning scan. '

In Sec. II we describe the basic equations of motion and
their possible steady states. In Sec. III we summarize the
results of our linear-stability analysis. In Sec. IV we
display numerical evidence for the predicted instability
with the help of time-dependent solutions and their asso-
ciate power spectra. %'e conclude in Sec. V, with a dis-
cussion of recent experimental work that confirms the
theoretical expectations.

teracting with a traveling electromagnetic wave whose
(scalar) electric field has the form

E (z, t) = 8'(z, t)e " " +c.c. . (2.1)

I'(z, t) is the slowly varying complex amplitude, coa is an
arbitrary reference frequency to be properly selected in the
most convenient way, and ka ——cga/ c. In the following,
we select roti as one of the cavity eigenfrequencies
tos 2n——cn/. W, where W is the length of the entire ring
cavity, and we denote col by coc.

The equations of motion have the well-known form

aW 1 aW
Bz c Bt

ae
=ye[A &—(1+i5gc)9'],

(2.2a)

(2.2b)

(2.2c)

~here

P (z, t) =@I'(z,t)/[2A'(yiy(()'i ],

P (0, t) =RA (L,t (W L)/c)—, — (2.3)

where L is the length of the active medium and R is the
amplitude refiectivity of the two mirrors; the remaining
aptical surfaces that are needed to complete the ring are
assumed to be ideal reflectors, for simplicity.

The passible stationary states of the system have the
form

P (z, t) =P „(z)e

P'(z, t) =%«(z)e

&(z, t) =&„(z),

(2.4a)

(2.4b)

(2.4c)

where W«, H«, and &«are solutions of the equations

dz c
P,= —aH, ,

O=P «&« —(1+i5)H«,
o= z (~st+«+~«+:t)+~«+1

(2.5a)

(2.5b)

(2.5c)

p, is the modulus of the atomic dipole moment, H(z, t) is
the complex atomic polarizatian per atom, and &(z,t) is
the difference between the ground- and excited-state occu-
patian probabilities; yi and y(( are the palarization and
atomic-inversion relaxation rates, respectively, a is the
unsaturated gain coefficient per unit length, and

S~c ——(to& —
abc )/yi is the ditnensionless detuning param-

eter between the center of the atomic gain line toq and the
cavity frequency toe. The model is completed by ap-
propriate boundary conditions which, in the case of a
ring-cavity resonator, take the form

II. DESCRIPTION OF THE MODEL
AND STEADY-STATE SOLUTION

and where the detuning parameter 5 is defined as

~=Bc ~/yi . (2.6)

Our study has its premises in the usual Maxwell-Bloch
equations for an active collection of two-level atoms in-

The atomic variables can be determined at once as func-
tions of the stationary field profile
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9'„(z)= —P „(z)
1 —ib,

1+6, '+ (W„(z) ~'
(2.7a) COq + 5COJ = (~,+jai)rt+~~~

/A+K
(2.15)

&„(z)=— 1+6
1+6 +

~

W„(z)
~

(2.7b)

(2.8)

It is convenient to represent the field amplitude in terms
of its modulus and phase'

P „(z)=p(z)e'@*',

where p(z) and 8(z) are solutions of the equations

dp
dz

(2.10a)
I+~'+p'

d8 aZ 5'
dz 1+gi+p2 c

Equations (2.10) can be combined to yield the first in-

tegral

(2.10b)

ln = —= 8(z) —8(0)— zp(z} 1 co

p(0) g c

while Eq. (2.10a) gives immediately

(2.1 la)

while W„(z) is the solution of Eqs. (2.5a) and (2.7a) sub-

ject to the boundary conditions

It is clear from Eq. (2.13a) that the threshold condition

pj(L) & 0 is satisfied, in general, by more than one steady-
state configuration, depending on the gain parameter and
the cavity losses. We now focus our attention on a selec-
tion of parameters such that

aI —+0, R —+1 (2.16a)

with

aI.
(2.16b)

In this limit (mean-field limit ) the longitudinal intensity
profile along the active medium becomes uniform, and the
stationary field configuration is specified by Eqs. (2.13b}
and (2.13c) and by

=2C —(1+6,J2) . (2.17)

The atomic steady-state variables are given by Eqs. (2.7),
as usual.

The results of the stationary analysis are illustrated in
Figs. 1(a) and 1(b) for two typical selections of parame-

(1+5 )ln + —,
'

[p (z) —p'(0)]=az .
p(0)

(2.11b}

0.5
In addition, the boundary conditions (2.8), expressed in
terms of modulus and phase, provide the two constraining
relations

p(0) =Rp(L),

8(L)—8(0)= —5' —L
+2m)',

(2.12a)

(2.12b)

where j is, a priori, equal to zero or any positive or nega-
tive integer. After combining Eqs. (2.11), (2.12), and (2.6),
one readily arrives at the required result

pj(L)= [aL —(1+6,J) /

lnR
/ ],

~I =5~c 5~J~)'i—
K&~C+

1+K

(2.13a)

(2.13b)

(2.13c)

p
2
j

2&CA]=
Vl.

c flnR
/

Wy,

(2.14)

The parameter a~ measures the intermode spacing in units
of yj, while K is the sealed cavity damping rate; the
operating frequencies of the stationary solutions are
equispaced and given by the mode-pulling formula

0
( }

AC

FIG. 1. (a) Steady-state output intensity p~.(L } [Eq. (2.13)] for
the stationary states labeled j=0, +1 as a function of the detun-

ing parameter 5&&. The value 5~c ——0 corresponds to the cavity
mode whose frequency co, is selected as a reference. The dots
correspond to values obtained by direct integration of the
space-time —dependent Maxwell-Bloch equations. The parame-
ters used in this calculation are aL =2, R =0.5, y=2, a& ——5.
(b) Steady-state output intensity p~{L) (/ =0, +1) for aL=2,
R =0.5, and al ——3.
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ters. With reference to Fig. 1(a), the physical situation is
one in which the center of the atomic line is initially
resonant with the cavity mode co~, with the output inten-
sity at its largest value consistent with the chosen gain pa-
rameter C. As coq is gradually detuned away from roc (to
the right of cue, for example), the stationary output inten-
sity decreases, until eventually the steady state j=0 falls
below threshold. For larger values of the detuning, anoth-
er steady state (j =1 in this case} becomes active; the out-
put intensity begins to grow again and achieves a new
maximum when the detuning parameter becomes as large
as a free spectral range (the frequency spacing between ad-
jacent modes). The same situation develops, of course, if
one carries out a detuning scan to the left of cue.

Figure 1(b) differs from Fig. 1(a) only because the free
spectral range is now smaller. In this case, two different
steady-state configurations coexist, above threshold, for a
certain range of detuning parameters. The actual
behavior of the system in the presence of competing
steady states must be clarified with the help of linear-
stability considerations. This is the objective of $ec. III.

III. LINEAR STABILITY ANALYSIS

If the ring-laser system is initially in one of its possible
steady states, the short-term evolution that follows a small
deviation from the stationary solution is governed by a set
of five linearized partial differential equations. Thus, the
problem is intrinsically infinite dimensional. The calcula-
tion of the rate constants that characterize the linear
response is greatly simplified by a procedure that
transforms the infinite-dimensional matrix of the linear-
ized problem to a block-diagonal form. Each elementary
matrix to be diagonalized leads to a fifth-degree charac-
teristic polynomial equation whose complex roots are the
required eigenvalues. Because the structure of the elemen-
tary matrices is the same for each of the blocks into
which the original problem has been decomposed all the
necessary eigenvalues can be determined from a unique
routine.

Our procedure has already been detailed in Ref. 16;
here we suminarize the basic steps. First, we define a new

:t of independent variables

multiplicative factor R, so that the new boundary condi-
tions take the form

F(0, t') =F(L,t'), (3.3)

which is common, for example, of one-dimensional linear
vibrations problems.

In the mean-field limit, the Maxwell-Bloch equations
for the new field and atonuc variables become

aF cL, aF
at w a', +

aP
dt',

=yiP'D —(I+&4c)P]

aD
t'

It(F—+2CP),

y, ~[ ,—(F'P—+FP')+D+1],

where

c /lnR
f

cT

(3.4a)

(3.4b)

(3.4c)

(3.5)

D(z', t'}= g e " e " d„(t'),
(3.6a)

and
r

F'(z', t')
i SQt'

P'(z', t')
—ik„z' ia„t', f„(t')~ ~

e( i)Pn &
(3.6b)

where 5Q is to be calculated from the steady-state equa-
tion and the selection

k„= (n =0, +1, . . . )5

automatically ensures the validity of the boundary condi-
tions. The modal amplitudes f„,f„', . . . , d„obey the cou-
pled equations of motion:

and where T is the transmittivity coefficient of the mir-
rors ( T = 1 R). We—now introduce the modal decompo-
sition

, f (t')

Z Z j Lz-f'=f + c I. '

and the new field and atomic variables

I

F(z', t') =W(z', t')ex p—lnRI.

(3.1)

(3.2a)

fn ='5&fn —&(f +2' )

f „' = i 5Q f„' ~(f—„+2&@„'), —

50
p. =yi ~ gf'd. ' I+i 4c—-—

I 7l

(3.7a)

(3.7b)

(3.7c}
T

I

P(z', t') =H( zt' ex}p—lnRI. (3.2b} p n =yi ' g fe'ds —s'— 5Q
1 —s 5&~— —a„p„'

Vl

D(z', t')=&(z', t') . (3.2c) (3.7d)

The objective of the transformation (3.1) is to make the
boundary conditions (2.3) isochronous (i.e., to eliminate
the time delay in the new reference frame), while the
transformation (3.2a) has the effect of eliminating the

0

d„=ta„d„—y~~ —,g(f„p„+„,+f„p„. „)+d„+5„,

(3.7e)
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f„'j'=[2C —(1+j)).j}]'~~5„j, (3.8a}

(j) (j) j
]+i) 2+

~

f(j)
~

2

2

„(j) '+~ j
~f(j)j2

where hj is defined by Eq. (2.13b) and 5Q =5Qj
=5roj —aj. We linearize Eqs. (3.7) around the jth station-

ary solution, i.e., we let

(3.8b)

(3.8c)

X„=X(j)5„j+5X„,

with X„=(f„,f„',p„,p„'}and

d„=d„"'5„+5d„,

(3.9a)

(3.9b)

and obtain an infinite-dimensional linear system of equa-
tions for the fluctuation variables 5X„and 5d„. The ma-

trix of the coefficients of the linear equations can be put
in a block-diagonal form by selecting 5f„+j, 5p„+j,
5f~' „, 5pj' „, and 5d„as the coupled fluctuation vari-
ables. Thus, for a selected steady state j and for every
valueof n (n =0,+1,+2, . . . ) wehave

The parameter a„ is defined as a„=n a i, where

(x( =—2ncl& is the intermode spacing.
The stationary solutions of Eqs. (3.7) are labeled by the

same index j as Eqs. (2.13) and have the form

ters as well as the sideband frequency a„. The steady
state which is being probed is stable if and only if
Rek. ( &0 for i =1,2, . . . , 5, and for all values of n .The
appearance of a positive real part of an eigenvalue for a
given value of n is an immediate indication that the
selected steady state is unstable against a small perturba-
tion. The instability manifests itself with the growth of
sidebands at the frequencies +an; hence, for example, the
field amplitude F(z', t') begins to depart from its station-

ary configuration F„and develops a space and time struc-
ture.

Competitive effects between coexisting steady states be-

come especially significant when the intermode spacing a(
is of the order of a few atomic linewidths or smaller. In
this case, unavoidably, the scaled cavity linewidth

(t=x/yi is considerably smaller than unity (good-cavity
limit} because a( 2')t/——T and T ~~ 1. Under these condi-
tions, three out of the five eigenvalues tend to have large
and negative real parts; the remaining two eigenvalues are

0.05

5fn +j =i5Qj5fn +j K(5fn +j +2C5pn +j )

5fj „= i5Qj5f)—' „a(5f,' „+2—C5pj' „),
5P. +,=r. t5fj(j)5d. +5f, +.d)

—[1+i(hj —a„)]5p„+jj,
5p „=y I5f'j"5d„+5f' „dJ'

—[1 i (bj+—a„)]5pj' „j,
5d„=+i(z„5d„

'Y(([ z (fj 5Pn+j+Pj 5fj n+fj 5Pj —n-
+Pj"'5fn+ j )+5d. ] .

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

—0.1

0.05

Equations (3.10) form a closed set of linear equations for
each value of the integer n The ansa. tz

5f„+j(t')
5fj' „(t')
5pn+j(t)

5pj' „(t)
5d„(t)

5f„+j(0)

5f(0)n

(0)5p„~j
|,'0)e

5pJ.

n

(3.11)

leads to a fifth-degree characteristic equation for A, of the
OHIl

g A((a„)A,'=0, (3.12)

where the coefficients A;(an ) are complicated, but explicit
expressions that depend upon the stationary-state parame-

FIG. 2. (a) The two largest real parts of the eigenvalues of
the linearized equations (3.10) are plotted as functions of a„
viewed as a continuous variable for aI. =0.8, R =0.95, al ——3,
y =1.5, 5&c——0. These eigenvalue describe the response of the
system around the stationary state j =0 which is stable because
Rei, &0 for all values of a„. The other two possible steady
states j =+1 are both unstable. (b) Same as (a) with aL, =2.
For a sufficiently high gain, the real part of the amplitude
eigenvalue becomes positive and the j =0 steady state becomes
unstable in correspondence with a3 ——3al. Because the station-
ary states j =+1 are also unstable, the system is expected to
develop self-pulsing for sufficiently long times.
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responsible for the appearance of unstable behavior for
appropriate values of the parameters. ' Of these two
eigenvalues, one has a zero real part for a„=O, and is
recognized as the phase eigenvalue; the other can be la-
beled as the ainplitude eigenvalue, for convenience. The
distinction between phase and amplitude eigenvalues be-
comes especially clearcut in the resonant case (5„c——0)
when the set of linearized equations for j=0 splits into
two parts, one related to the amplitudes and the other to
the phases.

It is interesting to compare the behavior of the two
relevant eigenvalues in two specific situations. The first
one corresponds to a resonant condition (5&c——0) and to
increasing values of the gain parameter 2C; the second
corresponds to a fixed value of the gain and to growing
values of the detuning. The resonant situation was al-
ready investigated in Refs. 8, 9, and 13, and the results
are already known. Typical results are illustrated in Figs.
2(a) and 2(b) where the real parts of the two field eigen-
values are plotted as functions of the scaled sidemode fre-
quency a„regarded as a continuous variable (note that the
only meaningful values of ReA, correspond to values of a„
that are integer multiples of ai). The gain selection in
Fig. 2(a) is such that the stationary state j=0 is stable.
The only other possible stationary states in this case are

j=+ 1; these states are unstable so that the system, initial-

ly placed in the j=0 state, will remain there indefinitely.
The gain parameter in Fig. 2(b) is, instead, large enough
that the amplitude eigenvalue develops a positive real part
in correspondence with the sideband frequency a„=3ai.
In this case, as already predicted in Refs. 8 and 9, oscilla-
tions will develop as the system departs from its initial
stationary configuration. It is important to reniark that
in both Figs. 2(a) and 2(b) the phase eigenvalue associated
with j=0 state maintains a negative real part, so that the
appearance of self-pulsing is the result of the destabiliza-
tion of the field amplitude. This is a general feature of all
resonant configurations for the stationary state j=0.

In Figs. 3(a) and 3(b) we illustrate the effect of increas-
ing the detuning between the center of the atomic line and
roc. In both cases, the gain of the system is much smaller
than would be required for the appearance of an instabili-

ty of the type shown in Fig. 2(b). The steady state j=0 is
stable for the chosen value of Sqc in Fig. 3(a}, but it be-
comes unstable for the larger detuning value used in Fig.
3(b). Here the instability is associated with the growth of
sidebands at a„=ai. Note, however, that unlike the
resonant case, here the instability is brought about by a
destabilization of the phase, i.e., by a very different physi-
cal mechanism from what is operative in connection with
the RNGH instability. '9 This feature is also typical of all
detuning scans that we have investigated.

We are now in a position to consider the matter of com-
petition among different steady states, and the different
scenarios that one may expect from the direct numerical
integration of the Maxwell-Bloch equations. If the inter-
rnode spacing is so large that only one steady state can
satisfy the threshold condition, the situation is not essen-
tially different from that of a single-mode laser: above
threshold for laser action the only stationary state is nor-
mally stable as long as ~ is sufficiently small and the gain

0.05

- 0.1

0.05

Re A.

- 0.1

FIG. 3. (a) For increasing values of the detuning parameter,
8q~, the phase eigenvalues eventually develops a positive real
part. In this case, the j=0 steady state is stable; aI. =0.5,
R =0.95, o;~ ——3, y=0. 8, S~~——0.7. (b) Same as (a) with
E„c= 1.2. In correspondence with these parameters, the station-
ary state j=0 becomes unstable (phase instability); the states
j= +1 are also unstable, so that pulsations are expected for suf-
ficiently long times.

of the system is lower than the so-called second-laser
threshold. For simplicity, we consider now a situation
where ai is of the order of a few yi, and the gain is ad-
justed so that only two coexisting steady states
(j =0,j= 1) can be found over most of the detuning range
(O,ai}. In the following discussion, the gain is held con-
stant, while 5&c is allowed to vary from 0 to ai (the situa-
tion for negative detuning is symmetric and it involves the
stationary states j=0,j=—1}. For each value of 5&c we
have calculated the eigenvalues of the two stationary
states and recorded the range of the a„axis where
ReA, & 0. This range has bmi plotted as a function of 5„c
in Figs. 4(a) and 4(b) to illustrate the behavior of the
domain of instability of the ring laser as a function of the
detuning parameter.

Figure 4(a) shows the existence of a detuning range
(0 & 5~c &0.8} where the stationary state j=0 is

stable, while j=1 is unstable, and a range (2.2 &5&c & 3)
where the converse is true; here there is no ambiguity with
regard to the long-term behavior of a solution. On the
other hand, both steady states are unstable for
0.8&5„c&2.2 and self-pulsing is expected to develop
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From an experimental point of view, a phase instability
should be more readily accessible to observation because
of its reduced demands on the gain of the system.

4 I-

!

0.5 1.0
)

1.5 2.0

FIG. 4. (a) Instability boundaries for the steady states j =0
and j =1 as functions of the detuning parameter 5qc. The
steady state j =0 becomes unstable to the right of the solid line
marked j =0. The steady state j = 1 is unstable to the left of the
corresponding solid line. The horizontal dashed line marks the
position of the first off-resonant cavity mode. The parameters
chosen in this calculation are aL =0.5, R =0.95, a~ ——3,
y =0.8. (b) Instability boundaries for the steady states j =0 and

j =1. The steady state j =0 becomes unstable to the right of
the solid line marked j =0. The steady state j =1 is unstable to
the left of the corresponding solid line. The horizontal dashed
lines mark the position of the first two off-resonant cavity
modes. The parameters chosen in this calculation are aL =0.3,
R =0.95, a~ ——2, y=2. Over the range 0.85~5~cg1.15 both
stationary states j =0 and j =1 are stable, hence bistability and
hysteresis are expected upon scanning the detuning parameter.

under these conditions. This is confirmed by the numeri-
cal solution of the Maxwell-Bloch equations as discussed
in Sec. IV. In Fig. 4(b) the laser gain has been reduced to
a value such that while two possible steady states still ex-
ist, their respective domains of instability do not overlap.
On the basis of the linearized stability analysis, one then
expects the occurrence of discontinuous jumps from one
stationary state to the other as the detuning parameter is
scanned in a continuous adiabatic way. This conjecture is
supported by the numerical analysis disussed in Sec. IV.

In closing, it is worth remarking once again that the in-
stabilities associated with the detuning scans are of a dif-
ferent nature from those investigated in Refs. 8 and 9, and
should not be interpreted as RNGH-type instabilities
under detuned conditions. Of course, both amplitude and
phase instabilities can become operative at the same time
for sufficiently high gain, and in the presence of detuning.

IV. NUMERICAL SOLUTIONS
OF THE MAXWELL-BLOCH EQUATIONS

Before we enter into the details of the numerical
analysis of the Maxwell-Bloch equations, it will be useful
to restate the main difference between the present calcula-
tions and the setting considered in Refs. 8, 9, and 12. In
resonance, this system can be described by separate equa-
tions for the intensity and the phase of the field, each set
being related to a different linearized eigenvalue for the
field variable. The eigenvalue that corresponds to the
phase is always equal to zero for a„=0, and the one relat-
ed to the intensity can develop a positive real part for suf-
ficiently large values of the pump parameter. As
described in Ref. 8, this seems to indicate that all the en-

ergy used to increase the population inversion cannot be
transferred to a single mode, but there exists a limit to the
pump parameter above which the energy is distributed
also to nonresonant cavity modes whose gain can thus be
made larger than their losses. At this point, multimode
operation of the laser can be obtained in the sense that
two or more optical frequencies are excited simultaneous-
ly.

In the presence of detuning, the threshold for this type
of instability increases because the energy transfer is now
less efficient, in agreement with the findings of Zorell. '

However, the phase eigenvalue can develop a positive real
part of its own, even for small values of the pump param-
eter, as shown in the previous section. This can be inter-
preted as the onset of an additional choice on the part of
the laser system between oscillation at the active mode or
at its nearest neighbor. Thus, three types of behavior be-

come possible:
(1) monostability, when the interrnode spacing is large

enough that the operating mode goes below laser thresh-
old before the adjacent one becomes active;

(2) bistability, if the laser operates in one mode, or its
nearest neighbor, but both are stable in their region of
coexistence;

(3) dual-mode operation (self-pulsing), if the laser can
support both modes simultaneously. In this case, periodic
self-pulsing develops at a frequency given by the separa-
tion between the adjacent mode-pulled cavity modes. We
have called this behavior "phase instability" because the
eigenvalue whose real parts become positive is associated
with the phase equation in resonance.

These three possibilities will be observed depending on
the values of a, , y, and a. In the case of the CO& laser,
for example, where y is much smaller than x, bistability is
the dominant behavior if a& is sufficiently small for a
given gain value. When self-pulsing develops, only limit
cycles become possible in the phase space of the dynami-
cal variables because the pulsations are the result of a
beating effect between two separate modes. Of course,
this possibility cannot exist in the RNGH setting in reso-
nance.

Our method of solving the Maxwell-Bloch equations is
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FIG. 5. (a) Time evolution of the modulus of the output field

~
F(t') ~, from an initial small value. The parameters used in

this simulation are identical to those used in Fig. 4(a) arith

5&c——0.5. As expected, the system evolves to the stationary
state j=0. (h) Spatial profile of the field modu1us

~

F(z')
~

plotted as a function of the scaled longitudinal coordinate z'/I. .
The fie1d intensity

~

F(z')
~

' is very nearly uniform everywhere
under the mean-field conditions.

based on the procedure developed in Ref. 8, and suitably

adapted to handle the simple extension to complex field
and polarization variables. For the convenience of possi-
ble future investigators of this problem, we have assem-
bled a number of useful comments and the entire set of
discretized equations in Appendix A. Here we limit our-
selves to a brief survey of the most relevant results.

The equations to be solved by our numerical code are
actually more general than Eqs. (3.4) because they do not
include the mean-field approximation. In order to take
advantage of the results of the linear-stability analysis,
however, we have selected parameters that are consistent
with the mean-field limit, with only one exception: the
dots in Fig. 1 represent the steady-state intensity calculat-
ed at the end of the dynamical transient under conditions
that are rather removed from the mean-field limit. The
agreement with the predicted stationary values is excel-
lent.

We are especially interested in verifying the occurrence
of the dynamical scenarios which are suggested by the
linear-stability analysis. More complicated unstable
behaviors are surely possible for different values of the

control parameters, but they will be investigated in future
studies.

The approach to a stationary state or the appearance of
self-pulsing under the expected conditions is illustrated in
Figs. 5 and 6. Figure 5(a} displays the evolution of the
output-field modulus

~

F
~

for a detuning value that lies
to the left of the j=0 instability boundary [see Fig. 4(a)].
As expecttxi, starting from a very small initial field, the
laser evolves into a constant intensity state, in excellent
agreement with the prediction of Eq. (2.13a). The real
and imaginary parts of the field in steady state are expect-
ed to undergo a sinusoidal oscillation with a frequency

5t00
5Ac ~0

y

This, also, has been verified to excellent accuracy. The
very high degree of longitudinal uniformity which is ex-
pected for the chosen parameters is confirmed by Fig.
5(b).

Upon increasing the detuning beyond the value
5&c-0.8 output, pulsations begin to appear. An example
of fully developed oscillations is shown in Fig. 6(a) for
5&c ——1.2. As expected, because of the nonlinearity of the
Maxwell-Bloch equations, the intensity modulation is not
exactly sinusoidal. On the other hand, the output oscilla-
tions are the result of competition between two coexisting
steady states, so that the fundamental pulsation frequency
ought to be rather close to the beat note between the j=0
and j =1 steady states. This argument is well supported
both by a direct reading of the frequency oscillation from
Fig. 6(a) and by the output heterodyne spectrum as shown
in Fig. 6(b).

We note in this connection that spectral studies of
dynamical phenomena provide a very useful complement
to the time-dependent solutions of differential equations.
Theoretical studies, for the most part, have relied on
homodyne spectral techniques, while experimental investi-
gations have focused typically on heterodyne spectra. Be-
cause the latter technique offers considerably greater in-
sight into the dynamical mechanisms that generate the ob-
served oscillations, we have modified a conventional fast
Fourier-transform code in order to simulate the superposi-
tion of the optical laser field of interest with that of a
stable reference oscillator. An outline of this procedure is
presented in Appendix B.

On increasing 5&c beyond the value 5qc =2.2 the inten-
sity pulsations disappear and the output field acquires,
again, a time-independent amplitude. At this point, the
frequency of oscillation of the real part of the solution
corresponds to the j =1 stationary state.

The appearance of hysteretic effects is nicely displayed
by a simulated detuning scan corresponding to the param-
eters used in Fig. 4(b}. In this scan we have used the final
configuration of a given calculation as initial conditions
for a new calculation corresponding to a slightly larger (or
smaller) value of the detuning. The results are displayed
in Fig. 7. The vertical arrows in Figs 7(a) and 7(b) indi-
cate the detuning values where the output field is expected
to undergo a transition from a lower (higher) intensity lev-
el to a higher (lower) one. In practice, the switching
threshold is difficult to approach in numerical experi-
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FIG. 6. (a) Long-term time evolution of the modulus of the
output field

~

F(t') ~. The parameters used in this simulation
are identical to those used in Fig. 4(a) with 5~c ——1.2. The sys-
tem evolves into a self-pulsing state as one expects from the re-
sults of the linearized analysis. (b) The heterodyne spectrum of
the output field mixed with a local oscillator whose optical car-
rier is removed from co, by an amount 10yj, the spectrum shows
the presence of two fundamental oscillation frequencies
co' '=9.986 and co'"=7.005, which are easily traced to the oscil-
lation frequencies associated with the unstable states j =0 and

j= 1 [see Eqs. (2.13b) and (2.13c)].

ments because of critical slowing down. However, it is in-
structive to follow the evolution of a solution whose initial
conditions corresponds to a steady-state configuration on
one side of the switching threshold, while the detuning pa-
rameter lies on the opposite side. In this case, a long ini-
tial transient with a very nearly constant output intensity
and optical frequency is followed by a slow transition
period when the output intensity switches over to the new
stable value and the oscillation frequency acquires the
value that is appropriate to the new operating state. The
transition state is characterized by a modulation of the
output intensity [Fig. 7(c)] at the beat frequency of the ad-
jacent dressed modes which grows to a maximum and
then steadily decreases to zero. Clearly, the switchover is
characterized by a temporary coexistence of both oscillat-
ing modes.

Some of the above theoretical predictions have been ob-
served experimentally in tests carried out with a mul-

Ry f

0-

500
(t.-)

1000

timode, homogeneously broadened CO2 laser, as we dis-
cuss in Sec. V.

V. FREQUENCY AND INTENSITY BISTABII.ITY
IN cw CO2 LASERS

The theoretical results derived in the previous sections
apply in a general way to homogeneously broadened lasers
such as ruby, dye lasers, Nd:YAG (yttrium aluminum
garnet), COi, molecular far infrared, and semiconductor

FIG, 7. Simulated detuning scan corresponding to the pa-
rameters of Fig. 4(b) {aL=0.3, R =0.95, a& ——2, y'=2); (a)
variation of the output intensity. The dots represent the
steady-state values calculated numerically. The solid line is a
plot of the modulus of the output field according to Eq. (2.13a);
(b) variation of the frequency 5coj/yj of the output field. The
dots represent measurements of the frequency obtained from the
numerical solution of the real part of the output field. The solid
line is a plot of Eq. (2.13c). (c) The real part of the electric field
during the switching period from one steady state to the other.
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lasers. Of course, these devices operate under very dif-
ferent conditions, so that with a single laser we would not
expect to observe but a small fraction of the predicted
behaviors. On the whole, the most promising systems for
the type of studies discussed in this paper are the far-
infrared lasers because of their flexibility with regard to
the choice of values of y and K Semiconductor, Nd:
YAG and CO2 lasers, however, are widely used at the
present time. They all share a common feature; the popu-
lation relaxation rate is smaller than the escape rate of ra-
diation out of the cavity (y~~ &a).

As indicated in the theoretical analysis, the output in-
tensity is expected to display a behavior similar to that of
Fig. 1(a), when the intermode spacing ai is sufficiently
large and the gain low enough, so that only one mode at a
time has a nontrivial steady state. If two or more steady
states coexist, mode-mode competition can yield results
that are not accessible to the single-mode theory. Until
now it has been generally accepted that homogeneously
broadened lasers behave as intrinsically single-mode de-
vices and that their output intensity and operating fre-
quency are determined by the cavity mode that lies
nearest to the atomic resonance. In Fig. 8 we show the
real parts of the linearized eigenvalues corresponding to
the j=0, 1, and —1 steady states for 5&c——0, ai ——3,
aL=0.3, R =0.86, x=0.1, and y=10 . %ith these
operating parameters, all three steady states correspond to
nontrivial stable solutions, as shown by the eigenvalues.
The actual output intensity and operating frequency of
the laser obviously depend on the previous history of the
device. In fact, if we carry out a detuning scan along the
lines of Fig. 4, we see that the j=0 steady state becomes
unstable only for values of 5&c which are larger than a&.
This suggests that, upon detuning the cavity from the
center of the atomic line, the operating mode will main-
tain control of the laser output even if other possible
steady states have a higher unsaturated gain and are actu-
ally closer to the center of the atomic line. Strictly speak-

Re A.

ing, the choice of the intermode spacing (ai ——3.0) is not
consistent with the value a=0. 1 in the mean-field limit,
i.e., the relation ~=

~

inR
~
ai/2n is not satisfied. The

value of a considered here is larger than prescribed by this
formula because it siinulates the presence of the additional
losses due to the intracavity modulator. The results of
this analysis give a good qualitative indication of the
behavior of a real system, as we have verified using a COi
laser with more than one mode under the gain curve. Our
experiments have been carried out using the setup
schematically shown in Fig. 9. The cavity tuning is con-
trolled by a PZT (lead zirconium titanate) driver mounted
on one of the mirrors, while the level of internal losses is
set with an electro-optic modulator. The total gas pres-
sure inside the tube was varied from 13 to 20 Torr to al-
low some variation of the width of the gain curve. The
total length of the ring cavity was about 2 m.

In Fig. 10 we show the output intensity as a function of
the voltage applied to the PZT. At low values of the pres-
sure and small cavity losses, the output intensity grows
monotonically from zero to a maximum value and then
decreases to zero again [Fig. 10(a)]. After increasing the
pressure to 20 Torr and raising the value of the cavity
losses, we note a discontinuous jump in the intensity as we
vary the position of the mirror M. The increase in pres-
sure is responsible for the emergence of more than one
possible steady-state solution; on detuning the position of
the cavity, the laser output follows the operating mode
until the losses exceed the gains. At this point, the ob-
served intensity jumps to the value corresponding to the
steady state that has the highest gain; if this lies around
the center of the gain curve, the output intensity under-
goes jumps from the noise level to its maximum value
[Fig. 10(b)]. The voltage scans were carried out at dif-
ferent rates to verify the independence of our results on
the slow temporal variations of the operating parameters.
In fact, on occasions we have stopped the voltage scans al-
together to verify that the output intensity did not vary
from the observed values.

In order to provide more conclusive evidence that the
observed switching of the intensity corresponds to a

PZT M EOM BE CQ2 L.T.

G

,

3

5

FIG. 8. The three largest real parts of the eigenvalues A, as
functions of a„viewed as a continuous variable for aI. =0.3,
R =0.86, x =0.1, aI ——3.0, y =10,and 5&~ ——0 for the station-
ary states j =0 (sohd line) and j= 1 (dashed linesj. These states
are stable even if the atomic transition is resonant with the
selected cavity mode.

FIG. 9. Experimental setup: PZT, piezoelectric ceramic; M,
total reflectors; EOM, electro-optic modulator; BE, beam ex-
pander; BS, beam splitter; 6, grating; D, Hg CdTe detector; 1,
X-F oscilloscope; 2, graphic recorder; 3 and 4, HV power sup-
plier; 5, wave-function generator.
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(a)
366 volts V

F2
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FIG. 10. Output intensity as a function of the voltage applied
to the PZT(V). (a) At a pressure of 8 Torr and with no voltage
applied to the EON ( Vo ——0). This configuration corresponds to
the minimum losses. (b) At a pressure of 20 Torr and Vp =250
V. The maximum loss value accepted by the system corre-
sponds to Vo ——1100 V. The solid (dashed) line represents the
forward (backward) voltage scan.

change in the operating mode, we have analyzed the tran-
sient regime during the transition process and observed a
beat pattern with a frequency of about 60 MHz [Fig.
11(a)]; this value is consistent with the frequency spacing
between neighboring mode-pulled lines and in good agree-
ment with the theoretical result shown in Fig. 7. On the
other hand, the duration of the transient of about 50 @sec,
which can be observed in Fig. 11(b), is also consistent with
the results of the numerical simulations which indicate
that this transient should last about a decay time y~~

' of
the population inversion.

In typical CO& lasers the gain width ranges from 50 to
100 MHz, the cavity modes are separated by 50—150
MHz and the unsaturated gain is about twice as large as
the threshold value. Under these conditions, the output
intensity decays to zero during a detuning scan before the
system jumps to another operating frequency. However,
in Nd: YAG lasers where the intermode spacing is much
smaller than yi, the behavior of the output intensity is ex-
pected to be similar to that displayed in Fig. 7, and the in-
tensity jumps should be less pronounced than with CO2
lasers.

The results of these tests confirm the existence of bista-
bility in the variation of the output intensity and of the
operating frequency as one scans the detuning parameter
5&c, in qualitative agreement with the theoretical predic-
tions. Furthermore, they show that a homogeneously
broadened laser, even if it operates in a single mode, may
not function at the mode which lies nearest to the center
of the atomic line.

) ~
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APPENDIX A

~ ~

(b)

FIG. 11. Output intensity as a function of time during the
discontinuous jump observed in Fig. 10(b). (a) Time scale: 20
nsec/div. The observed oscillations corresponds to the beating
between two adjacent modes. (b) Time scale: 10 @sec/div. The
duration of this transient is approximately 50 @sec, which is
comparable with y~~

'.
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The starting point of our numerical analysis is given by
the equations of motion



33 MODE-MODE COMPETITION AND UNSTABLE BEHAVIOR IN. . . 1853

and by the boundary conditions

W(O, t) =RA (L,t (W——L)/c) . (A2)

In the reference system (3.1) and in terms of the new vari-
ables (3.2), the equations of inotion take the form

the electric-field amplitude and of the atomic polariza-
tion.

The first space and time derivatives are discretized at
every grid point (m, n) according to the Taylor expansion
formulas

dF cL dF a(—F+2CP), (A3a)
BX(m,n) X(m, n) X—(m —l, n) 1,d X(m, n)

I'
, =yj [FD —(1+i5gc)P],t'

'dD

t'
+I= —y[[ (PF'+P'F)exp

~

inR
~

+D+1I.

(A3b)
(A4a)

dX(m, n) X(rn, n +1) X—(m, n) 1 &, 3 X(m, n)
Bt' bt' 2

(A4b)

(A3c)

Our discretization scheme is identical to the one adopted
by Risken and Nummedal in Ref. 8, apart from a few
minor modifications to account for the complex nature of

where the second space and time derivatives are to be con-
structed directly from the equations of motion. The ele-
mentary step size M' is chosen equal to (cL/W)ht'
After considerable algebra, the discretized equations take
the form

F(m, n +1)=a,F(m, n)+atF(m —l, n)+a3P(m, n)+a4P(m —l, n)+a5D(m, n)F(m, n),

P(m, n +1)=biP(m, n)+biD(m, n)F(m, n)+b&D(m, n)P(m, n)+b4D(m, n)F(m —l, n)

+b5P'(m, n)F (m, n)E(rn)+b6P(m, n)F(m, n)F'(m, n)E(m)+b7F(m, n),

D(m, n +1)=ciD(m, n)+Re[c2F'(m, n)P(m, n)E(m)]+c&P'(m, n)P(m, n)E(m)

+Re[c4F(m —l, n)P'(rn, n)E(m))+csD(m, n)F'(m, n)F(m, n)E(m)+c6,

(ASa)

(A5b}

(ASc)

where

ai —,'(br) tr-—
a2 ——1 —xbv,

a3 ———,'2Ctr he[—1—hr(1+i5&&) bri~c-
a4 ———, hr (2CK—),1

as ————,
'

(b,r) (2Ci~c

bi ——1 —(1+i5~c)he+ —,'(1+i5gc) hr,
b, = —,

' hi[1 —b,r(1+i5„c+y+n)],
b i ———,

'
( hr) (2C),

bg ———,
' h~,

b5 ———,'(hr) y, —

b5 ———4(b,r) y, —

b6 ——b5,

bp —, (br) ——y;—

c3 ——,'(b, r) y2CF,—

c4 ————,hey,
c5 ————,'(h~) y,
c,= 2(S~)2y ' y—ar, —

where

and

hr=yi ht', tr=x/yi

y=y~)/yi

If M is the maximum number of intervals into which
the active medium is divided, the boundary conditions are
enforced by setting X(0,n)=X(M, n) in the m =1 entry
of the m loop. The selection of M and of the time step
lid is constrained by the requirement 2n./ai ——M b,r.

APPENDIX 8: HETERODYNE SPECTRA
OF THE OUTPUT FIELD

The heterodyne spectrum of an electromagnetic signal
is obtained by superposing the field of interest with a
reference field with a fixed amplitude and carrier frequen-
cy. %'e denote by

ci ——1 —y h~+ —,(br) y

ci ———,'(br) y(1+i5gc)+ ,' dry+ ,
' (—h~)'ya—.

+ , (hr) y —y b~—,

Eo(t) = 8'o(t)e ' + 8'0 (t)e

Ett(t)=He " +A'e

(Bla}

(Blb)
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the optical laser field and the reference signal, respective-

ly. 8'0(t) is the slowly varying complex amplitude, co, is
the selected cavity frequency, and co+ is the carrier fre-

quency of the reference signal. The total intensity at the
detector is given by

(82)

The power spectrum of the real, time-dependent function
IT(t) consists of three distinct contributions: (i) a 5 func-
tion centered at zero frequency, (ii) the homodyne spec-
trum of the field of interest, (iii) the spectrum that results
from the beating of the two signals (heterodyne com-
ponent).

In our simulation the constant background term
2

~

A
~

is subtracted out. The heterodyne part of the
spectrum is enhanced by selecting a sufficiently large am-

plitude for the reference signal, and a large enough detun-

ing (co, —to+ ) so that the spectral lines of interest are well
removed from the origin of the frequency axis. Of course,
(co, —co~) cannot be made too large for the following
reason: the time-dependent solution tt'(t) of the
Maxwell-Bloch equations is represented by a string of
complex numbers calculated at discrete times t~, t2, . . .
spaced by a constant interval bt. If we are to sample the
beat signal with enough accuracy [e.g., by collecting about
10 points per period T =2m/(co, to—tt)], it is clear that
the optimal sampling interval (b,t)», should be of the or-
der of 0.1T Th. us, the frequency detuning should be
selected with these two requirements in mind: (i) ade-

quate separation of the spectral lines from the origin of
the frequency axis, (ii) accurate sampling of the oscillating
beat signal. In our work, the power spectrum of
IT(t) 2~ A —

~

has been calculated by a standard fast
Fourier-transform technique.
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